

Evaluating eXtreme Scenario-based
Design in a Distributed Agile Team

Abstract

Enterprise-level organizations, which often rely on

distributed development teams, are increasingly

interested in finding ways to adopt agile and usability-

focused methods. Agile usability researchers at Virginia

Tech have partnered with Meridium, Inc. to look at how

eXtreme Scenario-based Design (XSBD), an agile

usability approach developed at Virginia Tech, can be

used in a distributed environment. We report on the

use of this XSBD approach in a distributed team at

Meridium and how it addresses the challenges of an

integrated approach through streamlined usability and

development practices and clearly defined

communication and information sharing practices.

Keywords

Usability, agile, distributed development, extreme

scenario-based design

ACM Classification Keywords

H.5.2 Information interfaces and presentation (e.g.,

HCI): User Interfaces – Theory and methods; D.2.2

SOFTWARE ENGINEERING: Design Tools and

Techniques – User Interfaces

General Terms

Design, Human Factors, Theory

Copyright is held by the author/owner(s).

CHI 2011, May 7–12, 2011, Vancouver, BC, Canada.

ACM 978-1-4503-0268-5/11/05.

Jason Chong Lee

Meridium, Inc.

207 Bullitt Avenue SE

Roanoke, Virginia 24013

jlee@meridium.com

Tejinder K. Judge

Center for HCI

Department of Computer Science

Virginia Tech

Blacksburg VA 24061-0106

tkjudge@vt.edu

D. Scott McCrickard

Center for HCI

Department of Computer Science

Virginia Tech

Blacksburg VA 24061-0106

mccricks@cs.vt.edu

Introduction

Agile software development methodologies have

emerged as an effective way to deal with many of the

risks of software development such as changing

requirements, slipping development schedules and cost

overruns by using practices like incremental test driven

development and having onsite customers. However,

agile methods did not originally incorporate practices

from usability engineering. As a result, agile teams

would often develop systems that were difficult to use

[21]. To address this shortcoming, practitioners and

researchers have been exploring ways to integrate

usability into agile software development

methodologies. However, they do not focus on how to

use these integrated approaches in a distributed

environment. This is problematic as agile methods are

being increasingly adopted by enterprise-level

organizations which often rely on distributed

development teams.

This work is the start of a collaboration between

Meridium Inc., a software development and consulting

company specializing in asset performance

management, and Virginia Tech to evaluate how well

an agile usability approach can operate within a

distributed agile development environment. eXtreme

Scenario-based Design (XSBD)—the agile usability

approach used in this case study—is derived from

leading and established approaches from both the

usability and agile domains and been used in collocated

development teams [5, 14, 15, 24, 25]. Through our

collaboration, we have identified three key challenges

that needed to be addressed: synchronizing distributed

usability and development efforts, promoting

communication between team members, and effectively

supporting document and artifact sharing between

physically separated team members. Our experiences

show how a combination of streamlined usability and

development practices centered on a shared design

representation along with well defined communication

and tool-supported information management practices

can help address those challenges.

In this case study, we first summarize the XSBD

approach and then report on its use in a project at

Meridium by a team distributed between USA and

India. We describe both the successes and challenges

encountered with this project and the changes made

during the development effort to mitigate those

challenges. We detail lessons learned in our

instantiation of distributed agile usability and highlight

areas for future work.

Background

In this section, we describe current approaches to

incorporating agile methods into distributed

organizations. We then describe established agile

usability approaches and some of the challenges of

applying them to a distributed environment.

Distributed agile

Agile software engineering processes are widely used

and provide a multitude of benefits to companies that

practice them. However as discussed by [3, 8, 19, 23,

27, 28], agile processes cannot be used in distributed

environments unless they address the issues of

communication and information sharing.

Face-to-face communication is a vital part of agile

methods and needs to be taken into account and

planned in advance (e.g. through video conferencing)

to ensure participation from distributed teams [27].

Nidiffer et al. [19] mention that with a lack of

communication the project will not be able to thrive in a

distributed environment. Along the same lines, Angioni

et al. [3] and Whitworth et al. [28] claim that

communication and group awareness is important to

establish interpersonal relationships to gain trust

among team members and to establish a common

vision of the project. Ramesh et al. [23] encouraged

constant communication using practices such as short

daily meetings, and by using online chat and Short

Message Service (SMS) to improve communication in

distributed teams.

Documentation of requirements and design need to be

created and updated regularly to ensure all team

members maintain common ground with regards to the

product and the shared vision [19, 27]. However this

recommendation clashes with the agile value of

preferring working software over documentation [6].

The challenge here lies in finding the right balance.

Ramesh et al., observed that some companies

maintained a product/process repository to facilitate

knowledge sharing [23]. The repository helped teams

“report issues, assign priorities, and track project

status”. The companies also supplemented informal

communication with relevant documentation. This

facilitated collaboration and ensured a record of

changes was created.

Cohn et al. [8] recommend that companies

transitioning to agile wait at least two to three months

after the initiation of an agile process before adding a

distributed team. Companies need to “resolve their

political and cultural issues” before the team can

succeed working in a distributed environment. However

if this is not possible, they recommend bringing people

together in the first week or two of the process to build

trust and open the lines of communication.

Agile usability

Agile methods typically follow an incremental

development cycle in which each iteration includes

some requirements analysis, design, implementation

and testing [5, 24]. Usability engineering methods

often follow a more phased approach in which

requirements analysis and design is largely done up-

front before implementation begins [25]. To address

this conflict, an increasingly popular approach is one

where some requirements analysis and modeling is

done up-front so both developers and usability

engineers can then work in parallel. Subsequent user

interface modeling, design and evaluation occur

continuously throughout development [1, 2, 7, 10, 12,

17, 18, 22, 26]. The advantage of this approach is that

time and resource-intensive usability activities can

occur in parallel with system implementation. These

integrated approaches, however, typically involve

collocated teams and do not focus on the

communication, collaboration and information sharing

issues specific to a distributed agile usability team.

Key challenges

Based on the preceding discussion and the results of

our own case study, we can highlight three key issues

that need to be addressed for a distributed agile

usability team to work effectively:

1. Enabling collaboration in an agile team for which

usability and development are not collocated.

2. Supporting communication between non-collocated

usability and development teams when their

respective daily work schedules do not overlap.

3. Effectively sharing documentation and design

artifacts between non-collocated usability and

development teams.

eXtreme Scenario-based Design

This section summarizes the XSBD agile usability

approach developed by Lee and McCrickard [14, 15,

16]. The XSBD process draws on concepts from

usability engineering and agile software development

[5, 6, 24, 25]. In the XSBD process, the same core

steps of scenario-based design—requirements analysis,

activity design, and information and interaction

design—are followed but proceed in concert with

software development. This parallel approach is

common in agile usability methods [7, 12, 18]. This

allows potentially time-consuming and non-

interdependent processes to occur in parallel. The

XSBD approach assumes that an experienced usability

engineer is a member of team and is working with the

developers to implement the system.

Central Design Record

The Central Design Record (CDR) is the main user

experience design representation used in XSBD to help

ensure that the user interface meets the needs of the

end users and customer. The CDR is based on

Norman’s concept of a system image and was adapted

Figure 1. The CDR directly links prioritized goals to design decisions validated by user tests.

for use in scenario-based design by Lee and McCrickard

[15, 16, 20]. It allows the usability engineer to work

within the incremental agile development cycle while

maintaining the high-level vision of the interface. It

helps the usability engineer to execute usability

evaluations that fit within the agile framework while

validating that the user interface is usable and meets

the high-level goals of the system. Finally, it supports

communication of design rationale to other XSBD team

members and helps them make more balanced design

decisions. The CDR is primarily managed by the

usability engineer with input from the rest of the team.

The CDR consists of three parts (See Figure 1):

• Prioritized project goals along with user

descriptions and a vision statement which provide

high-level guidance as to what will be developed.

• Scenarios, claims and design prototypes that

capture the design and critical design decisions.

• User testing results that validate design decisions

and ensure that the design meets the project goals.

Streamlined requirements documents including the

prioritized project goals and vision statement help the

entire team have an understanding of what system is

being developed, for whom it is targeted and what

aspects of it are most important. Within an

incremental agile development framework, these goals

are continuously revisited and revised as necessary.

Designs are captured using a mix of design prototypes,

scenarios and claims to capture design decisions.

These artifacts are generally developed within

increments and are directly related to the features or

stories (using XP terminology) that developers manage

to schedule their development tasks. Design

prototypes typically come in the form of mockups and

are one of the primary mechanisms the usability

engineer uses to communicate the UI design to

developers. Scenarios—which describe common

workflows in a narrative form—are used in conjunction

with mockups to give developers an end-to-end

understanding of how the system will be used [24].

Claims are feature descriptions with associated design

tradeoffs that highlight the user ramifications of

different aspects of the interface. They are similar to

stories in that they are brief descriptions of system

features but they are used by the usability engineer in

XSBD to capture and guide design decisions rather than

to aid in project planning and management.

Usability testing is used in XSBD to verify that design

decisions have resulted in a usable system, validate

that the design meets high level design goals, indentify

new problems and uncover new requirements. It is

analogous to testing practices common in agile

approaches such as test-driven development and

acceptance testing [5, 25]. In test-driven

development, developers can create tests in code which

can subsequently be used to verify the implemented

functionality. These tests can be aggregated and

automated. The usability analogue to these types of

tests are in how claims are used. In XSBD, claims are

linked to high level project goals. These in turn are

verified through usability testing. These tests complete

the chain linking designs goals to design decisions (see

Figure 3). They allow the usability engineer to

streamline the evaluation process (which unlike unit

testing, is not easily automated) by focusing on only

the most critical areas of the user interface [14, 15,

16]. This is important as evaluations are planned and

run within a single development increment so results

can be handed off to developers in the following

iteration. Continually revisiting the high-level goals

with each test cycle allows the usability engineer to run

incremental tests while maintaining the overall vision of

the design.

Figure 2. Synchronized usability and development tracks.

The XSBD Process

XSBD has two separate but synchronized usability and

development tracks. The usability engineer works one

iteration ahead of the developers so designs can be

delivered for developers to start implementing those

designs in the following iteration. These parallel tracks

allow the team to optimize its velocity while still

developing a system that meets high-level design

goals. This type of parallel development process is

common in other implementations of integrated agile

usability approaches [7, 10, 12, 18, 26].

Figure 2 shows a simplified view of how the handoffs

between the usability and development tracks occur.

The usability engineer will develop a design for a part

of the system (D1) which is then handed off to the

developers to implement in the next iteration. The

implemented design (ID1) is then given back to the

usability engineer to evaluate (E(ID1)), which may

result in changes to the original design (D1’), which is

then handed back to the developers to implement in

the next iteration (ID1’). Using this handoff system,

the two tracks can work in parallel without

bottlenecking each other (e.g. The usability engineer

can work on designing D2 while the developers

implement D1). Like other agile methodologies, the

length of each iteration within the XSBD process can

vary from 1-4 weeks depending on the size and

contextual issues surrounding the system being

developed. However, two-week iterations are typically

used [14, 15].

Each project generally starts with an Iteration 0, to

define the vision and goals for the project. During this

iteration, the usability engineer will conduct an

abbreviated requirements analysis process to begin

gathering information for the CDR. The usability

engineers and developers will stay in sync through

regular iteration planning and review meetings as is

done in XP. They may also communicate on a day to

day basis through ad hoc face-to-face meetings, emails

or instant messages.

Distributed XSBD in practice

A distributed web development project at Meridium,

Inc. was used as a test bed for the XSBD process. This

team was tasked with developing a simplified, online

version of Meridium’s primary data collection and

analysis tool.

The project manager, product manager, testing lead,

development lead, documentation person and usability

engineer, hereafter referred to as the onsite team, was

located at their main office in Roanoke, VA. The

usability engineer was only working part-time on the

team. The core development and testing team,

hereafter referred to as the offsite team, was composed

of developers and testers in India. The onsite team

had less experience with agile methods, as Meridium,

Inc. had only recently started to transition to agile

development methodologies. However, the offsite

team was experienced in agile methods and used a

variation of Scrum—an agile development methodology

that focuses on project management practices [25].

The distributed groups stayed in contact through daily

meetings that were held using phone conferencing and

screen-sharing software. They also used a variety of

asynchronous communication and information-sharing

tools such as email and IM.

We took an action research approach to developing and

evaluating the distributed agile usability process,

starting with the XSBD and Scrum processes as a base.

Action research involves iterative problem solving by

reflecting on what did or did not work within each

iteration and is ideal for the type of research-in-practice

approach undertaken here [4]. This allowed us to

incrementally improve and adapt the XSBD process for

use in this distributed team. This was needed since

XSBD was originally only developed for and used in

collocated teams [14, 15, 16].

Table 1. Example critical incident.

Role: Usability Engineer

Date of incident: 4/9/2008

Event

description:

I wanted to look over the

[latest] prototype but I found

out that it has not been updated

for over a week.

Effect of

incident:

It negatively affected my work

as I needed to review the

prototype to make usability

recommendations.

Critical incidents—descriptions of events that positively

or negatively affected the team—were recorded to

gather information throughout the development

process [11]. These were collected by the researchers

through observations during daily meetings, planning

meetings and other regular team meetings. We also

had project team members record their own critical

incidents through an online reporting form [13].

Generally, critical incidents contained the following

information: the role of the person writing the incident,

the date of the incident, a description of the incident,

an explanation of how this positively or negatively

affected the team and the perceived severity of the

incident. An example critical incident captured using the

online reporting form is shown in Table 1. A total of 90

incidents were recorded over a period of three months.

After the end of the project, the researcher reviewed

and grouped the incidents. As is typical with self-

reporting of critical incidents, people tended to record

incidents that negatively affected the team. This was

not viewed as problematic as it allowed the researchers

to identify and address problems as they arose during

the project.

Table 2. Types of incidents captured during the case study.

Critical incident categories Occurrences

Collaboration 21

Communication 21

Document & artifact sharing 35

Other 13

The three major groups of incidents are listed at the

top of Table 2. The ‘other’ incidents primarily related to

technical issues that were generally resolved quickly.

In keeping with the action research model, the

following sections will present incidents encountered

during the project as they relate to the three major

critical incident categories in the following format:

Issue: A description of the problem.

Action: The action taken to address the problem.

Analysis: An evaluation of how well the action

addressed the issue.

We will present exemplar incidents from each of the

major groups of incidents. These are not meant to be

comprehensive but rather show what specific types of

incidents occurred and how they were addressed.

Collaboration Issues

This section describes collaboration issues that were

encountered—especially with respect to how developers

and the usability engineer worked together. Many of

the incidents centered on the fact that the development

team was not accustomed to working with a usability

engineer and because they tended to complete work

faster than the usability engineer could keep up with.

The problems were addressed by having the usability

engineer assigning some of the design work to the

developers while ensuring that the resulting designs

met the high level project goals. An exemplar incident

is described below.

Issue: Early on, the usability engineer had trouble

working ahead of developers. The usability engineer

was brought on board during the first iteration after the

developers had already started developing the UI. This

resulted in designs that did not meet high-level design

goals. In addition, the offsite developers were

reluctant to rework what they had already done.

Developers would come up with designs without

consideration for target users and usability goals. This

may have continued because the usability engineer was

working part-time on the team. She was not present at

all daily meetings and hence was not able to

immediately answer questions that developers and

other team members had. The quality assurance

manager noted that:

“This has a negative impact because it causes lots

of confusion and dev and testing rework.”

Action: Use the CDR concept of linking goals to

evaluated design features to focus usability work only

on the most important features of the system. The

usability engineer had to first evaluate the existing

implemented UI. She then quickly defined design

goals, user description, claims and other aspects of the

CDR as she worked to design for the next iteration to

get ahead of the developers. The usability engineer

focused on only the most critical features of the system

as defined by the goals. She generated claims to

capture key tradeoffs of specific features that directly

related to the high level goals of the system.

Figure 3. Example claim that is linked to a high level goal and

is later verified through usability testing.

Figure 3 shows how a specific feature was linked to a

high level goal and is later validated through usability

testing. This feature related to how records were

displayed in the web application and was one of the

most important features in the system. In this case,

there was some disagreement within the team about

how the feature should be designed. After running a

usability test, the usability engineer determined that

the downsides outweighed the potential upside of

saving space on the screen and redesigned the feature.

Lightweight evaluations such as this were typically run

in a single day with a small group of participants at

Meridium who had similar characteristics with the end

users of the system. Non-critical features were

typically designed and implemented by the offsite

developers and signed off on by the usability engineer

after she reviewed them at the iteration review

meetings.

Analysis: By using the CDR to focus on only the most

important features of the system, the usability engineer

was able to sync up with the developers. The usability

engineer was able to catch up to developers by the

third iteration and begin delivering feature designs and

redesign requests to them to implement in the

subsequent iteration. By having the offsite developers

handle some of the design work, the usability engineer

had more time to focus on the most important features

of the system as defined by the high level goals in the

CDR. In addition, over the course of several iterations,

this gave the offsite developers a better understanding

of what design aspects of the system mattered most.

As shown in the example, being able to share and

communicate the reasoning behind decisions based on

goals, design claims and testing results helped the

usability engineer better show the rest of the team why

they were being made and why they were important.

Communication Issues

In this section we describe examples of communication

problems that occurred and how they were addressed.

Many of the communication problems were exacerbated

by the fact that the onsite and offsite teams were

separated by such a large distance. In addition, the

fact that neither the usability engineer nor the offsite

developers were accustomed to working with each

other made it difficult for them to communicate

effectively early on in the project. Below, we present

two illustrative incidents and how they were addressed.

Issue: At the beginning of the project there was some

misunderstanding regarding the role of the usability

engineer. The development lead and other members of

development seemed to think that the usability

engineer just designed UI mockups. They did not

understand other things a usability engineer did in

terms of user tasks analysis, usability evaluations, etc.

Hence the development lead wanted the usability

engineer to come up with specific ideas for UI in the

first iteration, without doing any user task analysis.

There was a disconnect between what the development

lead expected and what the usability engineer wanted

to do. This problem arose due to the project team not

having the experience of working with a usability

engineer. The product manager later noted the

importance of the usability engineer to the team and

the problem associated with having team members not

understanding her role:

“there should be 2-way communication between

the Usability Team and all groups involved (dev,

qa, prod mgmt, documentation, etc) We need

Usability training whereby we become

knowledgeable about the underlying theories

utilized in coming up with a solution…”

Action: The development team held an ‘official kickoff’

meeting to introduce the team members to one

another. The usability engineer and documentation

person joined the team after development had already

begun. This was because they were not added to the

team initially due to resource and scheduling

constraints within Meridium. As a result, this kickoff

meeting was held near the end of the first iteration.

This kickoff meeting was also used as a way to

introduce the usability engineer to the rest of the team

and communicate what her role and responsibilities

would be.

Analysis: The kickoff meeting was not helpful in helping

team members understand the role of the usability

engineer. The meeting was focused more on

introducing the system itself and could only briefly

touch on the usability engineer. As Cohn suggested, it

would have been better to bring the entire team

together at the start of the project to open lines of

communication [8] early on—although it is not clear

how much this would have helped in making the team

understand the role of the usability engineer. In the

end, the best way to get the team to understand the

role and value of the usability engineer was for the

usability engineer to present work products such as

mockups and user testing results to the rest of team—

essentially to demonstrate her value through actions.

The streamlined XSBD development process helped in

that the usability engineer was able to work relatively

quickly and deliver designs and user feedback to the

developers in a timely fashion.

Issue: The usability engineer and developers were not

communicating effectively. Early on, there were times

where developers did not fully understand a UI mockup

but took no initiative to resolve it by contacting the

usability engineer. This may have been because the

offsite developers were not used to working with a

usability engineer. The offsite developers wanted to

maintain velocity and did not want to wait a day to

receive feedback from the usability engineer (see

Figure 4).

Action: Actively leverage asynchronous communication

technologies. To address this communication issue, the

usability engineer repeatedly reminded the team to

email her with questions when she was not available.

The usability engineer also proactively initiated

communications through emails and made sure to

promptly follow up on issues identified during daily

meetings she did not attend.

Figure 4. The 24-hour development cycle divided into 8 hour

slices. Onsite and offsite work occur at different times during

the same day. Daily meetings are used to stay synchronized.

Analysis: Increased communication between the

usability engineer and the rest of the team. As the

project progressed, the entire team increased its

appreciation of having the usability engineer and

communication became easier and more frequent. This

was important in that it allowed the usability engineer

to establish and maintain a working relationship with

the offsite team and to clear up misunderstandings and

differences between her designs and the

implementations. Later on, the team began using an

online discussion board as a way to provide a central

location through which issues could be asynchronously

identified, tracked and addressed. This was an

improvement over emails as issues could get lost in

email inboxes and were sometimes hard to locate.

Documentation and Artifact Sharing Issues

With the team being distributed, sharing up-to-date

documents and design artifacts and maintaining them

proved to be problematic, especially since the team was

unable to communicate synchronously most of the

time. These problems were addressed by improving

communication between the separated groups as

described in the previous section and also be

introducing a more structured, regimented information

sharing process then one might find in a collocated

agile team. We present the following incident to

illustrate how this was done.

Issue: Team had problems sharing and using up-to-

date information. At an early daily meeting, the

problem of sharing design documents and information

between distributed team members was brought up.

The project team used email to share documents

resulting in the problem of documents getting out of

sync. For example, the usability engineer might send

out a version of the design for the upcoming iteration

and then later make a slight change to it and send it

out again. One of the offsite developers might

accidentally implement the older design. The

distributed nature of the team magnified these issues

as the team could not communicate synchronously and

the problem might not surface until the iteration review

meeting. In addition, if the usability engineer or other

team members missed a meeting it was difficult to get

synced up. This was somewhat common as the daily

meetings occurred near the beginning of the day for the

onsite members and at the end of the day for the

offsite members. As one developer noted:

“There is no way for the developers to convey the

details about what is being delivered… to team

members who didn't attend the meeting. If

someone did not attend one meeting, they will not

know what exactly is functional and what is yet to

be delivered in a feature.”

Action: Use structured collaboration process centered

on an online team portal to share information. The

project manager mentioned that he would like to start

using the Microsoft SharePoint portal more as a shared

workspace since the team is distributed. The portal was

used to store announcements, discussions, agendas

and other work documents including usability design

documents that were part of the CDR. This made it

easier for the offsite and onsite teams to share and

disseminate project information.

The team also clearly defined the mechanisms through

which the usability engineer would deliver designs and

how the team would communicate design issues as

they arose. The usability engineer would meet at the

beginning of each iteration with the product manager to

validate the design to be implemented in the next

iteration. The usability engineer then uploaded that

design to the online team portal by the end of the day.

When possible, the offshore developers would demo

implemented functionality during the daily meetings so

the usability engineer could compare against the

designs and also so any small issues the developers

had with the design could be addressed. Any other

questions or issues that the developers encountered

were addressed by posting those issues in the online

discussion board. The issues were then reviewed at the

start of each daily meeting. If the usability engineer

saw any major discrepancies between the design and

the implementation or if the team has some specific

concerns about a design feature, she would document

them in the form of claims. These claims would then

either be tested later by the usability engineer or

otherwise resolved through by consensus opinion of the

team.

Analysis: Improved information sharing within the team

at the cost of increased documentation and process

structure. The structured process and tools the team

used to collaborate and share information may seem

counter to the agile principle of valuing “individuals and

interactions over processes and tools” [14] at first

glance. Although the team had to document more

information and share it in a more structured way, it

improved the way that the distributed team members

were interacting and communicating with each other.

This compromise minimized the amount of additional

documentation and allowed the offsite development

team to make quick fixes when needed. It also

reduced confusions and misunderstandings, as the

team was previously not using a unified way to track

such changes to the system.

Lessons learned

During this effort, we integrated the XSBD agile

usability design process into a distributed development

team. In practice, we found that many of the

challenges the team encountered were related to

communication, collaboration and information sharing

between team members that were onsite versus offsite

as well as between usability engineers and other

members of the development team. Overall, we found

that the adoption of the XSBD approach was hampered

by the distributed nature of the team since the effective

use of the approach depends on consistent and regular

communication between team members. In particular,

the team did not adopt and use claims as extensively

as when the XSBD approach was used by a collocated

team [14]. However, the usability engineer found the

CDR useful in helping her focus on only the most critical

areas of the interface and in making sure high level

goals were being met. In summary, we can

recommend the following:

� Have the usability engineer focus on only the most

important aspects of the interface so she can stay

ahead of and synchronized with development. This

was done here by directly linking goals, design

decisions and usability tests through the CDR.

Other team members can design and develop

noncritical areas of the UI that can be validated

later by the usability engineer.

� Define high level goals—accomplished in this

project through the CDR—that are shared and

agreed upon by all team members—at the

beginning of the project and continuously verify

that they are being met. This was done by the

usability engineer through user testing. This

allowed the usability engineer to both communicate

design decisions and their importance to other

team members and to demonstrate her value to

the rest of the team.

� Clearly define roles for all team members on the

project. Not doing this initially hampered our

development effort as many of the developers were

not accustomed to having a usability engineer on

the team. This can be done by having an initial

iteration where team members are brought

together to open lines of communication early on

as suggested by Cohn et. al [8].

� Clearly define communication and information

sharing mechanisms to allow non-collocated team

members to remain in sync. Expect to document

and track more information than in a collocated

agile team. Non-synchronous communication

mechanisms like an online portal and discussion

boards were important as developers and the

usability engineer often could not communicate

synchronously.

Future work

This work is part of an ongoing collaboration between

Virginia Tech and Meridium. We are continuing to

evaluate the use of the XSBD approach in several

development projects. We will continue to explore how

software developers and usability engineers can

interact most effectively in agile teams using the CDR—

and whether it can be used to better support

information sharing between distributed team

members. This will allow us to continue to improve and

adapt the XSBD approach, collect data from teams over

longer periods of time, and form teams that are more

experienced with XSBD and agile methods in general.

In addition, we are looking at broader communication

and collaboration issues related to interactions between

usability engineers other team members. Specifically,

we plan to study how quality assurance and

documentation personnel can work within the XSBD

process. In addition, as XSBD is more widely adopted

within Meridium, we will need to look at how it impacts

project management issues such as long-term release

planning and resource allocation. This will closely

relate to the issue of identifying what sorts of projects

and teams the XSBD process is best suited towards.

Acknowledgements

Thanks to the development team at Meridium for their

help and insights during the project. This material is

based upon work supported by a National Science

Foundation Small Business Technology Transfer Phase I

Grant (#0740827).

Works Cited
[1] Ambler, S. W. Introduction to Agile Usability: User
Experience Activities on Agile Development Projects.
Ambysoft, Inc., 2007.
www.agilemodeling.com/essays/agileUsability.htm

[2] Ambler, S. W., and Jeffries, R. Agile Modeling:
Effective Practices for Extreme Programming and the
Unified Process. John Wiley & Sons, Inc., New York, NY,
USA, 2002.

[3] Angioni, M., Sanna, R., and Soro, A. Defining a
Distributed Agile Methodology for an Open Source
Scenario. In Proc. OSS 2005, (2005), 209-214.

[4] Avison, D., Lau, F., Myers, M. and Nielsen, P. A.
Action Research. Communications of the ACM 42, 1
(1999), 94-97.

[5] Beck, K., and Andrews, C. Extreme Programming
Explained: Embrace Change, 2nd Edition. Addison

Wesley Professional, Boston, MA, USA, 2004.

[6] Beck, K., Beedle, M., van Bennekum, A., Cockburn,
A., Cunningham, W., Fowler, M., Grenning, J.,
Highsmith, J., Hunt, A., Jeffries, R., Kern, J., Marick, B.,
Martin, R.C., Mellor, S., Schwaber, K., Sutherland, J.,
and Thomas, D. The Agile Manifesto. 2001.
http://agilemanifesto.org

[7] Chamberlain, S., Sharp, H., and Maiden, N.
Towards a Framework for Integrating Agile
Development and User-Centred Design. In Proc. XP
2006, Springer Berlin/Heidelberg (2006), 143-153.

[8] Cohn, M., and Ford, D. Introducing an Agile Process
to an Organization. Computer 36, 6 (2003), 74-78.

[9] Constantine, L. L., Process Agility and Software
Usability: Toward Lightweight Usage-Centered Design.
Information Age 8, 2 (2002). Reprinted in L.
Constantine (Ed.), Beyond Chaos: The Expert Edge in
Managing Software Development. Addison-Wesley,
Boston, MA, USA 2001.

[10] Ferreira, J., Noble, J., and Biddle, R. Agile
Development Iterations and UI Design. In Proc. Agile
2007, IEEE Computer Society (2009), 50-58.

[11] Flanagan, J. C. The Critical Incident Technique.

Psychological Bulletin 51, 4 (1954), 327-358.

[12] Fox, D., Sillito, J., and Maurer, F. Agile Methods
and User-Centered Design: How These Two
Methodologies are Being Successfully Integrated in
Industry. In Proc. Agile 2008, IEEE Computer Society
(2008), 63-72.

[13] Hartson, H. R., Castillo J. C., Kelso, J., and Neale,
W. C. Remote evaluation: the network as an extension
of the usability laboratory. In Proc. CHI 1996, ACM
Press (1996), 228-235.

[14] Lee, J. C., Stevens, K. T., and McCrickard, D. S.
Examining the foundations of agile usability with

eXtreme Scenario-based Design. In Proc. Agile 2009,
IEEE Computer Society (2009), 3-10.

[15] Lee, J. C. and McCrickard, D. S. Towards
Extreme(ly) Usable Software: Exploring Tensions
Between Usability and Agile Software Development. In
Proc. Agile 2007, IEEE Computer Society (2007), 59-
71.

[16] Lee, J. C., Wahid, S., McCrickard, D. S., Chewar, C.
M., and Congleton, B. Understanding Usability:
Investigating an Integrated Design Environment and

Management System. International Journal of
Information Technology and Smart Education (ITSE) 4,
3 (2007), 161-175.

[17] Meszaros, G. and Aston, J. Adding Usability Testing

to an Agile Project. In Proc. Agile 2006, IEEE Computer
Society (2007), 23-28.

[18] Miller, L. Case Study of Customer Input For a
Successful Product, In Proc. Agile 2005, IEEE Computer
Society (2005), 225-234.

[19] Nidiffer, K., and Dolan, D. Evolving Distributed
Project Management. IEEE Software 22, 5 (2005), 63-
72.

[20] Norman, D. A. Cognitive engineering. In Norman,
D. A., and Draper, S. W. (Eds.) User Centered Systems
Design: New Perspetives on Human-Computer
Interaction. Lawrence Erlbaum Associates, New Jersey,

USA, 1986.

[21] Patton, J. Hitting the target: adding interaction
design to agile software development. In Proc. OOPSLA
2002, ACM Press (2002), 1-ff.

[22] Poppendieck, T. The Agile Customer’s Toolkit.
Poppendieck LLC., 2003.

http://www.poppendieck.com/pdfs/Agile_Customers_T
oolkit_Paper.pdf

[23] Ramesh, B., Cao, L., Mohan, K., and Xu, P. Can
Distributed Software Development Be Agile?

Communications of the ACM 49, 10 (2006), 41-46.

[24] Rosson, M. B. and Carroll, J. M. Usability
Engineering: Scenario-Based Development of Human-
Computer Interaction. Morgan Kaufman, New York, NY,
USA, 2002.

[25] Schwaber, K., and Beedle, M. Agile Software
Development with SCRUM. Prentice Hall PTR, Upper
Saddle River, NJ, USA, 2001.

[26] Sy, Desiree. Adapting Usability Investigations for
Agile User-Centered Design. Journal of Usability
Studies. 2(3), 112-132.

[27] Turk, D., France, R., and Rumpe, B. Limitations of
Agile Software Processes. In Proc. XP 2002, Springer-
Verlag (2002), 43-46.

[28] Whitworth, E., and Biddle, R. The Social Nature of
Agile Teams. In Proc. Agile 2007, IEEE Computer

Society (2007), 26-36.

