
DOI: 10.1007/s00454-002-2886-1

Discrete Comput Geom OF1–OF35 (2002) Discrete & Computational

Geometry
© 2002 Springer-Verlag New York Inc.

New Similarity Measures between Polylines with Applications to
Morphing and Polygon Sweeping∗

Alon Efrat,1 Leonidas J. Guibas,2 Sariel Har-Peled,3 Joseph S. B. Mitchell,4

and T. M. Murali5

1Department of Computer Science, University of Arizona,
Tucson, AZ 85721-0077, USA
alon@cs.arizona.edu

2Computer Science Department, Stanford University,
Stanford, CA 94305, USA
guibas@cs.stanford.edu

3Department of Computer Science, University of Illinois,
Urbana, IL 61801-2987, USA
sariel@cs.uiuc.edu

4Applied Mathematics and Statistics, University at Stony Brook,
Stony Brook, NY 11794-3600, USA
jsbm@ams.sunysb.edu

5Bioinformatics Program, Boston University,
Boston, MA 02215, USA
murali@bu.edu

Abstract. We introduce two new related metrics, the geodesic width and the link width,
for measuring the “distance” between two nonintersecting polylines in the plane. If the two
polylines have n vertices in total, we present algorithms to compute the geodesic width of
the two polylines in O(n2 log n) time using O(n2) space and the link width in O(n3 log n)

time using O(n2) working space where n is the total number of edges of the polylines.

∗ Preliminary versions of this paper appeared in the Proceedings of the 11th Annual ACM–SIAM Symposium
on Discrete Algorithms [12] and the Proceedings of the 12th Annual ACM–SIAM Symposium on Discrete
Algorithms [13]. The first author did part of this research while affiliated with Stanford University. The second
author was partially supported by NSF (CCR-9910633), by U.S. Army Research Office MURI Grant DAAH04-
96-1-007, and a grant from the Intel Corporation. The third author did part of this research while affiliated with
Duke University. The fourth author was partially supported by NSF (CCR-9732220), a DARPA subcontract
from HRL Laboratories, NASA Ames Research (NAG2-1325), Northrop-Grumman Corporation, and Sun
Microsystems. The fifth author did this research while affiliated with Stanford University and with Compaq
Computer Corporation.

OF2 A. Efrat, L. J. Guibas, S. Har-Peled, J. S. B. Mitchell, and T. M. Murali

Our computation of these metrics relies on two closely related combinatorial strutures:
the shortest-path diagram and the link diagram of a simple polygon. The shortest-path
(resp., link) diagram encodes the Euclidean (resp., link) shortest path distance between
all pairs of points on the boundary of the polygon. We use these algorithms to solve two
problems:

• Compute a continuous transformation that “morphs” one polyline into another poly-
line. Our morphing strategies ensure that each point on a polyline moves as little as
necessary during the morphing, that every intermediate polyline is also simple and
disjoint to any other intermediate polyline, and that no portion of the polylines to be
morphed is stretched or compressed by more than a user-defined parameter during
the entire morphing. We present an algorithm that computes the geodesic width of
the two polylines and utilizes it to construct a corresponding morphing strategy in
O(n2 log2 n) time using O(n2) space. We also give an O(n log n) time algorithm
to compute a 2-approximation of the geodesic width and a corresponding morphing
scheme.

• Locate a continuously moving target using a group of guards moving inside a simple
polygon. The guards always determine a simple polygonal chain within the polygon,
with consecutive guards along the chain being mutually visible. We compute a strategy
that sweeps such a chain of guards through the polygon in order to locate a target. We
compute in O(n3) time and O(n2) working space the minimum number r∗ of guards
needed to sweep an n-vertex polygon. We also give an approximation algorithm, using
O(n log n) time and O(n) space, to compute an integer r such that max(r − 16, 2) ≤
r∗ ≤ r and P can be swept with a chain of r guards.

1. Introduction

A basic question that arises when comparing shapes (point sets, polygons, images, tri-
angular meshes, molecules, etc.) is that of defining a metric that measures the difference
between the two shapes. Depending on the application, a well-defined metric will capture
one’s intuitive notion of similarity while being mathematically precise and efficiently
computable. The Hausdorff metric is a famous example of a metric for point sets and
images [25]. One of the first metrics defined to measure the difference between two
polylines in the plane was the Fréchet metric. An intuitive way to understand this metric
is as follows: Let α and β be the two polylines. Imagine that a man walks from one
end of α to the other end and that a dog walks from one end of β to the other end with
the man holding the dog by a leash. The man and the dog must both walk continuously
and their motion is required to be monotonic. The Fréchet distance between α and β is
the minimum leash length needed. Formally, let d(p, q) denote the Euclidean distance
between two points p and q in the plane. The Fréchet distance between α and β is

F(α, β) = min
f : [0,1]→α,g: [0,1]→β

max
t

d(f (t), g(t)),

where f and g are continuous nondecreasing functions defining the positions of the man
and the dog on the curve at every instant.

In this paper we introduce two new metrics for measuring the distance between two
polylines and use them to solve problems motivated by applications in computer graphics

New Similarity Measures between Polylines OF3

and robotics. Our metrics are motivated by the observation that in the Fréchet metric, the
leash is allowed to cross the two polylines. A natural restriction to apply is to require that
the leash not cross the polylines. We have two standard ways in which to measure the
length of the leash: its Euclidean length and its link length (the number of line segments
comprising it). Each of these measures directly leads to the new polyline metrics we
define:

1. The geodesic width

W (α, β) = min
f : [0,1]→α,g: [0,1]→β

max
t

dE(f (t), g(t)),

where dE(p, q) denotes the length of a shortest path between p and q that does not
cross α and β, and lies between the two shortest paths connecting the endpoints
of α and β. The minimization is over continuous nondecreasing functions. There
are four “reasonable” ways to connect the endpoints of α and β, and W (α, β) is
defined as the minimum obtained among all four.

2. The link width

L(α, β) = min
f : [0,1]→α,g: [0,1]→β

max
t

dL(f (t), g(t)),

where dL(p, q) denotes the minimum number of edges in a piecewise-linear path
between p and q that does not cross α and β, and changes continuously as t grows
from 0 to 1. Here we do not require that f and g are nondecreasing.

Each of these metrics has a natural interpretation. Consider the Euclidean shortest
path (geodesic) π(t) between f (t) and g(t) that does not cross α and β. If we let
every point f (t), 0 ≤ t ≤ 1, move along π(t) at a velocity proportional to the length
dE(f (t), g(t)) of π(t) we obtain a continuous sequence of polylines. When we view
these polylines in sequence, we see an animation that morphs α into β. Since geodesics
do not cross (although they may coincide), we have the useful and desirable property
that no intermediate polyline intersects itself, and no two intermediate polylines cross
each other.

In the case of the link width, we consider a minimum-link path between f (t) and
g(t), as t increases from 0 to 1, yielding a sequence of polylines that “sweeps” the area
between α and β. If we imagine that the vertices of these polylines correspond to guards
and that the edges of these polylines correspond to lines of sight between two adjacent
(along the sweeping polyline) guards, then the sweep corresponds to a motion of a set
of guards that can find any continuously moving intruder in the area between α and β.1

We also have the property that the number of guards needed is as small as possible.
The solutions to both of these problems is similar in spirit, sharing many main ideas.

In the rest of this section we discuss the morphing and sweeping problems in more detail.

1 We ignore issues related to the intruder going “around” α and β and creeping up behind the guards.

OF4 A. Efrat, L. J. Guibas, S. Har-Peled, J. S. B. Mitchell, and T. M. Murali

1.1. Morphing Polylines

In the last few years the problem of continuously morphing or deforming an object or im-
age into another object or image has become increasingly popular in computer graphics
and computer vision. In this problem we are given two shapes α and β and we are asked
to produce a continuous sequence of shapes “between” α and β. Rendering this sequence
continuously as an animation will show α transforming into β. This problem has appli-
cations in animation, special effects in movies and entertainment, contour interpolation
in medical imaging, computer-aided geometric design, and handwriting recognition.

There are many qualities that are desirable in a good morphing scheme. Since α and
β are usually connected and simple, all intermediate shapes should also be connected
and simple. The morphing should transform a connected portion of α to a connected
portion of β. It is also useful for the transformation to treat α and β as near-rigid objects
and to avoid superfluous deformations during the morphing.

There are two common ways used in the literature to specify morphing schemes. The
first approach uses zero sets of implicit functions to represent the morphing [9], [21], [24],
[27]. The zero sets of two implicit functions represent α and β. Interpolating between (the
zero sets of) these functions produces the morphing. Turk and O’Brien [48] combine
the problems of creating and interpolating implicit functions by casting the problem
in a dimension one more than the dimension in which α and β are embedded. These
techniques are elegant and have proven to be quite successful. However, they have the
drawback that unless the implicit functions are chosen with great care, intermediate
shapes are not guaranteed to be simple. Another problem with these methods is that the
correspondences between various parts of α and β are implicit and not user-controllable.

The second popular approach first computes correspondences between points of α

and β (for instance, the vertices of α and β, if α and β are polyhedral) and then cre-
ates intermediate shapes as defined by interpolated positions between corresponding
points [16], [30], [38], [39]. Since the interpolated positions are usually chosen to lie on
the segments or splines joining corresponding points, these techniques usually make it
very difficult to ensure that intermediate shapes do not self-intersect.

Recently, Surazhsky and Gotsman [40]–[42] proposed elegant methods for comput-
ing a morphing between polygons, such that no intermediate polygon intersects itself;
however, intermediate polygons (as opposed to polylines) may intersect each other, so
our goals for polylines cannot be met directly by their polygon morphing schemes. Also,
there is no guarantee that these schemes minimize the amount of change needed during
the morphing.

Surprisingly, the problem of computing continuous morphings has so far received rel-
atively little attention in the theoretical computational geometry community. If α and β

are n-vertex parallel polygons, i.e., polygons with the same sequence of angles, Hersh-
berger and Suri [23], improving upon an earlier result of Guibas and Hershberger [17],
showed that α and β can be morphed into one another such that every interpolating
polygon is also parallel to α and β using O(n log n) moves; roughly speaking, a parallel
move is a translation of a side of a polygon parallel to itself. When α and β are simple
polygons, an approach that has been used is to find “compatible” decompositions of α

and β and to use these decompositions to generate the correspondences between α and
β. Aronov et al. [5] show that a compatible triangulation (also called a piecewise-linear

New Similarity Measures between Polylines OF5

�

�

Fig. 1. The two polylines α and β and an example of a morphing between them. Dashed lines represent
intermediate polylines. Dotted lines show the paths traveled by the points on α and β during the morphing.

homeomorphism) of size �(n2) exists between two n-vertex simple polygons. Gupta
and Wenger [20] construct compatible triangulations whose size is within a constant
factor of optimal. Etzion and Rappoport [14] decompose the polygons into star-shaped
pieces. Their technique is not able to avoid all self-intersections during the morphing
and can take O(n4) time.

In the first part of this paper, we consider the problem of morphing two nonin-
tersecting simple polygonal chains (or polylines) α and β in the plane. A morphing
scheme 	(α, β) = {γ (t) | 0 ≤ t ≤ 1} from α to β is a family of polylines such that
α = γ (0), β = γ (1), for every 0 ≤ t ≤ 1, γ (t) is connected and simple, and the
scheme is continuous, meaning that for any t and any ε > 0, there is a neighborhood of
t for which the Hausdorff distance between γ (t) and γ (t ′) is less than ε for any t ′ in the
neighborhood. See Fig. 1 for an example of a morphing. We compute a morphing scheme
from α to β that consists of two parts. The first part is an explicit mapping between α

and β. Given two functions f : [0, 1] → α and g: [0, 1] → β that parameterize α and
β, respectively, we define the mapping as the set of pairs {(f (u), g(u)), 0 ≤ u ≤ 1}.
We enforce the natural requirement that f and g are monotone along α and β. The
second part of the morphing scheme specifies a route connecting every point f (u) to
the corresponding point g(u), for 0 ≤ u ≤ 1. In this paper we adopt the policy of
moving f (u) to g(u) along the Euclidean shortest path from f (u) to g(u) that avoids
α and β. This policy guarantees that all intermediate polylines are simple, since f and
g are monotone along α and β and shortest paths do not cross each other (although
two such shortest paths might have a common subpath). (This property of intermediate
polylines being simple does not hold for the Fréchet metric [2], [15], which corresponds
to linking f (u) to g(u) with a straight segment, instead of using shortest paths avoiding
α and β, and then optimizing over parameterizations f and g; one can readily construct
examples for which γ (t) self-intersects for some t .) The resulting morphing scheme is
straightforward: we move each point f (u) along its designated route at a constant speed
proportional to the length of the route. This morphing is guaranteed to be connected and
continuous. Note that once we specify the mapping functions f and g, the morphing
scheme is completely determined.

Given these requirements on the morphing scheme, it is possible to generate an
uncountable number of different morphing schemes. Clearly, some schemes are better

OF6 A. Efrat, L. J. Guibas, S. Har-Peled, J. S. B. Mitchell, and T. M. Murali

than others. In an effort to formalize a quantitative notion of the quality of a morphing
scheme, we define the width W (f, g) of a morphing scheme specified by the functions
f and g to be the maximum over all values of u of the length of the route connecting
the point f (u) on α to the point g(u) on β. We seek morphing schemes that minimize
the width over all possible morphing schemes, i.e., a morphing scheme whose width is
W (α, β), the geodesic width of α and β.

In this part of the paper we establish three main results. We first show that if n is the
total number of vertices of α and β, we can compute W (α, β) and a morphing scheme
with that width in O(n2 log2 n) time using O(n2) space. To develop this algorithm, we
study the shortest path diagram, a combinatorial structure that encodes all of the shortest
paths connecting points on α to points on β. We show that the shortest path diagram has
size O(n2) and that we can construct it in O(n2 log n) time using O(n log3 n) working
space.2 We also show that, for any parameter r > 0, we can represent using O(n2) space
all shortest paths whose length is at most r . Our algorithm uses this fact in combination
with parametric search [34]. In this respect, our algorithm is similar to the technique used
by Alt and Godau [2] to compute the Fréchet distance between two polylines. However,
we need to establish several properties of the shortest path diagram in order to obtain
our results.

We also consider the problem of computing morphing schemes that treat α and β as
being “rigid.” Consider the case in which α and β correspond to physical objects. It may
be desirable to control the extent by which a portion of α or β is stretched or compressed
by the morphing scheme. Given a constant κ > 1, we restrict our attention to morphing
schemes that stretch or compress any portion of α or β by at most a factor of κ; we show
that we can compute in O(n2 log2 n) time using O(n2) space a morphing of minimum
width among all such morphings.

Finally, we also describe an algorithm that computes in O(n log n) time a morphing
scheme whose width is at most 2W (α, β).

1.2. Sweeping Polygons

In the second part of this paper we focus on computing a motion plan inside a simple
polygon for multiple mobile guards whose goal is to “see” targets inside the polygon,
or to verify that no target is present in the polygon. Nothing is known about the location
of the targets or their motion abilities, except that their motion must be continuous. The
guards see a target when there is an unobstructed line-of-sight between one of the guards
and the target. We may impose various limitations on the viewing frustum and the range
of the vision sensors of the guards.

Parsons [37] and Megiddo et al. [35] study a similar problem in the context of pursuit-
evasion in a graph; in this scenario the guards and target can move from vertex to vertex
of a graph, until a guard and the target eventually lie at the same vertex. In our geometric
setting, what makes this problem challenging is the issue of recontamination: a particular

2 We use O(n log3 n) space if we are allowed to output the elements of the shortest path diagram as we
compute them. If we are required to store the entire shortest path diagram, we need O(n2) space.

New Similarity Measures between Polylines OF7

region of the polygon may have been cleared by the guards, but if the target can find
a way to enter the region again, it becomes recontaminated and must again be cleared.
Thus, unless one has sufficiently many guards, the target finding problem is not always
solvable. Crass et al. [10], Suzuki and Yamashita [45], Guibas et al. [19], and LaValle
et al. [32] study various versions of this problem where the guards move independently.
Guibas et al. prove that for a simple polygon with n vertices and h holes, �(

√
h + log n)

guards are needed in the worst case to detect all targets. They also prove that computing
the smallest number of guards needed to find a moving target in a polygonal environment
is NP-hard.

In this paper we look at a more constrained but still realistic model of how a polygon
might be cleared by a group of guards. We assume that the guards always form a simple
polygonal chain through the polygon; the guards at the ends of the chain are always on
two edges of the polygon, while the rest are at internal vertices of the chain. All links in
the chain are segments inside the polygon. Thus, the guards are mutually visible in pairs
and are all linked together. Such a guard configuration has obvious advantages for safety
and communication, if this target-finding operation happens in adversarial settings. Our
goal is to sweep the polygon with a continuously moving chain of guards, so that, at
any instant, the chain of guards partitions the polygon into a “cleared” region and an
“uncleared” region. In the end, we would like to ensure that every point of the polygon
has been swept over an odd number of times. This property guarantees that if any targets
are present in the polygon, they will have to be swept over by the guard chain and thus
discovered.

There has been considerable work on the class of polygons that can be swept with a
chain of only two observers—these polygons are called streets [22], [26], [31], [47]. In
the framework of Icking and Klein [26], the guards are required to start at a point p on the
boundary of the polygon and finish at a point q also on the boundary of the polygon. One
guard moves clockwise from p to q and the other moves counterclockwise from p to q.
Given p and q , Heffernan [22] shows that O(n) time suffices to check whether a sweep
by two guards exists between p and q and Icking and Klein construct such a sweep in
O(n log n + k) time, where k is the number of “walk” instructions given to the guards
to implement the sweep. Tseng et al. [47] consider the problem of finding two points p
and q on the boundary of the polygon such that a straight walk or a straight counterwalk
exists between p and q that sweeps the polygon (the guards are not allowed to backtrack
in a straight walk, whereas in a straight counterwalk, one guard moves from p to q and
the other from q to p without backtracking). They check if two such points exist (and
output a pair) in O(n log n) time. Based on work by Suzuki and Yamashita [45], Lee et
al. [33] and Tan [46] have given techniques to check in O(n2) time if a chain of two or
three guards can sweep a polygon (i.e., if there exists a search schedule for a 1-searcher
or a 2-searcher, in their terminology).

While these results are restricted to streets and to polygons that can be swept by three
guards, we are interested in sweeping polygons that may require more than three guards.
Let P be a polygon with n vertices and let r∗ be the minimum number of guards needed
to sweep P . Our aim is to compute r∗ (or to find a good approximation to r∗) and to
determine a search schedule of small complexity for the guards to perform the sweep (we
formally define a search schedule and its complexity later). The relationship between r∗

and the link width, L(α, β), defined earlier is as follows: The boundary, ∂P , of P can

OF8 A. Efrat, L. J. Guibas, S. Har-Peled, J. S. B. Mitchell, and T. M. Murali

be partitioned into two polylines, α and β, such that L(α, β) = r∗, and there exists no
partitioning of ∂P into two polylines having link width strictly less than r∗.

We describe two main results:

1. We compute r∗ in O(n3) time, using O(n2) working space, and generate a search
schedule of size O(r∗n3).

2. Using O(n log n) time and O(n) space, we compute an integer r such that r ≤
r∗ + 16, and we can sweep P using r guards.

An intermediate result we achieve is one that uses O(n2) time and O(n2) space to
compute an integer r ≤ r∗ + 2 such that we can sweep P using r guards with a search
schedule of size O(rn2). We can also compute in O(rn2 log r) time a search schedule of
size O(rn2) for P that uses r + 4 guards. We also show how to sweep P using r guards,
where r is two more than the link radius of P , and generate a search schedule of size
O(rn). (The link radius of P is the minimum over all points p ∈ P of the maximum
link distance from p to other points of P .)

The primary difficulty in planning motions for more than two guards is that the guards
at the internal vertices of the chain can be located anywhere in the interior of P . To solve
this problem, we introduce a structure called the “link diagram,” which represents the
link distance and minimum-link paths between all pairs of points on the boundary of P .
As far as we are aware, this structure appears to be a new concept. We prove that the link
diagram has �(n3) size and describe an algorithm to construct it in O(n3) time.

Our first approximation algorithm (with an additive error of two) is based on the
observation that we can approximate the link diagram of P by the link distances between
the O(n2) pairs of vertices of P , if we are willing to tolerate a small additive error (of
at most two). Our second, more efficient, approximation algorithm (also with a small
additive error) is based on an interesting relationship we establish between r∗ and the
“link breadth” of P . Surprisingly, we can show that r∗ is bounded from above and from
below by the link breadth (ignoring additive constants).

2. Computing the Morphing Width Exactly

2.1. Geometric Preliminaries

We assume that α ∪ β is a closed Jordan path, i.e., that α and β have common endpoints
a and b. This assumption is without loss of generality since, if this is not the case, we
augment α ∪ β with two curves, γ1 and γ2, of minimum total length, not crossing α

or β, that match the endpoints of α with the endpoints of β. Since the total length is
minimized, a simple exchange argument shows that the curves γ1 and γ2 do not cross
each other. Thus, α ∪ γ1 ∪ β ∪ γ2 forms a closed Jordan path, so we can extend α and β

in such a way that they have common endpoints.
Let P be the simple polygon whose boundary, ∂P , is the union of α and β. For two

points p, q ∈ P , let πP(p, q) denote the shortest path in the plane between p and q that
lies inside P and let dP(p, q) denote the length of this path. We drop the subscript when
P is clear from the context. For two points p, q ∈ P , it is well known that π(p, q) is
a polygonal chain whose vertices (other than p and q) are reflex vertices of P . We say

New Similarity Measures between Polylines OF9

that the combinatorial structure of π(p, q) is the following sequence: the edge of P on
which p lies, the sequence of reflex vertices of P through which π(p, q) passes, and the
edge of P on which q lies.

We assume, without loss of generality, that both α and β have unit length; otherwise,
we can use a simple rescaling in the parameterization. Let f : [0, 1] → α, where f (0) =
a and f (1) = b be a continuous, increasing3 function. Let g: [0, 1] → β, where
g(0) = a and g(1) = b, be a continuous, increasing function. We say that the pair of
functions (f, g) induces a mapping from α to β that associates the point f (u) ∈ α with
the point g(u) ∈ β, where 0 ≤ u ≤ 1. We define the width W (f, g) of a mapping to be
max{d(f (u), g(u)), 0 ≤ u ≤ 1}. The following lemma states a useful property of the
total number of combinatorially distinct paths π(f (u), g(u)), 0 ≤ u ≤ 1.

Lemma 2.1. Let (f, g) be a pair of functions inducing a mapping from α to β. Let
0 ≤ u1 < u2 < · · · < uk ≤ 1 be numbers such thatπ(f (ui), g(ui))andπ(f (uj), g(uj))

are combinatorially different (1 ≤ i < j ≤ k). Then k = O(n) and we can store
a representation of the set of shortest paths {π(f (ui), g(ui)), 1 ≤ i ≤ k} using O(n)

space.

Proof. Clearly, if a vertex v of P appears on π(f (uj), g(uj)) but not on π(f (uj+1), g
(uj+1)), then v does not appear on any path π(f (uk), g(uk)) for k > j , since π(f (uj+1),

g(uj+1)) separates P into two regions, and v lies in the interior of only one of them.
From this observation, it also follows that we can store the difference between every two
consecutive paths π(f (uj), g(uj)) and π(f (uj+1), g(uj+1)) using only O(n) space.

Given a pair (f, g), for 0 ≤ u, t ≤ 1, let δ(u, t) be the point on π(f (u), g(u)) such
that d(f (u), δ(u, t)) = t · d(f (u), g(u)). The following lemma shows how to convert
(f, g) into a morphing.

Lemma 2.2. Let (f, g) be a pair of functions inducing a mapping from α to β. For
0 ≤ t ≤ 1, let γ (t) be the sequence of points {δ(u, t), 0 ≤ u ≤ 1}. The sequence γ (t)
is connected and simple and the set 	 = {γ (t) | 0 ≤ t ≤ 1} is a continuous morphing
scheme from α to β.

Proof. Clearly, for any choice of ξ > 0 we can find an ε > 0 such that |d(f (u), g(u))−
d(f (u + ε), g(u + ε))| ≤ ξ , and, moreover, the Hausdorff distance4 between π(f (u),

g(u)) and π(f (u + ε), g(u + ε)) is at most ξ . In particular ‖δ(u, t) − δ(u + ε, t)‖ ≤ ξ ,
for every t . Thus, it is an elementary calculus exercise to show that {δ(u, t), 0 ≤ u ≤ 1}
is continuous for any choice of t . Using similar arguments, one can show that for every
t , ‖δ(u, t) − δ(u, t + ε′)‖ ≤ ξ , for an appropriate ε′ = ε′(u, t) > 0; thus, the Hausdorff
distance between γ (t) and γ (t + ε′) is at most ξ , implying that 	 is continuous.

3 The function f is increasing if for every 0 ≤ u1 < u2 ≤ 1, f (u1) is closer to a along α than f (u2) is.
4 The Hausdorff distance between α and β is ≤ ξ if and only if for every point x of one of the curves there

is a point on the other curve whose Euclidean distance from x is ≤ ξ—see, e.g., [3] for details.

OF10 A. Efrat, L. J. Guibas, S. Har-Peled, J. S. B. Mitchell, and T. M. Murali

Given these two lemmas, we concentrate in the rest of this part of the paper on
computing a mapping (f, g) from α to β and ignore the process of converting such a
mapping into a morphing scheme.

2.2. The Shortest Path Diagram

In this section we define the shortest path diagram of a simple polygon and establish
some of its properties. The shortest path diagram represents all of the shortest paths
inside P in terms of their combinatorial structures.

Let o ∈ ∂P . We parameterize points p ∈ ∂P by the clockwise distance from o to p
along ∂P , divided by the perimeter of P . Let ϕ: [0, 1) → ∂P denote the bijective function
corresponding to this parameterization; thus, ϕ() maps every point of ∂P to a point in
the interval [0, 1). The shortest-path diagram SP of P is a decomposition of the unit
square into maximally connected regions such that for any points (u1, v1) and (u2, v2) in
the same region, the combinatorial structures of the shortest paths π(ϕ(u1), ϕ(v1)) and
π(ϕ(u2), ϕ(v2)) are identical. We use the terms faces, arcs, and nodes, respectively, to
denote the regions of SP , the one-dimensional boundaries between the regions of SP ,
and the points where two or more arcs of SP meet. Two adjacent faces of SP correspond
to shortest paths whose combinatorial structures differ by one element. Therefore, every
node in SP has even degree. We now prove that the size of SP is O(n2). We first
characterize the arcs of SP .

Lemma 2.3. Let (u, v) be a point on an arc of SP . Then the shortest path π =
π(ϕ(u), ϕ(v)) satisfies one of the following conditions:

1. If π consists of only one edge, then π passes through a vertex of P .
2. If π contains two or more edges, then either the first or last edge of π touches two

vertices of P .

Proof. Suppose the conditions of the lemma are not true. Then there exists a square s of
suitably small size centered at (u, v) such that for any point (u′, v′) ∈ s, π(ϕ(u), ϕ(v))

and π(ϕ(u′), ϕ(v′)) are combinatorially equivalent, which contradicts the fact that (u, v)

is a point on an arc of SP .

Corollary 2.4. If (u, v) is a node of SP , then the first and last edges of π(ϕ(u), ϕ(v))

are each incident on two vertices of P .

A simple consequence of this corollary is that no two nodes of SP have identical
combinatorial structures. This characterization of the nodes of SP lets us bound the
number of nodes in SP .

Lemma 2.5. There are O(n2) nodes in SP .

Proof. For two points p, q ∈ ∂P , we say that the shortest path π(p, q) is special if both
the first and last edges of π(p, q) are incident on two vertices of P . By Corollary 2.4,

New Similarity Measures between Polylines OF11

every node in SP corresponds to a unique special path. We prove that there are O(n2)

special shortest paths in P , which proves the lemma. Let π(p, q) be a special path and
let e and f be the edges of π(p, q) that are incident on p and q, respectively. There are
four types of special paths:

1. Both p and q are vertices of P . Clearly, there are O(n2) such special paths.
2. p is not a vertex of P but q is. In this case let r be the vertex of P that lies in e and

is closer to p. The special path π(r, q) is of the previous type, so we can charge
π(p, q) to π(r, q).

3. p is a vertex of P but q is not. We handle this case in a manner similar to the
previous case.

4. Neither p nor q is a vertex of P . We can handle this case by combining the
arguments for the previous two cases.

Each special path is charged at most four times by this argument, thus proving the
lemma.

Theorem 2.6. If P is a polygon with n vertices, then its shortest-path diagram has
complexity O(n2).

In order to describe the algorithm to construct SP , we prove a property of the nodes
of SP .

Lemma 2.7. There are four arcs incident on each node of SP .

Proof. Let π(ϕ(u), ϕ(v)) be the path corresponding to a node (u, v), connecting the
points ϕ(u) and ϕ(v) on ∂P . Clearly both the first and last edges of π are adjacent to
two vertices (not necessarily distinct). We need to check two cases:

• π(ϕ(u), ϕ(v)) consists of a single segment ϕ(u)ϕ(v) (see, for example, Fig. 2(iv)).
Assume first that ϕ(u)ϕ(v) is adjacent to two reflex vertices r1 and r2 of P , different
from its endpoints. By slightly perturbing ϕ(u) and ϕ(v) along ∂P , we can align
π(ϕ(u), ϕ(v)) so that among all vertices of P , π touches only r1, only r2, neither
r1 nor r2, or both (and, in this case, π consists of three edges). Clearly, these four
cases are the only four possible cases, for small enough perturbation of u and v.
This is also the only case at which an arc is not horizontal nor vertical.

It is easily checked that a similar argument holds if either r1, r2 or both are also
the endpoints of π(ϕ(u), ϕ(v)).

• π(ϕ(u), ϕ(v)) consists of two or more segments. In this case we can perturb the
endpoints of ϕ(u) and ϕ(v) independently—see, for example, Fig. 2(i)–(iii) and
(v), where the paths obtained by perturbing only one of them corresponds to the
four arcs adjacent to (u, v). Clearly no other arc is adjacent to the node (u, v).

The next lemma establishes the relationship between two nodes that are connected
by an arc. The intuition behind this lemma is that if two nodes are connected by an arc,
then the shortest paths corresponding to these nodes are closely related. In particular, it
is true that the first edge on one path is adjacent to the first edge on the other path in the

OF12 A. Efrat, L. J. Guibas, S. Har-Peled, J. S. B. Mitchell, and T. M. Murali

�(u)

�(u0)

r1

�(u)

�(u0)

r1 = r0

2

�(u)�(u0)

r1 = r0

2

(i) (ii)

(iii)

r1

�(u) �(u0)
(iv)

r0

1

r2 = r0

2

r0

1

r1

�(u) �(u0)
(v)

r2 = r0

2

r0

1

r0

1

�(v) = �(v0)�(v) = �(v0)

�(v) = �(v0)

�(v) = �(v0)

�(v)
�(v0)

Fig. 2. Proof of Lemmas 2.7 and 2.8.

visibility ordering around the first or second vertex of one of the two paths or that an
analogous statement holds for the last edges of the two paths.

Lemma 2.8. Let (u, v) and (u′, v′) be two nodes ofSP that are incident on the same arc
γ of SP . Assume that u �= u′. Let r1, r2, . . . be the (ordered) sequence of reflex vertices
on π(ϕ(u), ϕ(v)) and let r ′

1, r ′
2, . . . be the sequence of reflex vertices on π(ϕ(u′), ϕ(v′)).

Assume that r1 and r ′
1 are the vertices closer to ϕ(u) and ϕ(u′), respectively, in each

sequence. Then one of the following conditions holds:

(i) The paths π(ϕ(u), ϕ(v)) and π(ϕ(u′), ϕ(v′)) pass through the same number of
reflex vertices of P , r1 = r ′

1, and the triangle with vertices r1, ϕ(u), and ϕ(u′)
does not contain any vertices of P in its interior (see Fig. 2(i)).

(ii) The path π(ϕ(u′), ϕ(v′)) passes through one more reflex vertex than π(ϕ(u), ϕ

(v)), r1 = r ′
2, and the triangle with vertices r2, ϕ(u), and ϕ(u′) does not contain

any vertices of P in its interior (see Fig. 2(ii) and (iii)).
(iii) The paths π(ϕ(u), ϕ(v)) and π(ϕ(u′), ϕ(v′)) pass through the same number of

reflex vertices of P , r2 = r ′
2, and the triangle with vertices r2, ϕ(u), and ϕ(u′)

does not contain any vertices of P in its interior (see Fig. 2(iv) and (v)).

We are now ready to describe the algorithm for constructing SP . There are two main
steps:

1. We construct the set S of all of the nodes of SP . To do so, we compute the shortest
paths between all pairs of vertices of P using the techniques of Guibas et al. [18].
We add the node corresponding to each of these paths to S. If we compute the
shortest path for a pair of vertices (p, q), where p is a reflex vertex, then we extend
the first edge of π(p, q) backward till it intersects ∂P at a point p′ by performing
a ray-shooting query [8]. We then add the node corresponding to (p′, q) to S. We
perform a similar process if q is a reflex vertex. As a by-product of the process of

New Similarity Measures between Polylines OF13

computing all of the shortest paths, we also store for each reflex vertex v of P a
sorted list Lv of all of the vertices of P that are visible to v.

2. We use Lemma 2.8 to connect all the nodes in S by computing the arcs of SP .
Let (u, v) be a node computed in the previous step and let r and s be the first and
last vertices on π(ϕ(u), ϕ(v)), respectively. We assume, without loss of general-
ity, that π(ϕ(u), ϕ(v)) is directed from ϕ(u) to ϕ(v) and that r is to the left of
π(ϕ(u), ϕ(v)).

(a) We do a binary search to locate ϕ(u) in the list Lr . Let p be the vertex in
Lr to the left of ϕ(u). Let p′ be the point on ∂P obtained by extending the
segment r p beyond p (we have already computed p′ in the previous step).
We connect (u, v) to the node (ϕ−1(p′), v).

(b) If r ′ is the second vertex on π(ϕ(u), ϕ(v)) and r ′ lies on the right of
π(ϕ(u), ϕ(v)), we locate ϕ(u) in the list Lr ′ , find the point p′ in Lr ′ to
the right of ϕ(u), and connect (u, v) to the node (ϕ−1(p′′), v), where p′′ is
the point on ∂P obtained by extending the segment r′p′ beyond p′.

(c) We execute an analogous procedure with ϕ(v) and s.

The correctness of the algorithm follows from Corollary 2.4 and Lemma 2.8. We
now analyze the running time of the algorithm. We can compute the shortest path tree
for each vertex of P in O(n) time per vertex [18]. We can answer each ray-shooting
query made in Step 1 in O(log n) time [8]. Thus, we spend a total of O(n2 log n) time in
Step 1. In Step 2, for each arc we add, we spend O(log n) time. Therefore, the running
time of the algorithm is O(n2 log n). The algorithm uses O(n2) space. If it is enough to
output the nodes and arcs of SP as we find them, we can reduce the space requirement
to O(n log3 n) using the technique of Agarwal et al. [1] to store the visibility graph of a
polygon compactly.

Theorem 2.9. We can construct the shortest path diagram of a polygon with n vertices
in O(n2 log n) time using O(n log3 n) working space.

2.3. The Main Algorithm

In this section we present an algorithm for computing a mapping (f, g) between α and
β whose width is W (α, β), the morphing width of α and β. We use the shortest path
diagram SP as the basis of our algorithm in combination with parametric search [34].
To make the description of the algorithm simpler, we slightly modify the definition of
SP . Recall that a and b are the common endpoints of α and β and that α and β have unit
length. Let ϕ1: [0, 1] → ∂α denote the bijective function such that ϕ1(u), 0 ≤ u ≤ 1,
is the point on α whose distance from a along α is u. Define ϕ2: [0, 1] → ∂β similarly.
The shortest-path diagram SP of P = α ∪ β is a decomposition of the unit square
into maximally connected regions such that for any points (u1, v1) and (u2, v2) in the
same region, the combinatorial structures of the shortest paths π(ϕ1(u1), ϕ2(v1)) and
π(ϕ1(u2), ϕ2(v2)) are identical. Note that we can use the algorithm of the previous
section (with minor modifications) to construct SP .

We define a trajectory to be an xy-monotone path in SP connecting the points (0, 0)

and (1, 1). Let T be a trajectory in SP . We observe that there is a unique mapping

OF14 A. Efrat, L. J. Guibas, S. Har-Peled, J. S. B. Mitchell, and T. M. Murali

(fT , gT) corresponding to T ; for every point (x, y) ∈ T , this mapping associates the
point ϕ1(x) ∈ α with the point ϕ2(y) ∈ β. We abuse notation and let d(u, v) denote
the shortest-path distance d(ϕ(u), ϕ(v)). We define dT = max(u,v)∈T d(u, v) as the
maximum value that d(u, v) assumes over all points (u, v) ∈ T . The following simple
lemma is central to our algorithm (refer to the Introduction for the definition of the
geodesic width W (α, β)):

Lemma 2.10. If T is a trajectory in SP and (fT , gT) is the mapping corresponding
to T , then the geodesic width W (fT , gT) = dT .

Thus, it is enough to compute the trajectory T ∗ that minimizes the value of dT ∗ over
all trajectories. We omit the details of constructing the mapping corresponding to T ∗.

It appears difficult to compute T ∗ directly from SP . We adopt an approach that is
similar to the technique used by Alt and Godau [2] for computing the Fréchet distance
between two polylines. In a preprocessing step, we compute SP . We then construct an
oracle that determines for a parameter r > 0, whether there exists a trajectory Tr with
d(Tr) ≤ r . We combine this oracle with parametric search [34] to compute T ∗.

For r > 0, we define SP(r) to be set of all points (u, v) such that d(u, v) ≤ r ; clearly,
SP(r) is a refinement ofSP . Our oracle is simple: we first constructSP(r) and then check
if there is a trajectory that passes only through the points of SP(r). To construct SP(r),
we note that in each face of SP , the function d(u, v) has constant description complexity.
Therefore, the complexity of the portion of SP(r) inside a face of SP is proportional to
the size of that face. Thus, the size of SP(r) is O(n2) and we can compute it from SP in
O(n2) time. We use a standard graph search to check if there is a trajectory that passes
only through points of SP(r).

We briefly describe the generic part, which is essentially identical to the method used
in [2]. We consider the set X of all of the locally x-extreme points of SP . As r changes,
the points of X change, and when r = r∗, two of them have the same x-coordinate.
Following the parametric search paradigm, it is enough to sort the x-coordinates of the
points of X at the unknown value of r∗, while maintaining an interval [rmin, rmax] in
which r∗ lies. During the sorting process, we submit critical values r ′ to the oracle, to
find whether r ′ is larger or smaller than r∗, and each such query shrinks [rmin, rmax], until
at the end of the process, this interval consists of a single point, which is r∗. Thus we
obtain the following result:

Theorem 2.11. Given two nonintersecting, simple polylines α and β, we can compute
a mapping (f, g) between α and β whose width is the morphing width of α and β in
O(n2 log2 n) time using O(n2) space.

We now show how to extend this result when we want to control the amount of
distortion α and β undergo during the morphing. We start by formalizing the notion of
distortion. Let (f, g) be a mapping from α to β. For 0 ≤ u1 < u2 ≤ 1, let f (u1, u2)

denote the portion of α between f (u1) and f (u2) and let | f (u1, u2)| denote the length
of f (u1, u2); define similar notation for g. For κ > 1, we say that the mapping (f, g) is
κ-stretched if for every 0 ≤ u1 < u2 ≤ 1, we have that (1/κ)| f (u1, u2)| ≤ |g(u1, u2)| ≤
κ| f (u1, u2)|. If T is the trajectory corresponding to a κ-stretched mapping, we say that

New Similarity Measures between Polylines OF15

T is κ-stretched; it is easy to see that the slope at every point on T lies between 1/κ

and κ .
In the rest of this section we present an algorithm to find the κ-stretched trajectory T ∗

that minimizes the value of dT ∗ over all κ-stretched trajectories. Once again, we construct
an oracle that checks, given a parameter r > 0, whether there is a κ-stretched trajectory
T such that dT ≤ r . We omit the details of how we combine this oracle with parametric
search.

Let S be the set of cells of the vertical decomposition of the complement of SP(r).
Each cell in S has constant description complexity; thus the size |S| of S is O(n2). To
describe the algorithm, we find it convenient to think of these cells as obstacles. We say
that a κ-stretched trajectory T is legal if it does not contain any point in the interior of
a cell in S, i.e., if it lies entirely inside SP(r). The following lemma is central to our
argument:

Lemma 2.12. Given r ≥ 0, κ ≥ 1, we can find a legal κ-stretched trajectory in SP(r)

or determine that no such trajectory exists in O(n2 log n) time.

Proof. Let p be a point in SP(r). We define a flashlight Fp centered at p to be the
wedge with p as origin and whose two edges have slope κ and 1/κ , respectively. A
point q is illuminated by Fp if q is inside Fp and the segment pq does not intersect
the interior of any cells in S. A point q is illuminated if it is illuminated either by the
flashlight F(0,0) or by a flashlight Fp such that p is also illuminated. It is clear that the
point (1, 1) is illuminated if and only if SP(r) contains a legal κ-stretched trajectory.
Therefore, we settle the question of whether SP(r) contains a κ-stretched trajectory or
not by computing the set of all illuminated points and checking if the point (1, 1) is
illuminated.

We compute the set of illuminated points by performing a sweep starting at (0, 0).
We use a sweep line � making an angle of 3π/4 with the x-axis and moving to the right.
We initially place a flashlight at (0, 0) and add more flashlights as the sweep proceeds.
At each instant, we maintain the invariant that we have computed the set of illuminated
points to the left of �. We also maintain the intervals of � that are illuminated and the
intervals in which � intersects the cells of S. The event points of the sweep are the nodes
of the cells of S, the intersections of the edges of the flashlights with the arcs of the cells
of S, and intersections between the flashlights themselves. The last two types of events
are interesting:

1. The edge of a flashlight Fp intersects the boundary of a cell c ∈ S. We trace the
illuminated portion of ∂c until we reach a point r where this illuminated portion
ends. If the line through p and r is tangent to c and does not intersect the interior
of any other cell in S adjacent to r , we add a flashlight centered at r .

2. The intervals of � illuminated by two flashlights intersect. It is easy to see that the
union of these two flashlights is connected to the right of �. Therefore, we merge
these two flashlights into one.

There are at most 2|S|+1 flashlights created during this sweep, since we place at most
two flashlights on the boundary of each cell in S. Every time we merge two flashlights,
we decrease the number of flashlights by one. Therefore, there are O(|S|) events during

OF16 A. Efrat, L. J. Guibas, S. Har-Peled, J. S. B. Mitchell, and T. M. Murali

the sweep, each of which we can process in O(log n) time using standard data structures.
Since |S| = O(n2), we have proven the lemma.

It is easy to see that if there is a legal κ-stretched trajectory, then there is a polygonal
trajectory whose vertices are the origins of the flashlights placed by the algorithm.
Therefore, the algorithm will detect that (1, 1) is illuminated. Since the converse is also
true, we have established the correctness of the algorithm.

We obtain the following theorem once we use this lemma in combination with para-
metric search:

Theorem 2.13. Given two nonintersecting, simple polylines α and β and a parameter
κ > 1, we can compute a κ-stretched mapping (f, g) between α and β with minimum
width in O(n2 log2 n) time using O(n2) space.

3. Approximating the Morphing Width

In this section we describe an approximation algorithm for computing the morphing
width W (α, β) of α and β. As before, a and b are the the two common endpoints of α

and β and P is the polygon whose boundary is formed by the union on α and β. Let
σ = πP(a, b) denote the shortest path between a and b inside P . Let P1 and P2 be
the two polygons created from P by adding σ ; see Fig. 3(a). The boundary ∂P1 may be
degenerate in the sense that nonconsecutive vertices of P1 have identical coordinates.
This degeneracy occurs whenever σ has two consecutive vertices such that one vertex
lies in ∂P1 and the other vertex lies in ∂P2. A similar remark holds for ∂P2. We first prove
a structural lemma that states that we can approximate W (α, β) within a factor of two.
Then we show how to compute such an approximation and a morphing scheme with that
width.

3.1. A Structural Lemma

The intuition behind our 2-approximation for W (α, β) is that the width of the morphing
scheme obtained by first transforming α into σ and then transforming σ into β is at
most 2W (α, β). We now provide a formal basis for this intuition. For a point x ∈ P , let

s

t

�
P1

�

� q

r �

p

�

q r
�

P 0
pr
pq

(a) (b)

Fig. 3. Illustration of the proof of Theorem 3.1: (a) The shortest path σ . (b) The polygon P ′. If the angles
at q and r are smaller than π/2 (as in the figure), we can shorten γpq , γpr to realize a shorter path between p
and a point inside σ(q, r).

New Similarity Measures between Polylines OF17

dP(σ, x) denote the minimum length of a shortest path between x and a point of σ , and
let w = maxx∈∂ P dP(σ, x).

Clearly, any morphing scheme for P has width at leastw, since for all y ∈ β, d(q, y) ≥
d(σ, q) and for all x ∈ α, d(x, r) ≥ d(σ, r). We claim that the morphing width of both
P1 and P2 is at most w, which implies the result. We prove the claim for P1. A similar
argument holds for P2.

We parameterize α and σ monotonically such that α = ⋃1
s=0 α(s) and σ = ⋃1

t=0
σ(t). Let u(s, t) denote the length of the shortest path connecting the points α(s) and σ(t)
inside P1. By construction, for any 0 ≤ a0 ≤ 1, there exists a b0 such that u(a0, b0) ≤
w. Furthermore, we claim that if there exists b1 ≥ b0 such that u(a0, b1) ≤ w, then
u(a0, v) ≤ w, for all b0 ≤ v ≤ b1.

Indeed, assume that this claim is false, and let a0, b0, and b1 be such that b0 ≤ b1,
b1 −b0 is minimized, u(a0, b0) = u(a0, b1) = w, and u(a0, v) > w for all b0 < v < b1.
Let p = α(a0), q = σ(b0), r = σ(b1), γpq = πP1(p, q), γqr = σ(q, r), and γrp =
πP1(r, p). Let P ′ be the polygon bounded by γ = γpq ∪ γqr ∪ γrp. We assume without
loss of generality that γ is oriented such that the interior of P ′ lies to the left of γ .
See Fig. 3(b). We assume that γpq and γrp are disjoint in their interior. Otherwise, the
following argument can be applied to their portions that are disjoint.

Note that γpq, γqr, and γrp are all portions of shortest paths, and cannot be shortened
inside P ′, since P ′ ⊆ P . In particular, except for p, q, r all other vertices of P ′ have an
angle at least π . Following the same reasoning, the angles of P ′ at q and r must also be
at least π/2 (otherwise, γpq or γrp can be shortcut). The angle µ of P ′ at p is nonzero.
Let k be the number of vertices of P ′. The arguments above imply that the sum of the
angles of P ′ is at least (k − 3)π + 2(π/2) + µ > (k − 2)π , which is impossible, since
the sum of the angles of a polygon with k vertices is equal to (k − 2)π .

It is now straightforward to prove that the set

U = {(s, t) | 0 ≤ s, t ≤ 1, u(s, t) ≤ w}
is connected and contains the points (0, 0) and (1, 1). In particular, U contains an xy-
monotone trajectory that connects (0, 0) to (1, 1). The xy-monotonicity of the trajectory
follows from the structure of the Voronoi diagram induced by σ inside P . (See the next
section for details.) This trajectory corresponds to a morphing scheme for α and σ with
width at most w. This argument proves the following theorem:

Theorem 3.1. Let q ∈ α and r ∈ β be the two points that maximize dP(σ, q) and
dP(σ, r), respectively. Let w = max(dP(σ, q), dP(σ, r)); then w ≤ W (α, β) ≤ 2w.

3.2. Computing a Morphing Scheme with Width ≤ 2W (α, β)

In this section we describe an algorithm that uses Theorem 3.1 to compute a morphing
scheme with width at most 2W (α, β). We only sketch the algorithm, since the details
are straightforward but somewhat tedious. We parameterize α and β as before. For each
point x ∈ α, we find the shortest path π(x, σ) and the point x ′ ∈ σ that realizes this
shortest path. Using this information, we construct a morphing scheme for α and σ . We
perform a similar procedure for each point on β to compute a morphing scheme for β

and σ . Finally, we merge these two morphing schemes to obtain a morphing scheme for

OF18 A. Efrat, L. J. Guibas, S. Har-Peled, J. S. B. Mitchell, and T. M. Murali

R
1 R

2

R
3

R
4

R
5

R
6

R
7

Q

�

e

S0

S1

S2

S3

(a) (b)

Fig. 4. Illustration of the proof of Lemma 3.3: (a) Decomposing a subpolygon Q into cells of the Voronoi
diagram. (b) Decomposing the Voronoi cell corresponding to the edge e by performing vertical sweeping. The
resulting subpolygons are S0, S1, S2, and S3. Each polygon except S0 has an associated gateway; all shortest
paths from inside such a polygon to e pass through the gateway.

α and β. The key step in this algorithm is finding for each point in α and β the closest
point on σ . We spend the rest of the section describing our procedure for doing so in
O(n log n) time. Since we compute the curve σ in linear time using the algorithm of
Guibas et al. [18], we obtain the following theorem:

Theorem 3.2. We compute in O(n log n) time a morphing scheme (f, g) for α and β

such that the width W (f, g) satisfies W (α, β) ≤ W (f, g) ≤ 2W (α, β).

We now turn our attention to the problem of computing for each point on α the point
on σ that is closest to it. We adopt an identical procedure for β. For a point x ∈ P1, let
v(x) be the point of σ such that the length of the Euclidean shortest path πP1(x, v(x)) is
the smallest over all the paths from x to points on σ ; v(x) is either a vertex of σ or a point
that lies in the interior of an edge of σ . We now define the geodesic Voronoi diagram of
σ inside P1, denoted by VP1(σ), as the decomposition of P1 into maximal cells such that
for any two points x and y in the same cell of VP1(σ), the shortest paths πP1(x, v(x))

and πP1(y, v(y)) are combinatorially identical. It is clear that once we compute VP1(σ),
we compute for each point on α the point on σ that is closest to it. We are not aware
of any near-linear-time algorithm for computing such a Voronoi diagram in the general
case (when σ is an arbitrary polyline and not a shortest path). In the rest of the section
we drop the subscript from VP1(σ).

Let Q be the set of polygons that are the closures of the maximal connected compo-
nents of the interior of P1. Clearly, the overall combinatorial complexity of the polygons
in Q is bounded by O(n). We compute the portion of V(σ) inside each polygon Q ∈ Q
separately. Let σ ′ denote the portion of σ inside Q. The portion of V(σ) inside Q is
identical to the Voronoi diagram VQ(σ ′) of σ ′ inside Q. However, since σ ′ cannot be
shortened inside Q and since ∂Q is not degenerate, we conclude that σ ′ is concave.

The Voronoi diagram of σ ′ inside Q is induced either by the interior of an edge of
σ ′ or by a vertex of σ ′. The bisector of the interior of an edge of σ ′ and its endpoint
is simply a ray perpendicular to the edge emanating from the vertex directed into the
interior of Q. Each vertex of σ ′ induces two such rays and the region between them is
the cell of VQ(σ ′) corresponding to the vertex. Since σ ′ is concave, these rays do not
intersect. In particular, these rays decompose Q into a set of polygons R1, R2, . . . , Ru

New Similarity Measures between Polylines OF19

such that each such polygon is the cell in VQ(σ ′) corresponding to either a vertex of σ ′

or an edge of σ ′.
We compute the decomposition of Q into the polygons R1, R2, . . . , Ru by prepro-

cessing Q for ray shooting and performing u − 1 ray shooting queries in Q. If we use
the algorithm of Guibas et al. [18] to perform these queries, this procedure takes a total
of O(

∑
Q∈Q |Q| log|Q|) = O(n log n) time, where |Q| denotes the number of vertices

of Q.
We are now left with the task of computing the portion of VQ(σ ′) inside each R j . If

R j corresponds to a vertex of σ ′, the desired decomposition of R j is given simply by the
shortest path map (rooted at that vertex), which is computed in O(|R j |) time [18]. If R j

corresponds to an edge e of σ ′, we observe that e is on the boundary of R j and we would
like to compute the Voronoi diagram VR j (e) of e inside R j . Rotate R j so that e is parallel
to the x-axis (note that the two edges adjacent to e are vertical). For a point x ∈ R j ,
the shortest path to e ends in a vertical segment connected to e. From each vertex of R j

that is vertically visible from e (we assume that all the vertices that see e are above it),
if we shoot a vertical ray upwards until the ray intersects ∂R j , we decompose R j into
a set S of polygons. One of the polygons S ∈ S has e on its boundary; for every point
x ∈ S, πS(x, e) is a vertical segment. Every other polygon S′ ∈ S has a vertex p(S′)
that is vertically visible from e. For every point x ∈ S′, πS′(x, e) passes through p(S′).
Thus, we now compute the Voronoi diagram of e inside R j by computing the shortest
path map of p(S′) inside each polygon S′ ∈ S.

We compute the set of vertices {p(S′), S′ ∈ S} in O(|R j | log|R j |) time (in fact, we
do so in linear time by computing the vertical decomposition of R j [7]). Inside each
subpolygon S′ ∈ S, we compute the shortest path map of p(S′) in O(|S′|) time. Thus,
the overall running time of the algorithm is O(n log n).

Lemma 3.3. If P is a polygon with n vertices and σ is a concave chain forming a
portion of ∂P , we compute the Voronoi diagram induced by σ inside P in O(n log n)

time.

4. Sweeping Polygons: An Exact Algorithm

4.1. Geometric Preliminaries

Let P be a simple polygon in the plane. Let G = {G1, G2, . . . , Gr } be a set of point
guards in P . For a guard Gi ∈ G, let γi (t) denote the position of Gi in P at time t ; we
require that γi (t): [0, ∞) → P be a continuous function. A configuration of G at time
t , denoted 	(t), is the set of points {γi (t) | 1 ≤ i ≤ r}. We say that 	(t) is legal if

1. γ1(t) and γr (t) both lie on ∂P , and
2. for every 1 ≤ i < r , the segment γi (t)γi+1(t) does not intersect the exterior of P .

From now on, we use the term configuration to mean legal configuration. A configuration
of G defines a piecewise-linear path (the configuration chain) connecting the points γ1(t)
and γr (t) that “cuts” through P and does not intersect the exterior of P .

OF20 A. Efrat, L. J. Guibas, S. Har-Peled, J. S. B. Mitchell, and T. M. Murali

G_1

(a) (b) (c) (d) (e) (f)

Fig. 5. A search schedule with three guards. The unswept (“contaminated”) region is shown shaded.

A motion strategy (γ,G) = {γi , 1 ≤ i ≤ r} is a specification of γi , for each guard
Gi ∈ G. We assume that each guard can follow an algebraic path, once the path is
specified. Thus, each γi is a piecewise-algebraic function. The complexity of γi is the
number of algebraic functions needed to define it. The complexity of a motion strategy
is the total complexity of the γi ’s.

In order to formalize the notion of sweeping a polygon, we assume that the chain
corresponding to the configuration of the guards is oriented from G1 to Gr . For a motion
strategy (γ,G), let AP(t) denote the fraction of the area of P to the right of the config-
uration chain defined by 	(t); AP(0) = 0. The portion of P that lies to the right of the
configuration chain is said to be clear; the portion of P to the left of the configuration
chain is said to be contaminated.

We say that a motion strategy (γ,G) is a search schedule for P if AP(t) = 1, for
some t > 0. Finally, we say that P is r-searchable if a search schedule that uses at most
r guards exists for P . See Fig. 5 for an example of such a sweep. We will see (Fig. 10)
later that there are n-vertex polygons that are not o(n)-searchable.

Our algorithms will compute a search schedule for P; while we do not explicitly
specify the γi ’s, they can be readily computed from the output of the algorithms.

We assume without loss of generality that P has unit perimeter (the length of ∂P is
1) and that all of the guards start at the same point in ∂P at the beginning of the sweep
and converge at another point of ∂P at the end of the sweep. Thus, at the beginning
of the sweep, all of the polygon is contaminated and at the end of the sweep all of the
polygon is clear. The following lemma, whose proof follows easily from the definitions,
characterizes when a motion strategy is a search schedule:

Lemma 4.1. Given a motion strategy (γ,G), let δ1 (resp., δr) denote the total distance
that G1 (resp., Gr) travels in the counterclockwise (resp., clockwise) direction during γ .
If |δ1 + δr | = 1, then (γ,G) is a search schedule for P .

Using this lemma, it is easy to show that in any search schedule, each point in P is
swept over an odd number of times.

In all of our algorithms, we construct search schedules in which each configuration
of the guards corresponds to a “minimum-link” path between the first and last guards.

We now review some standard definitions related to such paths. Given two points
p, q ∈ P , we say that p and q see each other if the segment pq does not intersect the
exterior of P . For a point p ∈ P , the visibility polygon Vp is the set of all points in P
that see p. Similarly, for a segment e ⊂ P , the weak visibility polygon Ve is the set of all
points in P that see some point in e. See Fig. 6(a) for an example. An edge of Ve is either

New Similarity Measures between Polylines OF21

A chord edge
e

1

2

3

2
3

w1

4

w6 w3

w2

w5

2

w7

p

3

w4

5
6

w10

w8

5
w9

w6

w7

w1

w4 w5

w2

p

w3

w10
w8

w9

(a) (b) (c)

Fig. 6. (a) The weak visibility polygon of an edge e. (b) The window partition for point p. (c) The window
tree for point p.

(i) a portion of an edge of P or (ii) a segment with one endpoint at a reflex vertex of P
and the other endpoint on an edge of P . In the second case we call the edge a chord of
Ve. See Fig. 6(a). A chord s divides P into two or more subpolygons; we use P[s; e] to
denote the subpolygons not containing e. Given two points p, q ∈ P that see each other,
let � be the line passing through p and q. Then the extension of (p, q) is the connected
component of � ∩ P that contains the segment pq.

A minimum-link path between p and q is a piecewise-linear path between p and q
that does not intersect the exterior of P and has the minimum number of line segments;
the link distance dL(p, q) between p and q is the number of line segments in such
a path.

The window partition Wp of a p ∈ P is a partition of P into maximal regions of
constant link distance from p. An edge of Wp is either a portion of an edge of P or is
a chord that separates two regions of Wp; we call such a chord a window of Wp. See
Fig. 6(b) for an example. If a window w ∈ Wp has endpoints x and y, then one endpoint
of w (say, x) is a reflex vertex v of P and the other endpoint (y) lies on an edge e of P;
x is closer to p than y in terms of geodesic distance. We call x the supporting vertex of
the window and we call y the far endpoint of the window. We say that the combinatorial
type of w is the vertex–edge pair (v, e). The combinatorial type of Wp is a list of the
combinatorial types of all of its windows. The planar dual of Wp is the window tree, Tp.
Suri [44] introduced the notion of window partition and showed that it can be constructed
in time and space O(n). The definitions of window partition and window tree extend
naturally to the case in which the source is a line segment, instead of a point.

We can use the window partition Wp to compute a minimum-link path from p to any
other point in P . In general, minimum-link paths are not unique. The canonical minimum-
link path πL(p, q) between p ∈ P and q ∈ P is a path that uses only extensions of
windows in Wp, with the last link chosen to pass through the last vertex of the geodesic
shortest path between p and q . We define the combinatorial type of a link of πL(p, q)

(except, possibly, the last link) to be the combinatorial type of the window ofWp of which
it is an extension. Each link of πL(p, q) passes through a reflex vertex of P , which is
said to support the link. (The reflex vertex is also a vertex of the geodesic shortest path
between p and q .) We say that a link of πL(p, q) is pinned if it passes through two reflex
vertices of P such that the vertices are locally supporting the link on opposite sides of
the link.

OF22 A. Efrat, L. J. Guibas, S. Har-Peled, J. S. B. Mitchell, and T. M. Murali

p1 p5

p2 p4

p3

p6

o
p
1

p
2

p
3

p
4

p
5

p
6

(a) (b)

Fig. 7. (a) A polygon P and (b) its link diagram. Shaded areas correspond to pairs of points on ∂P with link
distance two.

4.2. The Link Diagram

We now define the link diagram of P , a structure that is central to our algorithm for
computing r∗, and is analogous to the shortest path diagram defined in Section 2.2.
We first select an arbitrary point o ∈ ∂P as the origin of ∂P and parameterize every
point p ∈ ∂P by the clockwise distance from o to p along the (unit-length) boundary ∂P .
Let ϕ: [0, 1) → ∂P denote the bijective function corresponding to this parameterization;
thus,ϕ maps each point in ∂P to a point in the interval [0, 1). For any point (x, y) in the unit
square, we abuse notation slightly by letting dL(x, y) denote the link distance between
the points ϕ(x) ∈ ∂P and ϕ(y) ∈ ∂P . The link diagram LP is defined analogously
to the shortest-path diagram to be the decomposition of the unit square into maximally
connected regions such that the combinatorial type is the same for all paths corresponding
to the points within a region. See Fig. 7 for an example ofLP . A face ofLP is a maximally
connected region for which the function dL assumes the same value; an arc ofLP separates
two different faces of LP (the values of dL in these two faces differ by one); and a node
of LP is a point on the boundary of four or more5 faces of LP or a point adjacent to two
different arcs that separate the same pair of faces.

4.3. The Complexity of the Link Diagram

We obtain a tight bound on the worst-case complexity of the link diagram, LP :

Theorem 4.2. The link diagram LP of a polygon P with n vertices has size �(n3) in
the worst case.

Proof. Consider any vertical line �(t), for 0 ≤ t ≤ 1, and the corresponding slice of
the LP . The boundary, ∂P , of P is decomposed into O(n) pieces by the vertices of P and
the far endpoints of the windows of Wϕ(t). This decomposition exactly corresponds to
the restriction of LP to �(t). Specifically, �(t) crossing an arc of LP corresponds exactly

5 A node of LP cannot be adjacent to an odd number of faces; if it were, then one of the arcs adjacent to
the node separates faces where the value of dL differs by zero or by at least two, which is impossible.

New Similarity Measures between Polylines OF23

�(u)

o

�(t)
u

t
(a) (b)

Fig. 8. The vertical line �(t) intersects LP at (t, u) and ϕ(u) is the supporting vertex of a window of Wt .

to the point ϕ(u) coinciding with a vertex of P or with a far endpoint of a window of
Wϕ(t). See Fig. 8.

Now consider how the vertical slice ofLP varies as we vary t ∈ [0, 1]. As t varies, and
ϕ(t) slides around the boundary of P , the window partition Wϕ(t) changes. In particular,
each window λ of Wϕ(t) for which the canonical minimum-link path from ϕ(t) to λ has
no pinned links will pivot continuously about its supporting vertex. The combinatorial
type of Wϕ(t) changes at certain critical values of t , when a window, λ, of Wϕ(t) comes in
contact with a vertex, v, of P . At such an event, �(t) passes through one or more nodes
of LP , corresponding to the fact that the combinatorial type of paths from ϕ(t) to points
of ∂P in the subwindow tree associated with λ may have changed.

In fact, Arkin et al. [4] show that the combinatorial type ofWϕ(t) changes at the O(n2)

values of t that correspond to far endpoints of windows in the window partitions Wv

rooted at the n vertices of P . Since each vertical “strip” of LP between any two event
values of t has O(n) arcs (swept out by the endpoints of windows of Wϕ(t) for values of t
within the strip), and there are only O(n2) event values of t , we get an overall complexity
of O(n3). (Note too that the nodes of LP lie on a total of O(n2) vertical (or horizontal)
lines.)

The upper bound of O(n3) is tight in the worst case: There are polygons for which the
link diagram has size �(n3). In Fig. 9 we show a polygon P whose boundary consists of
three portions: γ1 is a convex chain of n vertices while γ2 and γ3 are sequences of n “teeth”
each. Let ci , 1 ≤ i ≤ n, denote the “base” of each tooth in γ2 and let di , 1 ≤ i ≤ n,
denote the bases in γ3. We choose γ1 to be small enough such that every point in γ1 can
see every point of ci and every point of dj , for 1 ≤ i, j ≤ n. Let ci have endpoints pi and
qi . Consider Wpi . Since pi can see every point on γ1, a window of Wpi (in fact, a chord
of the visibility polygon Vpi) has an endpoint p′ in ∂P to the left of the vertices of γ1. For
every j, 1 ≤ i ≤ n, there is a window w′ in Wpi such that w′ has an endpoint q ∈ dj . The
point (f −1(pi), f −1(q)) is on an arc of LP . Now consider moving a point p from pi to
qi . This motion causes p′ to move clockwise along γ1 and q to move clockwise along dj .
Every time p′ passes a vertex of γ1, the function defining the motion of q (with respect
to p) changes. (This function will be a fractional linear function, a homography; see [4].)

OF24 A. Efrat, L. J. Guibas, S. Har-Peled, J. S. B. Mitchell, and T. M. Murali

2
3

1

p3
q3 d1

Fig. 9. Lower bound construction for the size of LP .

Therefore, by the time p reaches qi , the point (f −1(p), f −1(q)) has traced �(n) arcs of
LP . The same process can be repeated for every ci and dj , 1 ≤ i, j ≤ n, which implies
that LP has size �(n3).

4.4. Computing the Link Diagram

We now describe an algorithm to construct LP . The algorithm is very similar to the
preprocessing algorithm of Arkin et al. (Section 3.1 of [4]). The algorithm simply mimics
the proof of the size bound by sweeping a vertical line �(t) across LP and maintaining
the intersection of �(t) with LP . We represent this intersection by a sequence L(t) of
O(n) sorted numbers in [0, 1); u ∈ L(t) if and only if ϕ(u) is an endpoint (either a
far endpoint or a supporting vertex) of a window in Wt . If u ∈ L(t), we use σ(t, u) to
denote the arc of LP on which the point (t, u) lies, and we store the combinatorial type
of σ(t, u) with u in L(t).

1. For each vertex v ∈ P , we computeWv . This gives O(n) windows per v, for a total
of O(n2) windows overall. We let Q denote the sorted sequence of the vertices of
P and these O(n2) window endpoints, sorted around ∂P . Computing Q requires
O(n2 log n) time. The points Q induce a partitioning of ∂P into segments (“atomic
segments” in [4]). By Lemma 1 of [4], we know that the combinatorial type of Wt

remains constant for points ϕ(t) in an atomic segment.
2. For each atomic segment s, we compute the window partition Ws . This takes a

total of O(n3) time, since any one Ws is computed in linear time. As in step (P4)
of the preprocessing algorithm in [4], we keep track, for each window λ of Ws ,
of the coefficients that specify the homography (fractional linear function) that
describes how the far endpoint of λ varies with t , for ϕ(t) ∈ s. This can be done
easily during the construction of Ws , as observed in [4]. These functions describe
the equations of arcs σ(t, u) that lie within the vertical strip of LP corresponding
to atomic segment s. (In addition to these curved arcs, LP has horizontal arcs
corresponding to reflex vertices that are supporting vertices of windows λ in Ws .)

New Similarity Measures between Polylines OF25

In conclusion, we have shown:

Theorem 4.3. We can construct LP in O(n3) time, using O(n2) working space.

4.5. Computing an Optimal Search Schedule

We now turn our attention to using LP to compute the optimum number r∗ of guards
and a corresponding search schedule for r∗ guards.

Theorem 4.4. One can compute r∗ by searching LP , in O(n3) time. Within the same
time bound, one can produce a search schedule of O(r∗n3) complexity for P using r∗

guards.

Proof. Lemma 4.1 states that a motion strategy (γ,G) is a search schedule if the total
distance traveled by the extreme guards (measured counterclockwise for one guard and
clockwise for the other) sums to the perimeter of P . To exploit this fact, we augment
the diagram LP by placing a translated copy of it (translated upwards by distance 1) just
above it in the plane. Lemma 4.1 implies that any path from the diagonal y = x in the
bottom copy to the diagonal y = x + 1 in the top copy corresponds to a search schedule
for P . Our algorithm for computing r∗ is simple. We consider the graph defined by the
nodes and arcs of the two copies ofLP . We label each arc and each node with the smallest
link distance associated with the faces adjacent to it. We then perform a breadth-first
search in this graph to compute the smallest integer r∗ such that a path exists between
the two diagonals that uses only arcs and nodes with labels at most r∗ − 1 (since a chain
of r∗ − 1 links corresponds to r∗ guards). We can adapt this procedure to compute a
search schedule too. Clearly, the breadth-first search takes O(n3) time and produces a
path in LP that visits O(n3) nodes. To compute the search schedule, at each node of this
path, we may need to update the motions of at most r∗ guards, thus computing a search
schedule of complexity O(r∗n3).

Remark. In the worst case, r∗ may be �(n), since there are n-vertex polygons that
are not o(n)-searchable. Figure 10 shows such a polygon P . It consists of three “arms,”
L1, L2, and L3, joined by a central region. Any polygonal chain lying inside P that joins
a point p in the central region to the tip pi of an arm Li has �(n) segments. Suppose
L3 is the last arm to be searched in a sweep. Then, while a guard visits p3, a guard
must be positioned at a point in the central region. Otherwise, the target might escape
from L1 to L2 or vice versa. A similar fact holds if L1 or L2 is the last arm to be searched.
Therefore, �(n) guards are needed to sweep P .

5. Sweeping Polygons: Approximation Algorithms

We have obtained three approximation results: (1) an algorithm that uses O(n log n) time
to compute r∗ within an additive error of at most 16, (2) an algorithm that uses O(n2)

time to compute r∗ within an additive error of 2, and (3) a method for sweeping P that

OF26 A. Efrat, L. J. Guibas, S. Har-Peled, J. S. B. Mitchell, and T. M. Murali

p1

L1

L3

p3

L2

p2

p

Fig. 10. A polygon P such that r∗ = �(n).

uses at most the link radius of P (which we can compute in O(n log n) time [11]) plus
two guards. Here, we give details of only the first result, (1), which closely parallels the
approximation algorithm we already described in the geodesic case; we defer the other
two methods to the Appendix.

Let a, b ∈ ∂P be a pair of points, maximizing dL(a, b); we call such a pair a diamet-
rical pair of P , and let DP = πL(a, b) denote a corresponding path that represents a
link diameter of P . (There may be many minimum-link paths that attain the diameter;
we fix one of them arbitrarily to be DP .)

We define a concept that is very similar to that of link width, L(α, β), which we
defined in the Introduction. In order to distinguish it and hopefully avoid confusion, we
refer to this new concept as the “link breadth.” In particular, we define the link breadth
of P relative to DP to be L(P, DP) = maxv∈P dL(DP , v). The link breadth of P is then
defined to be the minimum, minDP L(P, DP), taken over all realizations of the diameter.
(It turns out that different realizations of DP can result in different breadths, but there
can be variation only by one link.) In our discussion, it suffices to fix one realization of
the diameter, DP , and do analysis with respect to the breadth L = L(P, DP). For points
p, q ∈ ∂P , we let ∂P(p, q) denote the portion of ∂P traced when moving from p to q
in a clockwise direction (i.e., with the interior of P lying to the right). We first state two
lemmas that establish the relationship between the link breadth and the link diameter of P .

Lemma 5.1. Let DP = πL(a, b) be a diameter of P , let c be a point that realizes the
breadth, L = dL(DP , c), and let u be a point on DP that is closest to c in link distance.
(See Fig. 11.) Then dL(a, u) ≥ L − 7 and dL(b, u) ≥ L − 7.

Proof. Note that we can assume, without loss of generality, that πL(a, b) and πL(c, u)

do not intersect in their interior. Let γ be the curve πL(c, u)‖πL(u, b)‖πL(b, c), where
‖ denotes the concatenation operator. The curve γ is a closed curve, and it might be
self-intersecting. Let Iγ denote the region delimited by γ (i.e., the union of bounded
faces in the arrangement induced by γ).

New Similarity Measures between Polylines OF27

a b

c

u

x

v

w

P

p

c

u b

y

I

(a) definitions (b) shortcut is possible.

Fig. 11. Definitions for Lemma 5.1.

Observe that any point y of πL(c, u) can be connected to a point either of πL(u, b)

or of πL(b, c) by a segment that does not intersect those polygonal paths in its interior.
Indeed, if this is not so, then there exists a point y ∈ πL(c, u), such that any ray emanating
from y directed into Iγ hits πL(c, u); see Fig. 11(b). In particular, in any triangulation
of Iγ , the triangle T that contains y must have all its vertices on πL(c, u), implying that
it is possible to shortcut πL(c, u), using the edge of T that does not belong to πL(c, u).
However, this contradicts the minimality (in the link distance) of πL(c, u).

This implies that there is a point x ∈ πL(c, u) that “sees” both πL(b, c) and πL(b, u);
namely, there are two points v, w on πL(b, c) and πL(b, u), respectively, so that the
segments xv and xw do not intersect γ in their interior. We have the following inequalities
(all follow from the triangle inequality for link distance):

• dL(c, x) − 1 ≤ dL(c, v) ≤ dL(c, x) + 1.
• dL(c, x) ≤ L = dL(c, u) ≤ dL(c, x) + 1.
• dL(b, w) − 2 ≤ dL(b, v) ≤ dL(b, w) + 2.
• dL(c, v) + dL(b, v) − 1 ≤ dL(b, c).

These inequalities imply that dL(c, x) − 1 + dL(b, w) − 2 − 1 ≤ dL(b, c). Hence,

dL(c, u) − 1 − 4 + dL(b, u) − 2 ≤ dL(b, c) ≤ dL(a, b) ≤ dL(a, u) + dL(b, u),

using the fact that dL(a, b) is the diameter of P . We conclude thatL−7 = dL(c, u)−7 ≤
dL(a, u), and, by symmetry, that L − 7 ≤ dL(b, u).

Lemma 5.2. Let p ∈ ∂P(c, a) and q ∈ ∂P(b, c). Then dL(p, b) ≥ L − 8 and
dL(q, a) ≥ L − 8.

Proof. We prove that dL(p, b) ≥ L−8; the second inequality is shown symmetrically.
We may assume that u is chosen to be the last point along πL(a, b) (i.e., the closest to b
along the path) among all choices of u that realize the link breadth.

We claim that the path πL(p, b) must intersect the visibility polygon, Vu . This will
suffice to prove the lemma, since it implies that dL(b, u) ≤ dL(p, b) + 1 (since, once
the path πL(b, p) enters Vu , one additional link suffices to reach u), which implies that
dL(p, b) ≥ L − 8 (since Lemma 5.1 says that L − 7 ≤ dL(b, u)).

OF28 A. Efrat, L. J. Guibas, S. Har-Peled, J. S. B. Mitchell, and T. M. Murali

If, to the contrary, πL(p, b) does not intersect Vu , then the points b and p must lie in
the same pocket of Vu , separated from u by a window, rr′. Since a and b are in different
pockets of Vu , it follows that c lies in the same pocket as p and b. Both paths πL(b, u)

and πL(c, u) must cross the window rr′. This implies that there is a path of link length
dL(c, u) that joins c to a point, u′ ∈ rr′, of πL(b, u) that is closer to b than u, contradicting
our choice of u.

Lemma 5.3. The number of guards needed to sweep a polygon P is at least
max(L − 7, 2).

Proof. If there is a sweeping strategy of P by a chain of k segments (k + 1 guards),
then it is easy to verify that during the sweep one of the following three events must
happen:

• One of the guards is located at the point b and other one is located on ∂P(c, a).
• One of the guards is located at the point a, and the other one is located on ∂P(b, c).
• One of the guards is located at c, and the other one is located on ∂P(a, b).

However, by Lemma 5.2, we know that in the first two cases k ≥ L − 8. In the third
case the chain of guards must cross πL(a, b), which implies that k ≥ L.

Lemma 5.4. Let σ = (p1, . . . , pm) ⊆ ∂P be a connected subset of ∂P that has no
shortcut within P; i.e., pi pi+2 �⊂ P . Assume that for any point q ∈ ∂P , we have
dL(σ, q) ≤ k. Then the polygon P can be swept using a chain of k + 3 guards.

Proof. Let σ̂ = ∂P\σ , and let qi ∈ σ̂ denote a point of σ̂ that is closest to pi (in
link distance). Arguing as in the proof of Lemma 5.1, it follows that since σ cannot be
shortcut, any point on σ sees a point of σ̂ ; thus, pi qi ⊂ P . (However, note that pi qi

might cross pj qj .)
Let Qi be the region bounded by ∂P(qi , qi+1)‖qi+1 pi+1‖pi+1 pi‖pi qi , for i = 1, . . . ,

m−1. (Note that the closed curve defining Qi may have a self-crossing at the intersection
of pi qi and pi+1qi+1.) For any point p ∈ ∂Qi , there exists a path that has at most
k + 2 segments connecting p with pi and that lies inside Qi . Indeed, let π = πL(p, σ)

be a minimum-link path connecting p with σ . The path π has at most k segments
and must intersect (the intersection might be the endpoint of π) one of the segments
pi qi , pi pi+1, pi+1qi+1, and thus it can be modified into a path π ′ that connects p with
pi that has at most k + 2 segments.

This implies that we can sweep Qi in the following canonical way: (i) in the beginning
the guards stand along the segment pi qi , and connect those two endpoints, (ii) at the end
of the first stage of the sweep, the guards stand along the segments pi pi+1‖pi+1qi+1, and
(iii) in the second stage of the sweep, all of the guards standing along pi pi+1 are moved
to stand at pi+1. This sweeping requires at most k + 3 guards. Thus, we can sweep P by
sweeping Q1, Q2, . . . , in succession, using the above strategy. Overall, this combined
strategy sweeps P using k + 3 guards, so that the guard who is always located on σ

moves monotonically along σ .

New Similarity Measures between Polylines OF29

Theorem 5.5. max(L − 7, 2) ≤ r∗ ≤ L + 5.

Proof. Let P1, P2 be the two polygons formed by splitting P along DP = πL(a, b). By
Lemma 5.4, P1, P2 can be swept with L+3 guards, so that one of the guards lies on DP ,
and its movement is monotone from a towards b. Moreover, the sweeping of P1 and P2

is decomposed into steps where in the intermediate step only three guards are necessary
(namely, two guards placed on an edge of the diameter, and the other guard placed on an
edge of the polygon). Thus, by sweeping the regions of P1, P2 in an interleaving manner,
we have that the number of guards necessary to sweep P is at most L + 5. The lower
bound follows from Lemma 5.3.

Theorem 5.6. Given a polygon P , one can compute in O(n log n) time a number k,
so that the number of guards needed to sweep P is between max(k − 11, 2) and k + 5.

Proof. Compute the link-diameter, DP , of P in O(n log n) time [28], [29], [43]. Pick a
vertex v of P , and compute the window partition, Wv , and the window tree, Tv , in O(n)

time. We now mark, in linear time, all of the nodes V of Tv that correspond to regions
of Wv that intersect DP . Let µ be the vertex of Tv so that the minimum distance (in Tv)
to any vertex of V is maximized, and let d be this minimum distance between µ and a
vertex of Tv .

It is straightforward to verify that d ≤ L ≤ d + 4. Set k = d + 4. We know by
Theorem 5.5, that P can be swept using k + 5 guards and that at least max(k − 11, 2)

guards are needed.

6. Conclusion

In the time since this paper was submitted, Bespamyatnikh [6] has obtained an improve-
ment to one of our results: he gives a simplified algorithm for computing geodesic width
that runs in time O(n2), using O(n) space, improving our time bound by a factor of
O(log2 n) and our space bound by a factor of O(n).

Finally, we mention two interesting open directions for future research. First, can we
find an appropriate extension of our polygon sweeping results to polygonal domains that
have holes? Second, what results can be obtained for the natural generalizations of our
problems to three dimensions?

Acknowledgments

The authors thank Pankaj Agarwal, Helmut Alt, Danny Halperin, David Lin, and Micha
Sharir for helpful discussions concerning the problems studied in this paper. We also
thank the referees for many helpful suggestions that improved the paper.

Appendix

We give details of the other two approximation methods ((2) and (3)) that were stated at
the beginning of Section 5.

OF30 A. Efrat, L. J. Guibas, S. Har-Peled, J. S. B. Mitchell, and T. M. Murali

A.1. A Simple Additive Approximation Method

We describe a method that computes in time O(n2) an integer r such that P can be swept
using r guards and r − 2 ≤ r∗. We can also compute in O(n2r) time a search schedule
of O(n2r) commands that sweeps P using a chain of at most r + 4 guards.

Let e1, e2, . . . , en be the edges of P . Define an n × n matrix M, where Mij is an
upper bound on the link distance between any point of ei and any point of ej ; namely,
Mij = dL(ei , ej) + 2, where dL(ei , ej) = minp∈ei ,q∈ej dL(p, q). The matrix M can be
computed in O(n2), by computing the link distance from ei to all other edges in O(n)

time [44].
As is easily shown, M forms an approximation to the link diagram, LP , since, if p

is a point on an edge ei ⊆ ∂ P , and q is a point on an edge ej ⊆ ∂ P , then dL(p, q) is
between Mij − 2 and Mij.

Lemma A.1. Let π and π ′ be two minimum-link paths, each connecting a point on
edge f to a point on edge f ′. Let r = dL(f, f ′). Then there exists a sweeping strategy,
morphing π into π ′, using at most r +3 guards. Moreover, in time O(r) we can compute
a schedule that uses at most r + 7 guards, while issuing O(r) commands.

Proof. Since the link distance between any point of f and any point of f ′ is at most
r + 2, there is a morphing strategy between π and π ′ using at most r + 3 guards.
Unfortunately, computing this strategy requires the link diagram of P , which is too
expensive to compute within the claimed time bound.

Alternatively, we now sketch an algorithm to compute a strategy that uses at most
r + 7 guards (four “spare” guards). Let γ be the closed connected curve comprised of
π, π ′ and the relevant portions of f and f ′, so that π, π ′ ⊆ γ (note that γ may have
self-intersections). Let Iγ denote the interior of the bounded region delimited by γ , and
let I1, . . . , Ik be the connected components of the interior of Iγ .

We compute a morphing between πi = π ∩ ∂Ii and π ′
i = π ′ ∩ ∂Ii , with the motion

restricted to lie inside Ii , for i = 1, . . . , k. Since π and π ′ are both minimum-link paths,
we know that the number of links in πi and π ′

i is the same, up to at most an additive error
of 2; otherwise, replacing one of the subpaths (πi or π ′

i) with the other would result in a
net decrease in link length of π or π ′. This property also implies that we can compute all
of these regions in total time O(r), since we can simply check the j th segment of π for
intersection with O(1) segments of π ′ (namely, segments j − 2, j − 1, j, j + 1, j + 2).

We do the morphing region by region, starting with I1. Let π = (u1, . . . , uk) and
π ′ = (u′

1, . . . , u′
k ′) be the vertex sequences defining the paths. We know that k, k ′ ≤ r+1.

Note that the endpoints of πi lie either at the points (u1 and uk) on edges f and f ′, or
at crossing points, where a link of π crosses a link of π ′. (We assume, for simplicity of
discussion, there are no degeneracies, where links intersect at a vertex.)

Assume that we want to transform π into π ′. Consider a general step of the morphing,
in which we want to morph the subpath πi to the path π ′

i , with a chain of K = 4 + |πi |
guards, where |πi | denotes the number of vertices of π that lie along πi . Initially there
is a guard at each vertex of πi (including its endpoints, which may be crossing points of
π and π ′); the spare guards are placed at the first endpoint of πi .

New Similarity Measures between Polylines OF31

We triangulate Ii using only diagonals that join a vertex of πi to a vertex of π ′
i . We

know that this can be done, since the minimum-link property implies that (1) there can
be no diagonal between two vertices of πi or two vertices of π ′

i , and (2) any endpoint of
πi that is a crossing point is an “ear tip,” with an associated diagonal between a vertex
of πi and a vertex of π ′

i clipping it off. (In the special case in which πi consists of a
single edge, the diagonal that cuts off one crossing point is incident on the other, and Ii

is a quadrilateral; this can be handled separately.) Thus, we obtain a triangulation of Ii

whose dual graph is Hamiltonian.
Our morphing strategy considers each triangle, τ , in turn along the dual path in the

triangulation. We perform the morphing triangle by triangle, “shifting” the chain of
guards across each triangle in succession. Suppose that we have completed the morph up
to diagonal uj u′

l , so that the partially morphed chain has one guard at each vertex of π ′
i

up to and including u′
l , and the remaining guards lie along πi , from uj onwards, with all

spare guards at uj . We can assume that if the first vertex of π ′
i (and πi) is a crossing point,

then the guard that was previously situated there has been advanced along the chain and
is now among the spares. Let τ be the next triangle. In particular, if τ = uj uj+1u′

l shares
an edge (uj uj+1) with πi and a vertex (u′

l) with π ′
i , then we send all of the guards at uj

to vertex uj+1; we know that they stay visible to u′
l and uj+1. If τ = uj u′

lu
′
l+1 shares an

edge (u′
lu

′
l+1) with π ′

i and a vertex (uj) with πi , then we send one of the (spare) guards
from uj to u′

l+1 (while he maintains visibility with the guards at uj and u′
l).

The fact that this strategy works, without running out of spare guards, follows again
from the minimum-link property: there are at most K vertices along any chain formed
by the path along π ′

i to a vertex u′
l , then the diagonal u′

lu j , then the remaining path, along
πi , from the vertex uj to the end of πi . This is easily verified, again, by an exchange
argument.

Overall, the morphing strategy uses a number of commands proportional to the number
of triangles, which is clearly O(r).

We construct a graph G on the grid 2n × 2n, so that two nodes are adjacent in G
if and only if they are vertically or horizontally adjacent in the grid. We also connect
the vertices on the boundary of G to the corresponding vertices on the other side of
G (i.e., we “glue” together the top side of G to the bottom side of G, and the left
side of G to the right side of G). For a vertex (i, j) ∈ V (G), we assign it weight
w(i, j) = M1+((i−1) mod n),1+((j−1) mod n). It is easy to verify that a sweeping strategy for
P can be interpreted as a path σ in G connecting (1, 1) to (1, n), so that the maximum
weight vertex along σ has weight at most two greater than the number of guards needed
to sweep P .

On the other hand, a path σ in G connecting (1, 1) to (1, n), such that the maximum
weight along σ is w, can be interpreted as a sweeping strategy that requires at most w

guards, by Lemma A.1. Such a minimum-weight path σ in G can be computed in O(n2)

time using Dijkstra’s algorithm. We conclude:

Theorem A.2. Given a simple polygon P , one can compute in O(n2) time a number
r , so that P can be swept with r guards and r − 2 ≤ r∗. Moreover, one can compute in
O(n2r log r) time a sweeping strategy for P using at most r + 4 guards, with O(n2r)

commands issued to the guards.

OF32 A. Efrat, L. J. Guibas, S. Har-Peled, J. S. B. Mitchell, and T. M. Murali

Proof. The algorithm for computing r is described above. For the computation of
the motion strategy, we first compute the minimum-weight path σ in G that connects
(1, 1) with (1, n). Next, each edge e of σ connects two configurations π = (ei , ej) and
π ′ = (ei , ek).

It is now an easy matter to compute a morphing between these two configurations
by computing a middle configuration πmid having one guard located on a vertex ej ∩ ek

of P . Next, using the algorithm of Lemma 5.4, one can compute a morphing strategy
between π and πmid, and a morphing strategy between πmid and π ′.

A.2. Link Radius + 2 Number of Guards Suffice

We now prove that any polygon P is (RP + 2)-searchable by describing an algorithm
that constructs a search schedule for P by using at most RP + 2 guards. We assume
without loss of generality that all of the guards are initially placed at some point p ∈ ∂P .
We set r , the number of guards in G, to be one more than the height of Tp. Let v be a
node in Tp and let w be the window associated with v. Each child of v is associated with
a window that is a chord of Vw. We assume that the left-to-right order of v’s children
corresponds to the clockwise order of the chords of Vw starting at w. The motion strategy
that our algorithm constructs corresponds to a modified pre-order traversal of Tp where
we visit a node v before we visit each of v’s children. The following recursive procedure
describes our algorithm (initially, we invoke this procedure with the root of Tp and the
set G of all guards):

VISIT(v,G ′): v is a node in TP and G ′ = {Gd+1, Gd+2, . . . , Gr }, where d is the height
of v in Tp. Let w = ab be the window associated with v. Suppose v has m children, i.e.,
Vw has m chord edges. Let wi = ai bi be the window associated with vi , the i th child of
v. We set b0 = a and am+1 = b. For each 1 ≤ i ≤ m + 1, we perform the following
steps:

1. We move guard Gd+2 from bi−1 to ai and also move guard Gd+1 simultaneously
on w so that Gd+1 always sees Gd+2. See Fig. 12.

2. We station Gd+1 on w such that it can see ai and bi and invoke the procedure
VISIT(vi ,G ′\Gd+1).

This completes the description of the algorithm. It is clear that each configuration
assumed by the guards is legal. It is easy to construct a motion strategy (γ,G) from the
algorithm. We now turn our attention to proving that the motion strategy is indeed a
search schedule for P and on bounding the number of guards in G.

Lemma A.3. Suppose v is a node in Tp and w is the window associated with v. The
polygon P[w; p] is clear after the algorithm completes visiting v.

Proof. Let d be the height of v and let G ′ = {Gd+1, Gd+2, . . . , Gr }. Let v′ be the
parent of v in Tp and let w′ be the window associated with v′. During the invocation
of VISIT(v′,G ′ ∪ {Gd}), we visit the children of v′ in clockwise order around Vw′ . As a

New Similarity Measures between Polylines OF33

b
0

p

a
4

b
2

b
1

a
2

b
3

a
1

a
3

b
0

p

a
4

b
2

b
1

a
2

b
3

a
1

a
3

b
0

p

a
4

b
2

b
1

a
2

b
3

a
3

a
1

b
0

p

b
3

a
3

a
4

b
2

b
1 a

1
a

2

(a) (b) (c) (d)

b
0

p

b
3

a
3

a
4a

2

b
2

b
1 a

1

b
0

p

b
3

a
3

a
4a

2

b
2

b
1 a

1

b
0

p

b
3

b
1

a
3

a
4a

2

b
2

a
1

b
0

p

b
3

b
1 a

1

a
3

a
4a

2

b
2

(e) (f) (g) (h)

Fig. 12. Different stages of the algorithm.

result, after VISIT(v,G ′) is completed, the configuration of the guards Gd and Gd+1 does
not cross the window w. Since each configuration the guards assume in the algorithm
is legal, after VISIT(v,G ′) is completed, P[w; p] always lies to the same side of the
configuration of the guards. This proves the lemma.

The above lemma has the following corollary:

Corollary A.4. The motion strategy (γ,G) computed by the above algorithm is a search
schedule for P .

It is clear that the maximum number of guards used by the algorithm is one more than
the height of Tp. Since the height of Tp is equal to the maximum link distance from p of
any point in P , we use at most DP + 1 guards. However, we can improve the number
of guards as follows: We compute the link center C of P . If C intersects ∂P , we pick p
to be a point in this intersection, thus using RP + 1 guards. Otherwise, we pick p to be
any point in ∂P that is seen by a point p′ in C . In this case the height of Tp is one more
than the height of Tp′ , which implies that we use RP + 2 guards. We have now proved
the main result of this section:

Theorem A.5. For any polygon P with n vertices, we can compute in O(n RP) time a
search schedule for RP + 2 guards that sweep P .

Remarks. Throughout the motion, guard G1 is stationed at p. At any stage of the
algorithm, the configuration of the guards inG is a canonical minimum-link path between
the positions of the first and last guards.

OF34 A. Efrat, L. J. Guibas, S. Har-Peled, J. S. B. Mitchell, and T. M. Murali

References

1. P. K. Agarwal, N. Alon, B. Aronov, and S. Suri. Can visibility graphs be represented compactly? Discrete
Comput. Geom., 12:347–365, 1994.

2. H. Alt and M. Godau. Computing the Fréchet distance between two polygonal curves. Internat. J. Comput.
Geom. Appl., 5:75–91, 1995.

3. H. Alt and L. Guibas. Discrete geometric shapes: matching, interpolation, and approximation, a survey. In
J. Urrutia and J.–R. Sack, editors, Handbook of Computational Geometry, pp. 121–153. North-Holland,
Amsterdam. 1999.

4. E. M. Arkin, J. S. B. Mitchell, and S. Suri. Logarithmic-time link path queries in a simple polygon.
Internat. J. Comput. Geom. Appl., 5(4):369–395, 1995.

5. B. Aronov, R. Seidel, and D. Souvaine. On compatible triangulations of simple polygons. Comput. Geom.
Theory Appl., 3(1):27–35, 1993.

6. S. Bespamyatnikh. An optimal morphing between polylines. Internat. J. Comput. Geom. Appl., 12(3):217–
228, 2002.

7. B. Chazelle. Triangulating a simple polygon in linear time. Discrete Comput. Geom., 6(5):485–524, 1991.
8. B. Chazelle, H. Edelsbrunner, M. Grigni, L. J. Guibas, J. Hershberger, M. Sharir, and J. Snoeyink. Ray

shooting in polygons using geodesic triangulations. Algorithmica, 12:54–68, 1994.
9. D. Cohen-Or, A. Solomovic, and D. Levin. Three-dimensional distance field metamorphosis. ACM Trans.

Graphics, 17(2):116–141, 1998.
10. D. Crass, I. Suzuki, and M. Yamashita. Searching for a mobile intruder in a corridor—the open edge

variant of the polygon search problem. Internat. J. Comput. Geom. Appl., 5:397–412, 1995.
11. H. N. Djidjev, A. Lingas, and J. Sack. An O(n log n) algorithm for computing the link center of a simple

polygon. Discrete Comput. Geom., 8(2):131–152, 1992.
12. A. Efrat, L. J. Guibas, S. Har-Peled, D. C. Lin, J. S. B. Mitchell, and T. M. Murali. Sweeping simple

polygons with a chain of guards. In Proc. 11th ACM–SIAM Sympos. Discrete Algorithms, pp. 927–936,
2000.

13. A. Efrat, L. J. Guibas, S. Har-Peled, and T. M. Murali. Morphing between curves. In Proc. 12th ACM–SIAM
Sympos. Discrete Algorithms, pp. 680–689, 2001.

14. M. S. Etzion and A. Rappoport. Shape blending using the star-skeleton representation. IEEE Comput.
Graph. Appl., 15(2):44–50, 1995.

15. M. Fréchet. Sur quelques points du calcul fonctionnel. Rend. Circ. Mat. Palermo, 22:1–74, 1906.
16. A. Gregory, A. State, M. Lin, D. Manocha, and M. Livingston. Interactive surface decomposition for

polyhedral morphing. Visual Comput., 15:453–470, 1999.
17. L. J. Guibas and J. Hershberger. Morphing simple polygons. In Proc. 10th Annu. ACM Sympos. Comput.

Geom., pp. 267–276, 1994.
18. L. J. Guibas, J. Hershberger, D. Leven, M. Sharir, and R. E. Tarjan. Linear-time algorithms for visibility

and shortest path problems inside triangulated simple polygons. Algorithmica, 2:209–233, 1987.
19. L. J. Guibas, J.-C. Latombe, S. M. LaValle, D. Lin, and R. Motwani. Visibility-based pursuit-evasion in

a polygonal environment. In Proc. Workshop Algorithms Data Structures, pp. 17–30, 1997.
20. H. Gupta and R. Wenger. Constructing piecewise linear homeomorphisms of simple polygons. J. Algo-

rithms, 22:142–157, 1997.
21. T. He, S. Wang, and A. Kaufman. Wavelet-based volume morphing. In R. D. Bergeron and A. E. Kaufman,

editors, Proc. IEEE Visualization, pp. 85–92. IEEE Computer Society Press, Los Alamitos, CA, 1994.
22. P. J. Heffernan. An optimal algorithm for the two-guard problem. Internat. J. Comput. Geom. Appl.,

6:15–44, 1996.
23. J. Hershberger and S. Suri. Morphing binary trees. In Proc. 6th ACM–SIAM Sympos. Discrete Algorithms,

pp. 396–404, 1995.
24. J. F. Hughes. Scheduled Fourier volume morphing. In Comput. Graph. (SIGGRAPH ’92), 26:43–46, 1992.
25. D. P. Huttenlocher, G. A. Klanderman, and W. J. Rucklidge. Comparing images using the Hausdorff

distance. IEEE Trans. Pattern Anal. Mach. Intell., 15:850–863, 1993.
26. C. Icking and R. Klein. The two guards problem. Internat. J. Comput. Geom. Appl., 2(3):257–285, 1992.
27. A. Kaul and J. Rossignac. Solid-interpolating deformations: construction and animation of PIPs. In Proc.

Eurographics ’91, pp. 493–505, 1991.

New Similarity Measures between Polylines OF35

28. Y. Ke. An efficient algorithm for link-distance problems. In Proc. 5th Annu. ACM Sympos. Comput. Geom.,
pp. 69–78, 1989.

29. Y. Ke. Polygon visibility algorithms for weak visibility and link distance problems. Ph.D. thesis, Dept.
Comput. Sci., Johns Hopkins Univ., Baltimore, MD, 1989.

30. J. R. Kent, W. E. Carlson, and R. E. Parent. Shape transformation for polyhedral objects. In Comput.
Graph. (SIGGRAPH ’92), 26:47–54, 1992.

31. R. Klein. Moving along a street. In Proc. Computational Geometry: Methods, Algorithms and Applications,
pp. 123–140. Volume 553 of Lecture Notes in Computer Science. Springer-Verlag, Berlin, 1991.

32. S. M. LaValle, D. Lin, L. J. Guibas, J.-C. Latombe, and R. Motwani. Finding an unpredictable target in a
workspace with obstacles. In Proc. IEEE Internat. Conf. Robot. Automat., 1997.

33. J.-H. Lee, S.-M. Park, and K.-Y. Chwa. Simple algorithms for searching a polygon with flashlights. Inform.
Process. Lett., 81:265–270, 2002.

34. N. Megiddo. Applying parallel computation algorithms in the design of serial algorithms. J. Assoc. Comput.
Mach., 30(4):852–865, 1983.

35. N. Megiddo, S. L. Hakimi, M. R. Garey, D. S. Johnson, and C. H. Papadimitriou. On the complexity of
searching a graph. J. Assoc. Comput. Mach., 35:18–44, 1988.

36. E. Papadopoulou and D. T. Lee. Efficient computation of the geodesic Voronoi diagram of points in a
simple polygon. In P. G. Spirakis, editor, Proc. Third Annu. European Sympos. (ESA’95), pp. 238–251.
Volume 979 of Lecture Notes Computer Science, Springer-Verlag, Berlin, 1995.

37. T. D. Parsons. Pursuit-evasion in a graph. In Y. Alavi and D. Lick, editors, Theory and Applications of
Graphs, pp. 426–441. Volume 642 of Lecture Notes in Mathematics. Springer-Verlag, Berlin, 1976.

38. T. Sederberg, P. Gao, G. Wang, and H. Mu. 2-D shape blending: an intrinsic solution to the vertex path
problem. In Comput. Graph. (SIGGRAPH ’93), 27:15–18, 1993.

39. T. Sederberg and E. Greenwood. A physically based approach to 2-D shape blending. In Comput. Graph.
(SIGGRAPH ’92), 26:25–34, 1992.

40. V. Surazhsky and C. Gotsman. Guaranteed intersection-free polygon morphing. Comput. Graphics,
25(1):67–75, 2001.

41. V. Surazhsky and C. Gotsman. Controllable morphing of compatible planar triangulations. ACM Trans.
Graphics, 20(4):203–231, 2001.

42. V. Surazhsky and C. Gotsman. Morphing stick figures using optimized compatible triangulations. In Proc.
Pacific Graphics, Tokyo, 2001.

43. S. Suri. Minimum link paths in polygons and related problems. Ph.D. thesis, Dept. Comput. Sci., Johns
Hopkins Univ., Baltimore, MD, 1987.

44. S. Suri. On some link distance problems in a simple polygon. IEEE Trans. Robot. Automat., 6:108–113,
1990.

45. I. Suzuki and M. Yamashita. Searching for a mobile intruder in a polygonal region. SIAM J. Comput.,
21:863–888, 1992.

46. X. Tan. Searching a simple polygon by a k-searcher. In Proc. 11th Annu. Internat. Sympos. Algorithms
Comput. (ISAAC ’00), pp. 503–514. Volume 1969 of Lecture Notes in Computer Science. Springer-Verlag,
Berlin, 2000.

47. L. H. Tseng, P. Heffernan, and D. T. Lee. Two-guard walkability of simple polygons. Internat. J. Comput.
Geom. Appl., 8(1):85–116, 1998.

48. G. Turk and J. F. O’Brien. Shape transformation using variational implicit functions. In Comput. Graph.
Annu. Conf. Ser. (SIGGRAPH ’99), pp. 335–342, 1999.

Received May 29, 2001, and in revised form March 15, 2002. Online publication October 25, 2002.

