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Abstract

Exploring coordinated relationships (e.g., four people who
all visit the same five cities), and understanding stories
revealed from them is important to support sensemaking
tasks (e.g., intelligence analysis). Biclusters can support
this because they algorithmically bundle individual relations
into coordinated sets. The computed, structural relations
within biclusters enable analysts to leverage domain knowl-
edge and intuition to determine the importance and rele-
vance of extracted relationships for making hypotheses.
However, to make biclusters usable, there are challenges
in four key aspects: algorithm comparison, algorithm de-
sign and parameter manipulation, bicluster visualization
and bicluster evaluation. These challenges raise usability
oriented questions about usable biclusters, such as which
algorithm(s) to use for bicluster discovery, how to design
human-centered biclustering algorithms, and how to visual-
ize and evaluate biclusters. In this paper, we present these
usability challenges to inform future research directions,
particularly focusing on visual analytics with biclusters.
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Figure 1: A bicluster, from a
students-to-classes relationship,
reveals three students took the
same four classes. Dark cells
indicate existing relations and
orange cells represent relations
belong to this bicluster.
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Figure 2: Chaining four biclusters
through multiple relations by
approximately matching sets of
entities across common domains.
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Introduction

Exploring meaningful coordinated relations is a common
task in data analytics. Coordinated relationships are groups
of shared relations between sets of entities from different
domains (e.g., people, location, date, etc.). For example,
intelligence analysts often investigate large unstructured
textual datasets to identify coordinated activities that might
be evidence for collusion [6]. Bioinformaticians explore co-
ordinated relations from expression and interaction datasets
to identify groups of genes and/or proteins that are com-
monly expressed or regulated conditions and species [1].
Cyber security analysts trace coordinated relations between
processes, hosts and network domains to detect distributed
coordinated attacks [14].

Coordinated relationship discovery needs significant cog-
nitive effort. This process often includes three repetitious
steps: 1) identify and extract meaningful entities, 2) check
entities to verify whether a set of entities are related to the
same entity or entities, and 3) group entities based on their
shared relations. For example, to find four people who all
visited the same five cities, analysts may have to read nu-
merous documents, identify names and cities from them,
compare many co-occurring people-city pairs among differ-
ent scenarios, and test many possible combinatorial group-
ings of the pairs, before they finally get an answer.

As algorithmically identified coordinated relations, biclusters
can ease this process. Biclusters are results of biclustering
algorithms and have been applied in bioinformatics [3, 8]
and intelligence analysis [5, 10]. A bicluster in a relation
can be viewed as a bundling of individual relationships into
a pair of sets. For instance, as is shown in Figure 1, from a
relationship capturing attendance of students in classes, we
can find a bicluster involving a set of students [S1, S2, S3]
who all attend the same set of classes [C1, C2, C3, C4].

Biclusters and Bicluster Chains

Biclustering finds both subsets of entities and subsets of
dimensions and require that for each identified subset of
entities, they identically behave within its corresponding
subset of dimensions [8]. Biclusters are computational out-
comes of biclustering algorithms that identify coordinated
relations between two entity sets. An entity set refers to a
set of unique elements from a specific domain (e.g., people)
extracted from a dataset (e.g., documents).

Relationship between two entity sets. Given two entity
sets E and F, a (binary) relationship R (E, F) between E
and F is a subset of £ x F' (the Cartesian product of E
and F). We say that E is connected to F. There are different
ways to model relationship R in different scenarios. For
example, in text analytics, R can be determined by word
co-occurrence or semantic meanings identified with natural
language processing. For instance, person X is related

to city Y, since they are mentioned in the same document
or based on semantic meanings of some sentences that
indicate person X visited city Y.

Bicluster. A bicluster (E', F') on R (E, F) is defined as a
set B/ C Fandaset F/ C Fsuchthat ' x F' C R.
That is, there is a relationship between each element of £’
with every element of F’. |E’| 4 |F’| denotes the size of a
bicluster (E', F'), where |E’| and | F”’| are the cardinality
of £/ and F".

Closed bicluster. A bicluster (E’, F’) is closed if: (i) for
every entity e € E — E’, there is some entity f € F’ such
that (e, f) ¢ R, and (ii) for every entity f € F' — F’, there is
some entity e € E’ such that (e, f) ¢ R. In this paper, our
notation of biclusters refers to closed biclusters.

Bicluster Types and Structures. Based on values of cells
in a data matrix, there are four major types of biclusters [8],
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Figure 3: (A) a bicluster with
constant values. (B) a bicluster
with constant values on rows. (C) a
bicluster with row level of coherent
values. (D) a bicluster with
coherent evolutions on rows (the
order of cells, based on values, in
each row remains the same).

Figure 4: An example of arbitrarily
positioned overlapping biclusters.

summarized as follows. Figure 3 shows examples of them.

+ Constant values.

» Row/column level of constant values.

» Row/column level of coherent values.

» Row/column level of coherent evolutions.

Biclustering algorithms attempt to find m(m > 1) biclus-
ters from a data matrix in most cases [8], and the identified
biclusters often overlaps each other with shared relation(s).
Based on overlaps among discovered biclusters (composed
by entities from two specific domains) from biclustering al-
gorithms, there are, in total, eight different bicluster struc-
tures (more details can be found in [8]). Moreover, different
biclustering algorithms may use and emphasize different
criterion for bicluster discovery, so for the same data matrix,
biclusters, generated from different algorithms, may have
different (overlapping) structures. To make our discussion
general, the notion of bicluster structure (or overlap), in this
paper, refers to arbitrarily positioned overlapping. Figure 4
presents an example of this overlapping structure.

Bicluster-chains. Since every bicluster is discovered in a
single relation, it is possible to compose separately iden-
tified biclusters across two relations by (approximately)
matching biclusters with shared domains. This produces
bicluster-chains, which can be identified from a dataset with
compositional mining methods [7]. As is shown in Figure 2,
four biclusters, indicating four different relations, can be
chained together using common interfaces (e.g., use peo-
ple to connect the purple bicluster with the orange one). By
chaining biclusters across multiple relations, relationships
from a diversity of domains can be bundled in a coherent
manner. Moreover, results of such compositions can be
read sequentially from one end to the other.

With above notations of biclusters and bicluster-chains, we
reach a common ground about these key concepts used

in this paper. Moreover, we summarize key attributes of bi-
clusters with examples in Table 1. Two of these attributes
(schema and size) determine how biclusters are algorithmi-
cally discovered, which are algorithm parameters controlled
by users. Other attributes come from algorithm outputs.
These attributes play a key role for users to control, explore
and understand biclusters from algorithms.

Usability Challenges

With algorithm parameters (e.g., size), users can do some
control on bicluster discovery. However, there are still us-
ability challenges of interacting with biclusters for sense-
making, particularly in four key aspects: 1) algorithm com-
parison, 2) algorithm design and parameter manipulation,
3) bicluster visualization, and 4) bicluster evaluation. These
challenges raise questions about usable biclusters from four
different levels: model level, parameter level, representa-
tion level and evaluation level.

Algorithm Comparison

How to enable users to reasonably select biclustering al-
gorithm(s) is the first challenge to make biclusters usable.
As mentioned before, different algorithms may use differ-
ent criterion for bicluster discovery, so different algorithms
may find different biclusters for the same dataset. Thus, it is
necessary for users to decide which algorithm(s) to use by
leveraging algorithmic results with their domain knowledge
and analysis tasks. Compared with arbitrary selections,
making comparison among different algorithms can bet-
ter help user decision making. However, how to compare
different biclustering algorithms still remains a question.
Specifically, what aspects of biclustering algorithms (e.g.,
parameters, performance, results, etc.) are usable for com-
parison? Are these driven by specific user tasks?
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Figure 5: The existing paradigm of

using biclusters for sensemaking.

Attribute Example Algorithm
Schema People - Location Input
Individual Size 2x2 Input
Biclusters Members {Alex, John} - {Boston, Seattle} Output
Individual Entity Frequency Alex: 2, John: 3, Boston: 4, Seattle: 3 Output
. . Alex - Boston: 2, Alex - Seattle: 1,
Individual Relation Frequency John - Boston: 2, John - Seattle: 2 Output
Overlaps between biclusters {Alex, John} - {Boston, Seattle}, Output
Multiple | composed by two specific domains | {Alex, Chris, Sarah} - {Boston, New York, Pittsburgh}
Biclusters | Overlaps between biclusters {Alex, John} - {Boston, Seattle} (People - Location), Output
sharing one common domain {Alex, John, Sarah} - {Apple, Google} (People - Organization)
Number People - Location: 23, People - Organization: 15 Output

Table 1: A summary of bicluster attributes that are potentially usable to support exploring coordinated relations

Algorithm Design and Parameter Manipulation

Algorithm design and enabling (novel) user interactions to
steer algorithms is another challenge of interacting with
biclusters. Currently, the procedure of using biclusters for
sensemaking includes two sequential steps: algorithmic
bicluster discovery and user investigation. Figure 5 shows
the paradigm of this process. This paradigm has been ap-
plied in recent visual analytics tools (e.g., BiSet [11], Bix-
plorer [5], Furby [9], etc.). In these tools, users interact with
visual metaphors of biclusters to explore meaningful and
useful ones from algorithmic results. However, user reason-
ing results (e.g., biclusters identified as meaningful ones)
cannot be interpreted by the selected biclustering algo-
rithm(s) and further impact the bicluster discovery process
in future. Thus, users have to passively “accept” all algo-
rithm results and then do explorations. This limits human
investigations to a function of post-clustering filters.

Semantic interaction offers a novel way for users to inter-
act with machine learning algorithms, and it uses (interpret)
algorithms to enable the injection of user reasoning into a

computational process [4]. Can this concept be applied to
inform human-centered biclustering algorithm design? Par-
ticularly, in addition to existing algorithm parameters (e.g.,
schema and size), what additional parameters can we add
to biclustering algorithms to control bicluster discovery?
For example, if users identify locations, Boston and Seattle,
as useful ones, how can we inform algorithms of this infor-
mation, and further steer them to find biclusters containing
these locations? Different from the sequential paradigm de-
picted in Figure 5, this requires iterative processes. Since
user decisions and/or intentions can be inferred by algo-
rithms, the role of user investigations becomes more active
to steer algorithms, rather than just post-clustering filters.

How to enable user to manipulate algorithm parameters is
another key question. Besides command line, there are two
ways for users to adjust algorithm parameters: user inter-
face widget (e.g., sliders, buttons, spinner, etc.), and direct
manipulation (e.g., the “near - similar” metaphor in seman-
tic interaction [4]). The latter is less precise in parameter
adjustment than the former. For example, when users drag
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Figure 6: A example of the Euler
diagram problem that arises when
visually displaying the membership
of entities in the domain of people
shared by three biclusters.

one node closer to another, they may not know the exact
distance between the two nodes. However, when they use
a spinner, they can precisely change the distance between
the two nodes. For existing biclustering algorithm param-
eters (e.g., size), user interface widgets may be a good
choice due to the precise adjustment capability. For other
parameters, possibly identified and added in future human-
centered biclustering algorithms discussed above, how can
we provide usable ways for users to interact with them?

Bicluster Visualization

How to visualize biclusters is the third key challenge to en-
able users to interact with biclusters. Algorithmically identi-
fied biclusters exist in a machine readable format. To make
them usable, we need present biclusters in a human under-
standable manner. This raises a fundamental visualization
problem, particularly when considering the overlap among
biclusters. This is similar to the Euler diagram problem but
even harder. Figure 6 shows an example of this problem.
There are three biclusters displaying different coordinated
relations between people and locations. Due to the overlap,
it is difficult to clearly present both entities (without duplica-
tion) and biclusters (without separation). This is identified
as the key design trade-off (entity-centric versus relation-
ship-centric) for bicluster visualizaitons [11]. To balance
this trade-off, BiSet [11] has been proposed. It uses list to

show both entities and biclusters in a clearly organized way.

However, due to lacking functions to aggregate (similar) bi-
clusters, BiSet may show long lists of individual biclusters
for large datasets, which overwhelms users. This leads to a
layout challenge: how to merge and/or split biclusters.

To help users understand biclusters, five levels of relation-
ships (entity-level, group-level, bicluster-level, chain-level
and schema-level) have been identified [12]. These rela-
tions construct a relationship spectrum, which allows users

to interpret biclusters from either low-level entities or high-
level schemas. Biclusters locate in the middle of the spec-
trum. How to visualize this relationship spectrum and en-
able users to traverse relations across different levels is a
challenge, worth further exploration. This offers two poten-
tial benefits. For one thing, such traverse reflects human
reasoning process and strategies to explore different rela-
tions, which may be useful to inform future algorithm design
by learning from human. For another thing, guiding users
to traverse in the relationship spectrum for bicluster explo-
ration, may simulate how biclustering algorithms work. This
helps users to understand biclusters and how biclustering
algorithms work, which are useful from an educational per-
spective (e.g., teaching biclustering algorithms).

Bicluster Evaluation

Besides visual aggregation and salient, computationally
prioritizing biclusters helps to direct user attention to use-
ful ones. This is useful especially when handling large
datasets. However, how to evaluate biclusters and prioritize
them both computationally and visually still remains a chal-
lenge. Using BiSet and maximum entropy model (MaxEnt),
a preliminary attempt has been performed in [13]. In this
exploration, biclusters are evaluated using MaxEnt, based
on entity distribution. According to the score of each eval-
uated biclusters, given by MaxEnt, BiSet visually prioritize
them with color codings. With a case study, this approach
has been reported with promising results, but it still needs
users to interpret semantic connections of statistically rele-
vant biclusters. Besides such distribution based evaluation,
can biclusters be evaluated based on semantic meanings
or meta data [2]? Moreover, how can we incorporate such
computational evaluations into a user reasoning process to
support sensemaking progressively, and how can we en-
able users interactively control these evaluations?



Conclusion

As bundled sets of individual relations, biclusters can sup-
port exploring coordinated relations. To make biclusters
usable, there are usability challenges in four key aspects:
algorithm comparison, algorithm design and parameter ma-
nipulation, bicluster visualization, and bicluster evaluation.
By discussing these challenges, we hope that it can help

to inform future research directions of visual analytics with
biclusters to support sensemaking tasks.
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