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ABSTRACT
Effective detection of and response to pandemic disease out-
breaks require significant advances in data mining. Contri-
butions to the recently held SIAM DM 2006 Workshop on
Spatial Data Mining highlighted key challenges, directions,
and progress in this context. We summarize here the main
themes presented at the workshop as well as promising re-
search directions for the data mining community.

1. INTRODUCTION
Pandemic diseases such as avian influenza cause extremely
infectious disease outbreaks. Pandemic influenza viruses
have demonstrated their ability to spread worldwide within
months or even weeks, and to cause infections in all age
groups. While the ultimate number of infections, illnesses,
and deaths is unpredictable, and could vary tremendously
depending on multiple factors, it is nonetheless certain that
without adequate planning and preparation [13], an influenza
pandemic has the potential to overwhelm current public
health and medical care capacities at all levels. Control-
ling the spread of a pandemic requires early detection via
appropriate surveillance [1], along with implementation of
appropriate responses [6] (e.g., isolation of cases, quaran-
tine of contacts, antiviral drug treatment and prophylaxis).
These needs directly motivate research in spatial data min-
ing for a time-varying network capturing collocation and
effective contact patterns [5].

The SIAM DM 2006 Workshop on Spatial Data Mining
(http://www.cs.dartmouth.edu/∼cbk/sdm06/) provided a
forum for explorations into these challenges. To focus the
discussion, a synthetic dataset of disease evolution in the city
of Portland, Oregon was provided by the Virginia Tech Net-
work Dynamics and Simulation Science Laboratory [9]. The
five regular papers accepted for presentation at the work-
shop [3; 7; 11; 12; 14] showcased a variety of data mining
studies performed on this dataset, e.g., model-based data
aggregation, mining spatial interaction patterns, predicting
infection risks, designing containment policies, and process-
driven spatial and network aggregation. Two additional
short papers [8; 15] addressed spatial data mining challenges
more generally. The goals of this report are two-fold: to
summarize the main themes resulting from the workshop
and to bring to the attention of the larger data mining com-
munity the challenging problems arising in the context of
pandemic preparedness.

Figure 1: Visualization of synthetic dataset.

2. SYNTHETIC DATA FOR
PANDEMIC PREPAREDNESS STUDIES

Effective pandemic disease modeling must necessarily take
into account multiple aspects of geography, epidemiology,
social structures, and network dynamics; however, histori-
cal datasets that provide adequate coverage over all relevant
aspects are very scarce. There is hence an established prac-
tice of using synthetic datasets and mathematical models to
understand the course of disease outbreaks and to design
effective policies. Furthermore, synthetic datasets protect
the privacy of individuals and other proprietary and sensi-
tive information. While real data are likely to be more lim-
ited than the omniscient view afforded by synthetic data,
the synthetic data can serve as an oracle in studies of ob-
servability, and in development of appropriate detection and
active sampling techniques. In particular, we can assess rela-
tionships between factors that we would like to observe and
factors that can actually be observed. Similarly, studies em-
ploying synthetic data can identify what information (type,
quantity, etc.) is required for effective response policies.

The supplied dataset tracks a set of synthetic individuals in
Portland (Fig. 1) and, for each of them, provides a small
number of demographic attributes (age, income, work sta-
tus, household structure) and daily activities representing
a normative day (including places visited and times). The
city itself is modeled as a set of aggregated activity loca-
tions, two per roadway link. A collection of interoperable
simulations—modeling urban infrastructure, people activi-
ties, route plans, traffic, and population dynamics—mimic
the time-dependent interactions of every individual in a re-
gional area. Disease dynamics are captured by a coupled
probabilistic timed transition system whereby the state of
health of a person can change depending on the health and
duration of his or her contacts in the underlying social net-
work. This form of ‘individual modeling’ is in contrast to



the traditional approach of estimating gross reproductive
numbers by uniform mixing models over the entire popula-
tion. In particular, it provides a bottom-up approach mir-
roring the contact structure of individuals and is naturally
suited for formulating and studying the effect of intervention
policies. For more details, please see the EpiSims project
(http://ndssl.vbi.vt.edu/episims.html; [4]), part of the
TRANSIMS simulation infrastructure (http://ndssl.vbi.
vt.edu/transims.html; [2]).

3. CHALLENGES
Several levels of analysis must come together to successfully
address the data mining challenges in pandemic prepared-
ness. First, from the synthetic dataset, we must develop
and model a time-varying spatial-social network capturing
collocation and effective contact patterns. Second, we must
conduct model-based data aggregation to identify the onset
of disease and other qualitative indicators of disease spread.
Third, we must identify critical individuals and critical loca-
tions, in order to support targeted vaccination and targeted
detection goals (respectively). We discuss some of the work
discussed at the workshop for these various challenges.

3.1 Modeling Spatial Data
One of the key themes brought out by the workshop is a
multi-faceted definition of what it means to be ‘spatial’, and
how to appropriately model the data under that notion of
spatiality. Modeling disease outbreaks necessitates captur-
ing not only the geographic context but also the induced
neighborhoods caused by people’s movement patterns and
visitation patterns as a function of time. There is a complex
interplay between ‘spatial’ in the geographic sense and ‘spa-
tial’ according to distances in a social network—propagation
in one context appears as discontinuous ‘jumps’ in the other.

A wealth of literature exists on how diseases propagate through
spatial and social channels, both at the epidemiological level
and at the network modeling level. At the same time, data
mining techniques can integrate multiple views of locality
and spatiality. For instance, Gaussian process (GP) meth-
ods that work with a prior on covariance structures [10] can
be fruitfully interleaved with techniques that define covari-
ances using an underlying graph model. Savell and Chung [11]
propose an approach using the related Gaussian Random
Fields (GRFs) to model stochastic diffusion of disease state
on the underlying network. This supports disease state pre-
diction for unlabeled nodes, and thereby could account for
real-world limitations in available information.

Several other generalizations of ‘spatial’ were utilized in the
presented work. The original study by Marathe and co-
workers [5] included graph models such as people-people in-
teractions (by way of collocation) and location-location in-
teractions (by way of shared visitors). Guo [7] studies the
relationship between such social localization and the under-
lying spatial localization. Tatikonda et al. [12] use these
graph models as the basis for developing containment poli-
cies, discussed further below. Chen et al. [3] adopt a similar
approach in analyzing Portland’s electrical network, which
contains a mixture of short and long distance interconnec-
tions, as well as notions of proximity to sources (the gen-
eration system) and sinks (the consumers). Zarnani and
Rahgozar [15] start with a similar neighborhood graph rep-
resentation, while Jin et al. [8] integrate metric spatial and
temporal information. Vucetic and Sun [14] further account

for location type (school, work, home, etc.) as a key at-
tribute defining the spatial context.

3.2 Identifying Meaningful Spatial Structures
At the heart of spatial data mining is the uncovering of
multi-level structures that enable new insights into the un-
derlying data (and here, strategies for responding). This is
possible because spatial data exhibit similarities and conti-
nuities at multiple levels. Multi-level approaches also allow
analyses to scale to large datasets, as used in studies such
as this one. Guo [7] seeks to detect interaction patterns in a
multi-level approach, using a combination of sampling (while
preserving overall interaction structure), clustering (bring-
ing in geographic information), and projection (focusing on
strong connections). Savell and Chung [11] uncover multi-
level representations by identifying phase transitions. Thus
temporal information (disease evolution and propagation)
provides insights into the spatial structures.

Other types of application-dependent spatial structures are
also highly illuminating. For example, consider the detec-
tion of vulnerabilities and criticalities. A person or loca-
tion might be considered highly vulnerable based on dense
connections, and might be considered highly critical based
on anticipated ‘downstream’ effects. Guo [7] suggests using
bridges between clusters in the interaction graph as crit-
ical points for early detection of pandemics. Criticalities
are also obviously useful in pandemic response strategies.
Structures that directly feed into response policies include
profiles capturing similarities in local graph structure, used
by Tatikonda et al. [12]; aggregation based on location type,
used by Vucetic and Sun [14]; and temporal synchrony in
highly-connected sites, used by Savell and Chung [11]. Zarnani
and Rahgozar [15] look for trends in spatial data, using
ant colony algorithms in postulating and evaluating paths
through spatial neighborhood graphs. In the domain of traf-
fic monitoring, Jin et al. [8] seek to identify anomalies (traffic
incidents) by learning and monitoring spatio-temporal pro-
files of traffic flow.

3.3 Developing Control Policies
Ultimately the goal of mining the synthetic dataset is to
design actionable policies for preventing and containing dis-
eases, and many papers focused on the key sensing and plan-
ning issues. Issues of controllability and observability, with
respect to specific resource constraints (cost, physical feasi-
bility, robustness, etc.), are crucial here.

The paper by Tatikonda et al. [12] investigates various con-
tainment policies for transmissible diseases, including ran-
dom, contacts-, sociability-, profile- and location-driven vac-
cination. These policies are variously based on either the
people-location activities graph or the collocation network
between people. Interestingly (and beneficially), they found
that response can be delayed for quite some time, due to de-
tection lag, with relatively small impact on total infection.
The phase transitions found by Savell and Chung [11], on
the other hand, warn that rapid order-of-magnitude shifts
happen after the initial build-up phase.

Chen et al. [3] approach control design with a top-down
strategy, using disaggregation of overall indicators down to
individual locations, and determining if the disaggregation
respects spatial proximity constraints. Although they focus
on modeling electricity demand in the synthetic dataset, it is
easy to see how this approach can be extended to disaggre-



gating other global indicators of disease outbreaks. Savell
and Chung [11] likewise propose using global information,
via their GRF model, in an active sampling strategy. As-
sessment of risk guides the active sampling, either towards
nodes useful for observation (where classification risk is high-
est) or control (where infection risk is highest). Vucetic
and Sun [14] also take a risk-based approach, using location
aggregation (type of activity) to provide input for classi-
fiers that predict infection risk. The first few generations
of disease spread provide the training data for predicting
the future course of the pandemic (and thereby appropriate
responses).

4. CONCLUSION
Data mining in support for pandemic preparedness is an
important and rich application area, with many significant
research challenges. Summarizing and adding to the issues
identified above, we identify six key areas where data mining
research must make progress:

Algorithms for fast computations of multi-level net-
work properties induced by spatial-social data; in par-
ticular, provable approximations for estimating expansion,
between-ness, and community structure, and tracking such
properties across time-indexed snapshots.

Integrating model-driven methods with spatial min-
ing, e.g., combining a model for disease spread with a method
for detecting critical individuals and locations; or using data
mining to derive a social distancing policy or to formulate
quarantine procedures.

Disaggregation on demand, i.e., determining a small set
of multi-level aggregates (among the multitude of possibili-
ties) to be stored as sufficient statistics, thus allowing other
microscopic parameters to be re-generated on demand.

Co-evolving epidemic policy, simulation, and min-
ing; unlike passive observation of data to derive targeted
sampling policies that model a static dataset, implementing
an intervention policy can fundamentally change the course
of future simulation runs, thus making data mining an inte-
gral part of the simulation-based model.

New objective functions for active data mining, that
mimic targeted detection and targeted vaccination goals in
epidemiological modeling, and, in this manner, close the
monitor-simulate-mine loop.

Support the view of simulation models as procedural
representations of large datasets; thus allowing the rich
modeling literature to be harnessed for data mining goals.

We hope these proceedings of the SIAM DM 2006 Workshop
on Spatial Data Mining serve as an impetus toward estab-
lishing a new thrust in the practical problem of pandemic
modeling and result in a consolidation of ideas as well as a
renewed bearing in spatial data mining research.
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