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ABSTRACT

Given a drug under development, what are other drugs or biochem-
ical compounds that it might interact with? Early answers to this
question, by mining the literature, are valuable for pharmaceuti-
cal companies, both monetarily and in avoiding public relations
nightmares. Inferring drug-drug interactions is also important in
designing combination therapies for complex diseases including
cancers. We study this problem as one of mining linguistic cues
for query expansion. By using (only) positive instances of drug
interactions, we show how we can extract linguistic cues which
can then be used to expand and reformulate queries to improve the
effectiveness of drug interaction search. Our approach integrates
many learning paradigms: partially supervised classification, asso-
ciation measures for collocation mining, and feature selection in
supervised learning. We demonstrate compelling results on using
positive examples from the DrugBank database to seed MEDLINE
searches for drug interactions. In particular, we show that purely
data-driven linguistic cues can be effectively mined and applied to
realize a successful domain-specific query expansion framework.

Categories and Subject Descriptors

H.3.1 [Content Analysis and Indexing]: Linguistic processing;
H.3.3 [Information Search and Retrieval]: Query expansion

General Terms

Algorithms

Keywords

Text mining, domain-specific query expansion, partially supervised
classification, collocation, SVM, syntactic parsing

1. INTRODUCTION
Given a drug under development, what are other drugs or biochem-
ical compounds that it might interact with? History abounds with
instances where this question had been investigated incompletely,
causing severe personal, monetary, and professional losses. Two
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recent examples serve to illustrate this aspect well. In Sep 2004,
drug maker Merck voluntarily recalled their anti-inflammatory drug
Vioxx because they discovered that patients taking Vioxx faced hei-
ghtened risk of heart attacks. In May 2009, it was discovered that
older men using the Flomax drug (to address their urinary tract
problems) are twice as likely to experience ‘floppy iris syndrome,’
a condition that can cause inflammation around the eye, retinal de-
tachment, and other serious side effects [2]. Thus there is great in-
terest in mining for drug interactions before product development,
clinical trials, and market releases.

Formally, a drug interaction can be defined as “the pharmaco-
logical or clinical response to the administration or co-exposure of
a drug with another substance that modifies the patient’s response
to the drug” [38]. While the intent of inferring drug interactions is
often to avoid them, sometimes it is actually desirable to encourage
such interactions. For instance, in treating complex diseases such
as cancers [35], multiple, or multi-component, drugs are usually ad-
ministered in order to enhance combinatorial selectivity [12]. Here
the different components work cooperatively to inhibit (or activate)
a protein or protein network of interest in a diseased tissue, but are
not particularly toxic for normal tissues.

Many computer-aided systems for exploring drug interactions
have been established for clinical decision making. One such sys-
tem [20] uses the CYP3A cytochrome (a key component of many
drug metabolism pathways) as the focal pont to rank potential drug
interactions. Another interesting system exploits the inherent net-
work structure of drug interactions [28]. The key issue in these
systems (and all others) is the completeness of their drug interac-
tion information and ensuring that they stay current with published
literature. On one hand, it is inconvenient for a clinician to search
the scattered literature for information about a specific drug. On the
other, database maintainers are concerned with issues of soundness,
coverage, and trustworthiness.

The aim of our work is, hence, to design a framework for au-
tomatically identifying drug interaction sentences from large on-
line corpora. Given a specific drug name such as darbepoetin alfa,
a naive search for darbepoetin alfa in public corpora often gives
a poor starting point, yielding hits such as the usage of darbepo-

etin alfa in the treatment of anaemia. By using state-of-the-art
query expansion algorithms [30, 31, 44, 45], darbepoetin alfa gets
expanded to darbepoetin alfa anemia or darbepoetin alfa cancer,
which still leads to results of usage and is unsuitable for drug inter-
action identification. Even a manually formulated query, like dar-

bepoetin alfa interaction or darbepoetin alfa use together, gives the
result such as “Recombinant human epoetin beta in the treatment
of renal anemia”1 – they still do not cover drug interactions very
well. In this paper, we turn to designing a domain-specific query

1http://www.ncbi.nlm.nih.gov/pubmed/18488073



expansion capability (similar in spirit to [13, 24, 32]) by mining
linguistic cues to combat this lack of specificity.

There are several research issues to be considered. Admittedly,
one way to expand queries is to ‘learn to expand,’ i.e., to mine lin-
gusitic cues from a training dataset and use them to expand future
queries. However to conduct such learning, negative examples are
required and these are quite rare to come by. So the first research
issue is to be able to work with only positive examples. Second, the
precise nature of linguistic cues can involve just a single term (e.g.,
darbepoetin alfa can be expanded to darbepoetin alfa coadminis-

tration or a complete collocation (e.g., darbepoetin alfa might get
expanded to darbepoetin alfa concomitant use). Mining cues and
collocations is the second research issue and association measures
have to take into account the complexity of syntactic constructs in
the published literature. Finally, in order for the mined cues and
collocations to be successfully used, they will have to be ranked so
that they prominently accompany positive examples but not neg-
ative examples. Feature selection to help separate out the cues is
hence important.

Our primary contributions are:

1. We present a domain-specific solution to drug interaction
search that fuses multiple learning paradigms: partially su-
pervised classification, association measures for collocation
mining, and feature selection in supervised learning. These
paradigms are used, respectively, to overcome lack of neg-
ative examples, to identify promising cues and associations
between them, and to rank cues so that they lead to confirm-
ing instances of drug interactions. We highlight here that our
approach works without requiring any external thesauri or
ontology. Nevertheless, we refer to it as a domain-specific
solution due to its reliance on corpora specific to the domain
and because we haven’t evaluated its utility in other domains.

2. We propose a new collocation mining approach which uti-
lizes both positive and negative datasets. Hence the cues we
mine are not just co-located but also possess good discrimi-
native properties.

3. We apply our framework on the DrugBank 2 database (which
features only positive instances of drug interactions) and show
how it can be used to seed MEDLINE 3 searches for drug
interactions. To the best of our knowledge, this is the first in-
tegrated framework for query expansion in drug interaction
search.

2. FRAMEWORK OVERVIEW
Fig. 1 gives an overview of our framework which is based on text
mining and data-driven collocation techniques. As stated earlier,
we use linguistic cues for query expansion and aim to identify new
drug interaction sentences which can then seed DrugBank evo-
lution. We begin by using existing drug interaction description
sentences in DrugBank as a positive dataset, and search MED-
LINE with only drug names as queries. We then aim to construct
a negative dataset as a subset of the search results. Since a man-
ually labeled negative dataset is expensive, we construct the nega-
tive dataset by using the partially supervised classification method,
specifically the ‘learning from positive and unlabeled examples’
paradigm (a.k.a. the LPU method)4 [22]. LPU is a classifica-
tion system based on positive and unlabeled datasets, and it learns

2http://www.drugbank.ca
3http://www.nlm.nih.gov/
4http://www.cs.uic.edu/∼liub/LPU/LPU-download.html
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Figure 1: Flowchart for our drug interaction identification sys-

tem.

the negative examples automatically. These positive and negative
datasets serve as starting points for two types of analysis, as shown
in Fig. 1. First, based on these training datasets, we design a novel
algorithm to extract cue words that serve as confirming evidences
for drug interaction relations. We use text feature selection ap-
proaches to extract single-term cues. We also extract multi-word
cues by using and assessing 13 different association measures for
collocation mining. All these cue words are used to query-expand,
to help search for new drug interactions in MEDLINE. Meanwhile,
the new search results from the expanded queries are segmented
into sentence level units and classified by a state-of-art SVM, which
is trained on the initial data sets (this is their second use, referred to
earlier). Experimental results show that our system works in an ef-
fective and efficient manner. We perform multi-faceted evaluations.
For instance, we show that the negative training dataset automati-
cally generated is comparable to a manually labeled one and any
differences do not have any influence on the accuracy of the over-
all mining process. We also compare our findings with information
about existing drug interactions in DrugBank.

3. RELATED RESEARCH
Query expansion has a rich history of background research. Tradi-
tional query expansion uses term relationships between the original
term and the expanding term. Global analysis [1, 17, 36] employs
global statistical information gathered based on co-occurrence in-
formation from the entire collection, whereas local analysis [30,
31, 44, 45] is conducted using approaches modeled after pseudo-
relevance feedback, i.e., using the top ranked relevant documents.
Some other approaches [4, 7, 14, 42] mine logs of past query us-
age to construct term relationships. Significant work has also gone
into incorporating external knowledge [3, 15, 23, 25]. A review of
ontology-based query expansion is given in [3]. Works such as [19,
25, 41] use collocation techniques from NLP which are also based
on term-term co-occurrence information. In many of these works,
frequency of co-occurrence is often used as a surrogate for rele-
vance and this leads to both false positives and false negatives [33].
This is especially true in drug interaction search. A detailed com-
parison with our approach and other query expansion methods is
shown in Table 1. As is clear we aim for an automated, agnostic
method that exploits local linguistic cues. The training imparted



Table 1: Comparison of our approach with other query expansion methods.

Use local analysis No user interaction No external knowledge Use linguistic property Domain-specific

[30, 31, 44, 45] X

[4, 7, 14, 42] X X

[19, 41] X X X

[24] X X X

[13, 32] X X X X

Our method X X X X X

to our system from drug interaction sentences endows it with the
domain-specific query expansion facility. Other domain-specific
approaches such as [13, 24, 32] are either focused on different ap-
plication needs and/or they do not exploit collocations as heavily as
done here.

4. MINING LINGUISTIC CUES
The most important part of our system involves the extraction of
linguistic cues which is covered in detail here.

4.1 Single-term cue word extraction
We employ three criteria functions to rank all the tokens/terms ap-
pearing in the whole dataset. We classify sentences into two cat-
egories: positive and negative, according to whether they contain
any drug interaction information. We consider the top 50 tokens
ranked by each method as our single-term cues.

Mutual information (MI): The mutual information between term
ti and category c is given by:

MI (ti, c) =
X

ti∈{0,1}

X

c∈{+,−}
P (ti, c) log

P (ti, c)

P (ti)P (c)

Fisher kernel: We use the variant of the Fisher kernel as defined
in [5], where the F-score for the i-th term is defined as:
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Here, n+ and n− are the number of positive and negative sen-
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ture value in the j-th sentence in the positive and negative datasets,

respectively. xi, x
(+)
i , x

(−)
i are the average values of the i-th term’s

weight computed across the whole dataset, the positive dataset, and
the negative dataset, respectively. The term weighting scheme thus
influences the Fisher kernel; in our experiments, we use a simple
binary weighting scheme so that the weight for a term is 1 if it
appears in the sentence, 0 otherwise.

Relative frequency: The relative frequency rf for the i-th term
was proposed in [21] as a ranking function:

rfi = log(2 +
ai

ci

)

where ai is the number of positive sentences in which this term
appears, and ci is the number of negative sentences it appears in.

4.2 Bigram cue word generation
Multi-word cues, such as bigrams, require more sophisticated means
than presented above. We extend collocation mining approaches
from NLP to extract bigram cue words, ensuring properties of both
coexistence and discriminativeness. Coexistence requires that the

two terms in a bigram cue co-occur with each other a lot, while dis-
criminativeness means these two terms in the bigram can be used
to identify the target sentences.

4.2.1 Collocation

Collocation, as a linguistic concept, was introduced by J. R.
Firth [11]. There are multiple definitions for what a collocation is,
drawing upon different perspectives and the needs of specific ap-
plications. Smadja views collocations as lexical clusters that are
domain-specific, context-recurrent, and cohesive [40]. Manning
and Schutze [26] mention three attributes of typical collocations:
non-compositionality, non-substitutability, and non-modifiability.
Wermter and Hahn [43] provide a useful grouping of collocations
into three classes:

• Idiomatic Phrases. In this class, the meaning of the collo-
cation cannot be determined by the literal definition of the
phrase components themselves, but refers to a metaphorical
or figurative one. For example, the figurative meaning of
“Wall Street” is the American financial market, and is un-
connected to either ‘Wall’ or ‘Street.’

• Support Verb Constructions/Narrow Collocations. In this
class, at least one component contributes to the overall mean-
ing of the collocation expression. For example, “Sunday
driver” means one who drives slowly.

• Fixed Phrases. This class denotes expressions whose compo-
nents are all involved in the contribution of the overall mean-
ing (e.g., the collocation “Christmas Eve”).

A collocation useful for drug interaction search is “concomitant

administration”, where the occurrence of the collocation with a
drug name is likely evidence of a drug interaction sentence.

The typical way to study collocations within a text dataset is
to measure the co-occurrence frequency using statistical associa-
tion measures [9] and use this information to identify three cat-
egories: surface co-occurrence, textual co-occurrence, and syn-

tactic co-occurrence. Surface co-occurrence involves two words
that appear within a certain distance, textual co-occurrence requires
that the two words appear within the same textual unit, and syn-
tactic co-occurrence requires the existence of syntactic relations
between the terms. In our study, we use the restrictive notion of
syntactic co-occurrence since it avoids setting a arbitrary distance
for surface co-occurrence, and also avoids indirect and accidental
co-occurrences. Further, compared to superficial co-occurrences,
terms that are physically close to each other could be linguisti-
cally far apart, and hence should not be considered together as
co-occurrence, whereas terms that are linguistically close could be
physically remote. In the sentence ‘Simultaneous co-administration
of cyclosporine significantly increases blood levels of sirolimus’,
the word“co-administration” is not close to the word “increases”,



but serves as a nominal subject, and this combination is quite fre-
quent in drug interaction sentences (see below).

“Simultaneous co-administration of cyclosporine significantly increases blood levels

nsubj
of sirolimus”.

4.2.2 Constructing co-occurrence databases from de-
pendency parses

To obtain syntactically bound co-occurrence information, we uti-
lize dependency parsing, specifically using the Stanford typed de-
pendency parser 5 [27]. We use collapsed typed dependencies (a.k.a.
grammatical relations) to represent specific co-occurrence patterns,
such as adjective + noun, adverb + verb, etc. However, we do
not retain all possible collapsed typed dependencies, but only those
with grammatical relations like obj, dobj, iobj, pobj, subj, nsubj,
nsubjpass, csubj, csubjpass, amod, advmod, and nn 6. A typical
dependency parse of a sample sentence from our positive dataset is
shown in Fig. 2.

Figure 2: Dependency parse from the positive sentence “Si-

multaneous co-administration of cyclosporine significantly in-

creases blood levels of sirolimus”.

We treat grammatical relations as 2-tuple co-occurrence pairs,
and store them into a co-occurrence database as candidates for bi-
gram cues. We build 2-tuple co-occurrence records for both posi-
tive and negative datasets. As an example, 2-tuples from a sample
sentence are shown in Table 2. Moreover, all the words are stored
in lemmatized format, since words in the sentences could be in in-
flected forms. Lemmatization is used (e.g., synchronized is lemma-
tized to synchronize) to conflate these forms to a single bigram.

Table 2: The 2-tuple co-occurrence database with a positive

sample sentence. “+” means the sentence comes from the posi-

tive dataset.

Sent ID Term 1 Term 2 Dataset

1 co-administration Simultaneous +

1 increase co-administration +

1 co-administration cyclosporine +

1 increase significantly +

1 level blood +

1 increase level +

1 level sirolimus +

.

.

.
.
.
.

.

.

.
.
.
.

5http://nlp.stanford.edu/software, V1.6
6http://nlp.stanford.edu/software/dependencies_manual.pdf

4.2.3 Extended collocation model

By parsing all sentences from the training datasets, we create
a syntactic co-occurrence database consisting of 2-tuples as can-
didates. We propose an extended collocation model to extract bi-
gram cues from the co-occurrence databases. As we mentioned
earlier, words in a bigram cue must have both co-existence and
discriminativeness properties. Since traditional collocation mining
approaches only guarantee the two terms co-exist with each other,
we extend these approaches to make cues useful for identifying
specific drug interaction relations.

We look beyond simple co-occurrence frequency and evaluate
various association measures that scale it w.r.t. marginal frequen-
cies. In overall, we investigate 13 association measures: the base-
line co-occurrence frequency from the positive dataset and the 12
association measures from Table 5.

The measures from Table 5 can be understood in the context
of contingency tables [9]. Table 3 depicts the traditional contin-
gency table capturing overlaps in occurrences of two terms across
sentences. To account for both positive and negative instances of
drug interaction sentences, we create two virtual words: “pos” and
“neg”, and we make the assumption that any 2-tuple in the pos-
itive co-occurrence database automatically collocates with “pos”,
and that any 2-tuple in the negative database virtually collocates
with the term “neg”. Thus we ‘lift’ the traditional bigram contin-
gency table into a trigram table as in Table 4. The entries of this
table—i.e., observed and expected frequencies—directly feed into
the definitions of the association measures (see Table 5).

Table 3: Traditional contingency table for measuring colloca-

tion between w1 and w2.

w2 ¬w2 TOTAL

w1 O11 O12 R1

¬w1 O21 O22 R2

TOTAL C1 C2 N

Table 4: Extended contingency table with virtual words "pos"

and "neg". For Oijk , i, j, k means w1, w2 and virtual words,

respectively.

“pos” “neg” TOTAL

w1 w2 O111 O112 R11

w1¬w2 O121 O122 R12

¬w1 w2 O211 O212 R21

¬w1¬w2 O221 O222 R22

TOTAL C+ C− N

4.3 N-gram cues (n≥ 3)
A trigram or other higher order n-gram consists of n words. Al-
though these words are not required to be sequential or next to each
other, we require that any two of them are connected by a valid
grammatical relation. The process of finding trigrams and other
high order n-grams is similar to the one described earlier for bi-
grams. We first construct n-tuple co-occurrence databases, record-
ing the n-gram candidates and their frequencies in both positive
and negative datasets. We then import the same concept of virtual
words “pos” and “neg” and change the n-gram cue mining problem
to an (n+1)-gram collocation mining problem. We use association



Table 5: Modified association measures for mining bigram cues

from the extended trigram contingency table (by adding the

virtual words as the third term)

No. Association Measures

1) χ2
Y ates=

P

ijk

(|Oijk−Eijk|−0.5)2

Eijk

2) t-score=
O111−E111√

O111

3) log-likelihood=2
P

ijk Oijk·log
Oijk
Eijk

4) poisson-stirling=O111·(log
O111
E111

−1)

5) average-MI=
P

ijk Oijk·log2

Oijk
Eijk

6) pointwise-MI=log2
O111
E111

7) local-MI=O111·log2
O111
E111

8) MI2=log2
O2

111
E111

9) MI3=log2
O3

111
E111

10) dice=
3O111

(R11+R12)+(R11+R21)+C+

11) jaccard=
O111

N−O222

12) odds-ratio=log
(O111+0.5)(O221+0.5)(O122+0.5)(O212+0.5)
(O121+0.5)(O211+0.5)(O112+0.5)(O222+0.5)

measures to rank all these candidates, and high scoring colloca-
tions will be selected as valid cues. While the construction of bi-
gram candidates was relatively straightforward, the construction of
n-gram cues is more involved.

N-tuple concatenation: We construct n-gram candidates based
on the original grammatical relations, which consist of only two
words in each relation. When two grammatical relations share one
word, they can be linked using the shared word as a pivot. This
word linkage method is also used in [39] to mine traditional collo-
cations from a single dataset. Without additional restrictions, the
number of n-tuples using the word linkage method could be pro-
hibitively large. Toward this end, we require that all concatenations
be performed in the same sentence, i.e., only grammatical relations
from the same sentence can be linked. This restriction immensely
prunes the number of candidate n-tuples. We give an example of
the concatenated 3-tuples in co-occurrence database in Table 6. The
eight 3-tuples are constructed based on the seven 2-tuples in Ta-
ble 2. As we can see, the number of the 3-tuples does not increase
too much due to the single sentence restriction.

For the n-tuple concatenation case, we generalize in the obvious
way the 3-tuple example above: n-tuples are derived from the lower
order (n-1)-tuple lists again maintaining the sentence restriction,
see Alg. 1. For example, simultaneous co-administration in Fig. 2
can be extended to the candidates of simultaneous co-administration

cyclosporine or simultaneous co-administration increase. At each
level, by introducing the virtual words of “pos” and “neg”, the n-
gram (n≥3) cue mining problem is lifted into a (n+1)-gram collo-
cation extraction problem. The contingency table is extended sim-
ilarly and the association measures from Table 5 are similarly gen-
eralized. For example, all the association measures in Table 5 for
the bigram cue mining can be easily extended for the trigram: For
the equations 1, 3, 5, we still process all the cells in the contin-
gency table in the same way; For 2,4,6,7,8 and 9, we only need to
replace O111 and E111 with the observed frequency and expected

Table 6: The 3-tuple co-occurrence database with a positive

sample sentence. “+” means that this sentence comes from the

positive dataset, and SID is short for “sentence ID”.

SID Term 1 Term 2 Term 3 Dataset

1 Simultaneous co-administration cyclosporine +
1 Simultaneous co-administration increase +
1 co-administration cyclosporine increase +
1 co-administration increase significantly +
1 increase significantly level +
1 increase blood level +
1 increase level sirolimus +
1 blood level sirolimus +

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.

input : A group of 2-tuples T2 =< t21, t22, . . . , t2a >
output: T3, . . . , Tn; n ≥ 3

for i← 3 to n do
T = ∅;
c = 0;
foreach t(i−1)b in Ti−1 do

result = Expansion(t(i−1)b);
while ∃ t ∈ result and t /∈ T do

tic = t;
Add tic to T ;
c++;

end

end

Ti = T ;
end

Algorithm 1: Level-wise n-tuple concatenation algorithm.

frequency for the same cells in the trigram contingency table where
all the words co-occur. For Dice and Jaccard in 10 and 11, we apply
the same idea from the set theory; For 12, a higher order odds-ratio
should be used.

5. TEXT CATEGORIZATION USING SVM
Finally, as described in Fig. 1, an SVM classifier is used to classify
search results from the expanded queries, thus speeding up drug
interaction sentence identification. Joachims [18] highlights the
many reasons why SVMs are promising algorithms for text clas-
sification: 1) the high dimensionality of representation spaces can
result in overfitting for some other classifiers; 2) in text catego-
rization, few features are irrelevant; 3) the feature vectors contain
too many zero entries; and 4) most text categorization problems
are linearly separable. In our experiments, we use SVMlight7 with
a linear kernel (which have been shown to outperform other ker-
nels [46]).

Most text categorization implementations work with pre-processed
input, such as mapping to a bag of words (BOW) representation
and weighting the document (sentence) vectors suitably. We opted
to not use stemming, since terms could play very different roles in
identifying drug interactions even though they might have the same
stem 8. For example, in the sentence

7http://svmlight.joachims.org/, version 6.02
8Stemming is much more aggressive than lemmatization, e.g., re-
ceiving is changed to receive after lemmatization, but to receiv after
being stemmed. Stemming is usually used when receiving and re-
ceived need to be treated as a single form.



Table 7: SVM performance with different combinations of

weighting schemes and kernels (F:F-measure, P:Precision,

R:Recall)

Binary Linear Polynomial

F P R F P R
1 89.99 95.07 85.44 76.62 95.29 64.08
2 93.33 94.78 91.93 84.14 95.57 75.16
3 92.38 94.68 90.19 83.56 94.6 74.84
4 92.02 94.8 89.4 83.24 96.65 73.1
5 90.42 93.46 87.58 81.88 96.58 71.07

Avg 91.63 94.55 88.90 81.89 95.73 71.65
LOOCV 94.09 95.54 92.7 85.68 96.63 76.96

TF Linear Polynomial

F P R F P R
1 90.13 95.57 85.28 58.72 93.13 42.88
2 93.06 94.9 91.3 64.37 94.21 48.89
3 92.42 95.14 89.87 66.86 95.04 51.58
4 91.51 94.44 88.77 58.39 95.34 42.09
5 90.11 94.64 86.01 57.49 95.96 41.04

Avg 91.45 94.93 88.24 61.17 94.73 45.29
LOOCV 93.55 95.43 91.75 66.53 95.18 51.14

TF-IDF Linear Polynomial (-j 1.55)

F P R F P R
1 90.07 93.53 86.87 85.28 85.76 84.81
2 93.86 95.72 92.09 70.44 54.56 99.37
3 93.36 95.53 91.3 73.07 58.06 98.58
4 91.82 94.03 89.72 78.37 94.22 67.09
5 91.08 93.98 88.36 78.42 90.53 69.18

Avg 92.04 94.55 89.66 77.12 76.62 83.80
LOOCV 95.08 96.36 93.84 90.21 95.74 85.3

TF-RF Linear Polynomial

F P R F P R
1 89.2 96.33 83.07 69.76 96.64 54.59
2 92.88 96.11 89.87 75.70 97.51 61.87
3 91.5 95.52 87.82 71.46 96.76 56.65
4 91.08 95.17 87.34 70.75 96.97 55.7
5 89.88 95.09 85.22 65.55 96.92 49.53

Avg 90.91 95.64 86.66 70.65 96.96 55.66
LOOCV 93.48 96.34 90.8 74.31 97.19 60.15

“the use of zolmitriptan in patients receiving MAO-A
inhibitors is contraindicated,”

the combination of use and receiving (as a present participle) strongly
hints at being treated with two different drugs simultaneously, but
the stem receiv could be aquired by stemming a normal verb re-

ceive, which is rarely used when expressing two drug treatments at
the same time. From the training datasets, only 31 sentences con-
taining receive in the positive dataset are classified positive (0.7%),
whereas 131 sentences have receiving as a present participle de-
scribing patient(s) (3.3%). Conversely, in the negative dataset, 224
instances contain receive (4.4%), whereas 21 sentences have re-

ceiving describing patient(s) as a present participle (0.4%). This
demonstrates that authors prefer to use the present participle form
receiving to express drug interaction. For term weighting, we in-
vestigate four different methods: binary, term-frequency (tf), (tf-
idf), and (tf-rf). All these weighting schemes are similar to the
concepts from traditional information retrieval domain. In the last
tf-rf scheme, rf has the same meaning of relative frequency as in
Section 4.1.

6. EXPERIMENTAL RESULTS

6.1 System Design and Setup

6.1.1 Data preparation

The DrugBank database contains 4772 drug entries (a.k.a. drug
cards) corresponding to more than 12,000 different trade names and
synonyms. Among all these drugs, more than 1350 are FDA ap-
proved small molecule and biotech drugs, and 3243 are experimen-
tal drugs. However, only 1036 of these 4772 entries contain drug

Table 10: Some of bi-gram cues from extended collocation min-

ing

bi-gram collocations loglh avgmi dice t-test

administration 2911.79 2100.41 .0088 14.27
concomitant treatment 1421.70 1025.54 .0006 3.44

( amod ) use 1354.52 977.08 .0042 9.83
medication 930.61 671.30 .0006 3.69
therapy 861.60 621.51 .0011 5.06

increase 2121.22 1530.14 .0009 4.20
recommend coadministration 1172.57 845.83 .0004 3.21

decrease ( subj-x ) 1042.94 752.32 .0007 3.92
result 1002.32 723.02 .0020 6.70

interfere 955.16 689.00 .70 1.30
alter 818.49 590.41 .0002 2.37

administer 2603.77 1878.22 .0074 13.06
coadministered 1822.00 1314.30 .0042 9.88

co-administered 1257.53 907.11 .0018 6.50
take when 1102.67 795.41 .0007 3.89
give ( advmod ) 1081.87 780.40 .0030 8.33
use 990.09 714.20 .0025 7.22

initiate 746.48 538.48 .0008 4.19
add 687.92 496.23 .0003 2.58

Table 11: Some of tri-gram cues from extended collocation

mining. Tri-grams which are just simple extension of bi-gram

cues have been removed.
tri-gram collocations loglh avgmi dice t-test

increase plasma concentration 5512.31 3976.29 .0045 9.32
when administer increase 5295.64 3819.99 .0004 2.80
decrease plasma concentration 4553.77 3284.85 .0014 5.28
when administer inhibitor 4496.14 3243.28 .0003 2.43
drug increase concentration 4319.32 3115.73 .0003 2.59

interaction descriptions (short paragraphs) and we focus on these
drugs.

The 1036 drug entries in DrugBank include valid webpage links
in the column interaction_insert. We retrieved all of these web-
pages about detailed drug interactions, extracted plain text using
the HTML parser tool 9, and segmented them into sentences us-
ing the LingPipe10 toolkit. The total number of the sentences ex-
tracted in this manner were 9407. To produce a high-quality train-
ing dataset, we created a simple drug name dictionary using Drug-
Bank’s Generic Name, Brand Name, and Synonyms fields, and re-
moved all sentences that do not have any entry from this dictionary.
This reduced the number of valid positive sentences to 3900. For
instance, from the description paragraph for the drug Nicotine:

“Physiological changes resulting from smoking cessa-
tion, with or without nicotine replacement, may alter
the pharmacokinetics of certain concomitant medica-
tions, such as tricyclic antidepressants and theophylline.
Doses of these and perhaps other medications may need
to be adjusted in patients who successfully quit smok-
ing.”

we see that the first sentence is a valid drug interaction sentence but
the second one merely gives a warning about required dose adjust-
ment due to the interaction.

6.1.2 Generating negative examples

For the purpose of evaluation we generate negative examples of
drug interaction sentences using both the LPU method and manual
annotation. We first obtained 5141 candidate negative sentences

9http://htmlparser.sourceforge.net/
10http://alias-i.com/lingpipe/
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Figure 3: N-best evaluation (top 300): comparison of different methods on bigram and trigram by using precision and recall. Log-

likelihood and average mutual information perform the best among all measures studied here.

Table 8: Top-20 single-term cues. “tf-pos” and “tf-neg” are the term frequency in the positive and negative datasets, respectively.

MI F-score RF
Rank

term tf-pos tf-neg term tf-pos tf-neg term tf-pos tf-neg

1 concomitant 398 16 concomitant 398 16 coadministration 236 4
2 when 512 131 when 512 131 closely 44 0
3 coadministration 236 4 other 442 138 coadministered 119 3
4 interaction 285 27 interaction 285 27 contraindicated 39 1
5 interactions 247 17 coadministration 236 4 drug-drug 38 1
6 administration 459 210 interactions 247 17 caution 150 4
7 concomitantly 178 6 administration 459 210 exercised 37 0
8 concentrations 329 113 administered 341 123 concurrently 90 3
9 administered 341 123 concentrations 329 113 concomitantly 178 6
10 increase 320 117 concomitantly 178 6 steady 28 0
11 caution 150 4 increase 320 117 co-administered 83 3
12 clearance 173 23 caution 150 4 concomitant 398 16
13 metabolized 136 6 clearance 173 23 adjustments 23 1
14 co-administration 142 9 agents 217 59 metabolized 136 6
15 agents 217 59 co-administration 142 9 careful 20 0
16 warfarin 128 7 metabolized 136 6 warfarin 128 7
17 coadministered 119 3 warfarin 128 7 steady-state 91 5
18 recommended 154 28 coadministered 119 3 depressants 18 0
19 metabolism 164 41 recommended 154 28 digitalis 18 0
20 concurrently 90 3 metabolism 164 41 monitored 100 6



Table 9: Some of our identification results (Agreement: drug interaction consistent with the one in DrugBank; Disagreement: results

which disagree with the one in Drugbank; Supplement: new drug interaction for the same drug in DrugBank; New: new interaction

while DrugBank has an empty entry; In vitro model: a special type of drug interaction.)

Drug pair Category Drug interactions in DrugBank New drug interactions from MEDLINE

Abciximab,
ticlopidine

Agreement

These medications have included heparin warfarin, beta-
adrenergic receptor blockers, calcium channel antagonists,
angiotensin converting enzyme inhibitors, intravenous and
oral nitrates, ticlopidine, and aspirin. [DB00054]

concomitant abciximab plus ticlopidine treatment yields a
platelet inhibition profile that is a composite of the effects
of the 2 agents. [PubMed:10966553]

Alteplase,
angiotensin-

converting-enzyme
inhibitor

Supplement

The interaction of Activase with other cardioactive or cere-
broactive drugs has not been studied. In addition to bleed-
ing associated with heparin and vitamin K antagonists,
drugs that alter platelet function (such as acetylsalicylic
acid, dipyridamole and Abciximab) may increase the risk
of bleeding if administered prior to, during, or after Acti-
vase therapy. [DB00009]

they warn that patients who are taking an angiotensin-
converting-enzyme inhibitor may be at increased risk
for angioedema with concomitant alteplase therapy.
[PubMed:10813008]

Goserelin,
testosterone
propionate

In-vitro model

No formal drug-drug interaction studies have been per-
formed. No confirmed interactions have been reported be-
tween ZOLADEX and other drugs. [DB00014]

concomitant administration of goserelin or org 30276 and
testosterone propionate to castrated rats resulted in a fur-
ther decrease of the pituitary 5 alpha-reductase activity,
compared to the castrated, gnrh-analogue treated rats.
[PubMed: 2141376]

Rituximab,
fludarabine

In-vitro model

There have been no formal drug interaction studies per-
formed with RITUXAN. However, renal toxicity was seen
with this drug in combination with cisplatin in clinical tri-
als. [DB00073]

the study of the effect of fludarabine and rituximab in six
freshly isolated b-cell chronic lymphocytic leukaemia (b-
cll) samples showed that, in most cases, fludarabine has
an additive cytotoxic activity with rituximab and comple-
ment. [PubMed: 11564066]

Etanerept,
methotrexate Disagreement

Specific drug interaction studies have not been conducted
with ENBREL. However, it was observed that the phar-
macokinetics of ENBREL was unaltered by concomitant
methotrexate in rheumatoid arthritis patients. [DB00005]

inhibition of articular destruction was also proven by ad-
ministration of the biologic agents etanercept and inflix-
imab plus methotrexate. [PubMed: 12665969]

Lutropin alfa,
follitropin alfa New

Drug Interactions Not Available. [DB00044] conclusion: subcutaneous co-administration of 75 iu
lutropin alfa with follitropin alfa is safe and effective in
inducing follicular development in women with profound
gonadotrophin deficiency. [PubMed: 18485121]

Leuprolide, ethanol New

Drug Interactions Not Available. [DB00007] further, twice daily administration of leuprolide (50 mi-
crog/kg, s.c), concomitant with ethanol, prevented the
gradual increase in marble-burying behavior after ethanol-
withdrawal and this effect was comparable to fluoxetine (5
mg/kg, i.p.). [PubMed: 18448097]

from the search results by using only drug names. Later, using
LPU, 45 sentences were treated as positive and removed automat-
ically; in the manual labeling approach, about 132 positive sen-
tences were removed (2.56% of 5141). Finally we harvested 5096
negative sentences through the LPU method, and 5009 manually
labeled negative sentences in total.

6.1.3 Cue mining

As discussed earlier, for identifying single term cues, we utilized
three measures as described in Section 4.1: mutual information,
fisher kernel and relevance frequency. Table 8 shows that all these
measures mined single term cues admirably. Since these ranking
lists share many of the same terms, especially in the top portions
of the lists, we use the union of the top 50 terms from each list as
our single-term cues (consisting of 53 cue words after removing
stop words and strong domain-related terms). 92.5% of all these
single-term cue words are recognized as strong evidence words for
identifying drug interaction during a manual check.

For mining multi-word cues, we explored both basic bigrams and
higher order n-grams (n≥3). We first parsed all sentences in both
positive and negative datasets, and curated a total of 113577 gram-
matical dependencies. By filtering out 31 trivial relations (e.g.,
“det”, “auxpass”, “cop”, etc.; most of them either are related with
stop-words like “the”, or create duplicate connections), and re-
moving all the bigrams which appear in positive dataset for less
than 10 times, we retained 83417 of them to construct 2-tuple co-
occurrence information. Next, with the concatenation idea from

Section 4.3, we retrieved 167302 valid records in the 3-tuple co-
occurrence database. However, by requiring that valid 3-gram cues
must appear in positive dataset for more than 5 times, the number of
valid 3-tuples in the candidate co-occurrence database is dramati-
cally reduced to 644. Finally, the 12 association measures from
Table 5, together with the baseline measure of co-occurrence fre-
quency in the positive dataset, were calculated for both the 2-tuple
and 3-tuple co-occurrence databases. Some of the ranked bigram
and trigram results are listed in Table 10 and 11, respectively. Fur-
ther experiments revealed that mining higher order n-gram (n≥4)
cues are not necessary for drug interaction search, since all of them
are just simple extension of tri-gram cues.

6.1.4 SVM classification

We compared the classification capability of eight SVM models
with different combinations of two kernels (linear and polynomial)
and four weighting schemes (binary, tf, tf-idf, tf-rf). We evaluated
these models by using F-measure, given by F = 2·Precision·Recall

Precision+Recall
.

We also conducted a 5-fold cross validation and a leave one out

cross validation (LOOCV). Table 7 summarizes the detailed model
evaluation results. We observe that the linear kernels with binary
weighting and tf-idf weighting provide the best performance, and
use the former for convenience of implementation.

6.2 Evaluation
We perform three categories of evaluation. We evaluated the effect
of our new collocation mining approach, and also we tested the



quality of the training data labeled by LPU method. We also listed
some representative findings from MEDLINE.

6.2.1 N-best evaluation

To evaluate our multi-word collocation mining approaches, we
employed the n-best evaluation method, which is widely used for
evaluating collocation measures [9, 10, 29, 34, 37]. We first scanned
all the n-tuples satisfying the threshold requirement (frequency in
positive dataset greater than 5), and generated a human-labeled set
of real cues as Creal. For each association measure, we consid-
ered the n-tuples from the ranking lists as valid only if they also
appear in set Creal. Obviously, good association measures will
always put the real valid cues near the top of their ranking lists.
Therefore, after scanning the top-n results in the ranking lists, we
draw precision-recall graphs for these measures, by calculating the
proportion of valid cues in the n-best list (precision) and the frac-
tion of the number of valid cues from the n-best list to the size of
Creal(recall). Fig. 3 visualizes the precision-recall graphs using
the top 300 lists from each measure. The x-axis represents the pro-
portion of the ranking list, while the y-axis depicts the correspond-
ing precision (recall) values. The n-best evaluation shows that log-
likelihood (Log-lh) and average mutual information (Avg-MI) per-
form significantly better than other measures from the precision-
recall graphs (they are the most top curves), a result consistent with
prior research [8, 29]. Measures such as the Dice coefficient, Jac-
card and t-test have performances comparable to the baseline ap-
proach of positive frequency (Freq), while the other measures per-
form poorly. For the rest of this paper, we choose the log-likelihood
method as our association measure.

6.2.2 Evaluating the quality of LPU labeling

Our experiments also show that the negative dataset generated
automatically by the LPU is comparable to the one labeled man-
ually, and that the difference between these two methods for con-
structing negative datasets has little influence on the final results
of cue word mining. We compared the average precision values
and also the normalized discounted cumulative gain (nDCG) val-
ues [6, 16] of the multi-word cue mining results from these two
different negative datasets. Average precision is calculated by av-
eraging the precision values from the rank positions where a valid
cue is retrieved, and the nDCG value for the top-p list is calculated

as nDCGp =
DCGp

IDCG
. Here the DCG is defined as:

DCGp = rel1 +

p
X

i=2

reli
log2 i

where reli is 1 when the i-th n-gram in the list is judged as a valid
cue, and 0 otherwise. IDCG means the possible maximum DCG
value when all the valid cues are ranked at the top [16].

Table 12 shows that there is no significant decrease of aver-
age precision or nDCG values when we use the LPU method to
generate the negative dataset. In fact, the final ranking lists (top
100) based on these two different negative datasets share many cue
words. For the bigram approach, 96 of the top 100 cues are identi-
cal, and for the trigram approach, 97 of the top 100 are identical.

6.2.3 Representative results

Table 9 depicts some of the results of our analysis, which clas-
sifies all inferred drug interaction sentences into five categories.
Most of the results are consistent with the original drug interaction
descriptions in DrugBank (same drug, same interaction). Some de-
scribe additional interactions (i.e., same drug, but interactions with
new drugs). We also found some interaction description sentences

Table 12: Collocation mining effects of log-likelihood method

by using different negative datasets (top 100 ranking lists)

Bigram Trigram
Method

AvgP (%) nDCG AvgP (%) nDCG

Manually labeling 83.84 0.967 85.50 0.971
LPU 80.34 0.958 84.07 0.968

which disagree with the ones in DrugBank. Among the 4772 en-
tries in DrugBank, most of them (3736) have empty drug interac-
tion records, and we found new interaction information for some of
these drugs. Finally, our approach also identifies drug interactions
from in-vitro studies, a category often ignored in clinical studies.

7. CONCLUSIONS AND FUTURE WORK
We have introduced a framework for mining data-driven linguisti-
cal cues and for using these cues to aid querying for drug interac-
tions. Our famework integrates traditional collocation mining with
discriminative association with positive/negative training instances/
Compared to other systems which require a priori domain knowl-
edge, our system seeks to solve this problem with the help of lin-
guistic features alone. By identifying many drug interactions not
currently curated in DrugBank, our experimental results demon-
strate that this is a promising approach.

Since our framework uses only linguistic cue words to augment
queries, this approach can be re-targeted toward many other domain-
specific needs, such as for modeling biochemical interactions and
subjective opinions. This is one direction of future work. A sec-
ond issue we are investigating is to develop more structured, graph-
theoretic, representations of linguistic cues from dependency parses,
i.e., beyond simple sets of words as used in collocations.
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