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traditional approaches to studying disease pro-
gression, such as the mean fi eld approach that uses 
rate-based differential equation models. In this ap-
proach, we partition the human population (al-
though technically other species are also studied 
in epidemiology) into subgroups based on various 
criteria (for example, demographic characteristics 
and disease states), and use differential equation 
models to describe the disease dynamics across 
these groups. Some models characterize disease dy-
namics by a parameter, R0, the basic reproduction 
number.1 R0 is defi ned as the number of second-
ary infections caused by a single infective individ-
ual into a wholly susceptible population. R0 deter-
mines whether an epidemic can occur: if R0 < 1 the 
epidemic will die out, while if R0 > 1 an epidemic 
will occur. This approach has been tremendously 
successful in informing public health policy. Nev-
ertheless, a potential weakness is its inability to 
capture the complexity of human interactions and 
behaviors.

Effective planning and response in the event of 
epidemics isn’t about just prediction, but antici-
pation and adaptation. The typical workfl ow of a 
public health analyst involves the measure-project-
analyze-intervene cycle. In this method, diverse 
data is collected via surveys, social media, sensors, 
and policy documents, which are then analyzed to 
yield contextual situational representations. Dy-
namic models in the form of computer simulations 
are then used to interpolate as well as extrapo-
late from the data. Simulations are used to eval-
uate various what-if scenarios (or counterfactual 
 experiments). Policy analysts use this information 

to make specifi c policy decisions, potentially lead-
ing to changes in epidemic dynamics. The mea-
sure-project-analyze-intervene cycle motivates 
an interaction-based approach for developing in-
formatics platforms. Here, we aim to accurately 
model the social interactions that form the basis 
of disease transmission. The approach uses endog-
enous representations of individuals together with 
explicit interactions between these agents to gener-
ate and capture the disease spread across the so-
cial interaction network.

However, this approach is fraught with new 
technical diffi culties. It’s impossible to obtain an 
accurate, detailed, time-varying, urban-scale, hu-
man social-contact network by simple measure-
ments. Nevertheless, recent advances in machine 
learning, data mining, and network science make 
it possible to develop new approaches for produc-
ing reasonable estimates of such networks. We’ve 
developed one such computational approach, 
the synthetic information environments (SIEs) 
approach.

Synthetic Information Environments
An SIE consists of four components: 

•	 statistical model of the population of interest, 
which we refer to as a synthetic population; 

•	 activity-based model of the social-contact 
network; 

•	 disease-progression models; and 
•	models for representing and evaluating interven-

tions, public policies, and individual behavioral 
adaptations.2

First, we generate a synthetic population by inte-
grating census data with other demographic and 
geographic data to create a population of individ-
ual agents. Synthetic populations are statistically 

Epidemiology is witnessing a rapid infusion of 

new techniques from computer science, espe-

cially machine learning. To understand these new 

developments, it’s helpful to contrast them against
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identical to the data sources that are 
used to construct them, but preserve 
individual privacy and maintain ano-
nymity. Second, we generate a detailed 
minute-by-minute schedule for each 
individual in the synthetic population, 
using time-use surveys combined with 
machine learning techniques, such 
as classification and regression trees 
(CART). We geolocate activities us-
ing business survey information and, 
by employing a gravity model, associ-
ate each individual with particular ac-
tivity locations over the course of the 
day. The availability of modern data-
sets collected via phone call logs and 
social media sites such as Foursquare 
provide new opportunities to refine 
the methodology and improve the as-
signment quality.

We can now construct a time-vary-
ing, spatially-explicit, person-location 
network using the synthetic data. The 
synthesis of such networks is an ongo-
ing research theme in computational 
social science and is sometimes re-
ferred to as generative social science.3 
Recently, researchers have explored 
other methods to synthesize smaller 
social contact networks using smart-
phones, RFID tags, and other digital 
devices combined with social media; 
examples include synthesis of social 
contact networks among high school 
and college students. These methods 
provide valuable data sources to cre-
ate smaller subnetworks useful for 
validation purposes.4–7

In the third step, we endow each 
individual with a within-host disease 
model represented using probabilistic 
timed transition systems (PTTS). We 
can incorporate within the framework 
individual-level demographic varia-
tions (immunity, age, and so on). Indi-
vidual PTTS are coupled via the social 
contact network described  earlier. We 
use high-performance computer simu-
lations to understand the spread of the 
contagion over the network of PTTS.

The final step involves represent-
ing and analyzing public policies, in-
dividual behavioral adaptations, and 
the efficacy of various intervention 
strategies. A key concept here is that 
of implementable policies and inter-
ventions—that is, policies that are 
realizable in the real world. For ex-
ample, an optimal vaccination pol-
icy based on computational models 
might specify a set of k-individuals 
who are super spreaders and hence 
should be vaccinated. But in the real 
world, it’s not easy to identify these 
individuals explicitly. We use data 
mining and machine learning tech-
niques to identify surrogates (that is, 
combinations of demographic and so-
cial attributes) that can redescribe the 
super spreader property.

The biggest strengths of the SIE ap-
proach are its scalability and exten-
sibility. An epidemiologist using the 
system can easily design a new inter-
vention and carry out an appropriate 
computer experiment for a large ur-
ban area like Los Angeles in minutes 
to uncover critical individuals and 
pathways and evaluate the indirect 
effects (for example, the economic 
impact) of certain policies.

Simdemics is an integrated model-
ing environment that embodies the 
SIE approach to aid local, state, and 
federal public health officials in pan-
demic planning, response, and con-
trol.8 As an example, in other work 
we used Simdemics to estimate the so-
cial and economic impact of the vari-
ous public and private intervention 
strategies aimed at controlling influ-
enza-like illnesses.9 We developed a 
synthetic social contact network for 
the New River Valley area of Virginia. 
We evaluated a range of realistic, indi-
vidual behavioral strategies as well as 
public policies to control a flu-like ep-
idemic. The study showed that a com-
bination of school closures, individual 
context-based behavioral adaptation, 

and targeted antiviral medication dis-
tribution can reduce the number of 
infections by 87 percent and income 
loss by 82 percent as compared to the 
base case with no intervention.

Big Data and  
Real-Time Epidemiology
Real-time epidemiology, a rapidly de-
veloping area within public-health 
epidemiology, seeks to support policy 
makers in near real-time as an epi-
demic is unfolding.10 A natural use 
of real-time epidemiology is in dis-
ease surveillance, that is, monitoring 
the space–time progression of disease. 
Traditional tools for surveillance in-
clude sentinel clinics and serological 
sampling.11 Recently, researchers have 
used social-media data to obtain dis-
ease outbreak and progression infor-
mation, an excellent example of how 
computational advances are changing 
public health epidemiology.12,13

Perhaps the most celebrated example 
of social media surveillance is Google 
Flu Trends (www.google.org/flutrends) 
that uses search engine queries as an 
indicator of health-seeking behavior, 
and thus an indicator of disease (flu) 
activity among a population.14 Not 
long after Google Flu Trends was in-
troduced, techniques for nowcasting 
flu rates using Twitter became promi-
nent.15 Researchers have paid care-
ful attention to content modeling of 
tweets. For instance, Alex Lamb and 
colleagues have developed methods 
to separate tweets that report actual 
flu infections from others that exhibit 
mere awareness and concern about the 
flu.16 Broader uses of Twitter for syn-
dromic surveillance—in particular for 
capturing spatiotemporal distributions 
of symptoms and medications—have 
also been explored.17 In general, social 
media is a fertile resource for exploring 
many epidemiological questions, for 
example, sentiment propagation about 
vaccinations.18
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The previously discussed  methods 
focus on gross estimation of disease 
activity over a region. In line with 
our earlier discussion about synthetic 
populations, researchers have also ex-
plored unraveling patterns of online 
communication from Twitter with 
a view to uncovering social interac-
tions. Adam Sadilek and his colleagues 
use geolocation and machine-learning 
methods to estimate physical interac-
tions between healthy and sick indi-
viduals and, in turn, estimate the likeli-
hood of the healthy individual getting 
infected at some point in the future.19

More recent research has focused 
on identifying social network sensors, 
that is, identifying a subset of indi-
viduals whose infection states can be 
monitored to serve as an early indi-
cator of an emerging epidemic. Nich-
olas Christakis and James Fowler20 
propose a design of social network 
sensors for monitoring flu on the ba-
sis of the friendship  paradox: your 
friends have more friends than you 
do. Alternatively it can be said that 
a friend of a random person has 
more friends than the random per-
son. Christakis and Fowler use the 
set of friends nominated by randomly 
chosen people as a sensor set. After 
a field study on randomly selected 

students at Harvard during the flu 
season in 2009, they found that the 
peak of the daily incidence curve in 
the sensor set occurs 3.2 days earlier 
than that of a random set of students.

In other research, we formalized the 
idea of social network sensors using 
the notion of graph dominators.21,22 
In a given graph, a node x is said to 
dominate a node y if all paths from 
a designated start node to y must go 
through x. In our case, the start node 
indicates the source of the infection or 
disease. In Figure 1a, which describes 
a social contact network with nodes 
as people, all paths from node A (the 
designated start node) to H must pass 
through B; therefore B dominates H. 
Note that a person can be dominated 
by many other people. For instance, 
both C and F dominate J, and C dom-
inates F. To simplify such transitive 
situations, we say that node x is the 
unique immediate dominator of y if x 
dominates y and there doesn’t exist a 
node z such that x dominates z, and 
z dominates y. This enables us to un-
cover an underlying tree of dominator 
relationships, as shown in Figure 1b, 
with a much smaller number of edges 
than the original graph.

If we were to reconstruct the so-
cial contact network, therefore, we 

can readily compute the dominator 
tree and capture critical junctures in 
epidemic transmission. Using city-
scale datasets generated by extensive 
microscopic epidemiological simula-
tions involving millions of individ-
uals, we’ve shown how the notion 
of dominators can provide up to 10 
days more lead time compared to the 
friend-of-friends approach (see Fig-
ure 2). Most importantly, in other 
research, we developed surrogates 
and proxies for use as social-network 
sensors without requiring intrusive 
knowledge of people and their re-
lationships.21 For instance, we can 
identify demographic properties that 
best redescribe the dominator rela-
tionship, and use these properties to 
help form the sensor set in practice.

Resource Allocation, 
Behavior Modeling,  
and Inference
Computational models and machine 
learning are important for broader 
policy questions in epidemiology as 
well. When applying these techniques 
in practice, researchers face the usual 
challenges: noisy and insufficient 
data, scarce resources, multiple ob-
jective functions, and short decision-
making time.

Resource optimization problems 
arise in epidemiology when scarce 
public health resources need to be ex-
pended to respond to epidemic out-
breaks. Examples of such problems 
include: allocation of vaccines and 
antivirals; availability of medical 
equipment such as facemasks, hos-
pital beds, and ventilators; staffing 
problems at hospitals; and alloca-
tion of pharmaceuticals. The objec-
tive functions are complex, including 
economic costs, health costs, and so-
cial disruptions. Moreover, the ob-
jectives are usually conflicting, thus 
making the decision-making process 
harder.

Figure 1. A social contact network where nodes represent people. (a) In the example 
graph, we see that all paths from node A to H must pass through B. Hence, B 
dominates H. (b) Uncovering dominance of nodes lets us create a dominator tree.
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Inference problems in 
epidemics arise from the 
need to understand the 
spatiotemporal charac-
teristics of an epidemic, 
 especially at the start of 
the epidemic. Examples 
include inferring the index 
case, disease properties, 
social contact network, 
and transmission tree.

A prototypical and 
important problem is 
vaccine allocation for 
controlling influenza out-
breaks. Even the basic 
problem is computation-
ally challenging. The is-
sue is complicated by the 
fact that various logistical complica-
tions cause vaccines to become avail-
able in batches. Moreover, just like in 
the social-network sensors problem, 
it’s important to develop an imple-
mentable strategy for assigning vac-
cines. Classical work has focused 
 either on optimal strategies that 
aren’t implementable or on allocat-
ing vaccines to predefined groups. In 
other work, we combine data-mining 
techniques and dynamical properties 
of networks to design a near-optimal 
vaccination strategy that compares 
well with known strategies.23

It’s important to note that the ap-
plication of interventions, guided by 
public policy, will in turn induce be-
havioral changes in individuals. A 
computational representation theory 
of behaviors as it pertains to epide-
miology thus needs to be developed. 
Health scientists have developed ver-
bal or conceptual behavioral models 
to understand the role of behaviors 
in public health.24,25 But these models 
are typically informal and it’s quite 
demanding to identify the data neces-
sary to instantiate in silico behavioral 
models. Recent advances in social 
media, crowdsourcing (for example, 

Amazon’s Mechanical Turk at www.
mturk.com), online games, online 
surveys, and digital traces all form the 
basis of potentially exciting methods 
to make progress in this  direction.26 
We’ve developed a computational 
modeling environment wherein com-
plex behaviors and interventions can 
be represented and analyzed.27 Fig-
ure 3 presents our system’s interface 
that enables the analyst to set up com-
plex statistical experiments (interven-
tions) and analyze their effects on the 
 underlying population. The experi-
ments are then executed using a high-
performance computing simulation, 
and the results are summarized and 
presented to the user.

As a case study, we’ve explored an 
important policy problem in epidemi-
ology: Is there an optimal strategy to 
distribute a limited supply of antivi-
ral doses between the public stockpile 
administered through hospitals and 
private stockpiles distributed through 
a market mechanism? In modeling 
this problem, we considered a num-
ber of measures of effectiveness, in-
cluding number of people infected, 
peak number of infections, cost of re-
covery, and equitable allocation. We 

were broadly interested 
in understanding how 
disease dynamics, indi-
vidual behavior, network 
structure, and antiviral 
demand coevolve. We de-
veloped and instantiated 
several behavioral mod-
els based on published lit-
erature and data. These 
models spanned individual 
behaviors (for example, 
reporting of symptoms by 
infected persons), fam-
ily behaviors (such as 
purchasing behaviors and 
isolation precautions), and 
organizational behaviors  
(including behavior of 

 markets as well as entities such as 
hospitals). Our other research pro-
vides more details.27,28

Key findings based on our experi-
ments include the following: mar-
ket-based distribution is inherently 
 inequitable; prevalence of elastic de-
mand leads to inequitable distribu-
tion (due to price increase), providing 
ways to evaluate government invest-
ment; there is an optimal allocation 
strategy of antivirals between public 
and private stockpiles; and natural 
behavior adaptations in conjunction 
with well-established logistics (mar-
kets and public distribution) reduce 
and delay the peak infection rate.

The use of machine learning and 
reasoning methods in support of 
computational epidemiology is a rich 
area with many significant research 
challenges. Key areas for future re-
search include the following:

•	New methods and data sources 
for extending synthetic popu-
lations. This is a relatively un-
derstudied problem, and formal 
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Figure 2. Monitoring an epidemic using a social network sensor 
on the basis of a dominator heuristic enables earlier detection—
that is, the peak in the sensor curve occurs ahead of the peak in 
the general population.
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 characterization of the difficulty of 
the problem, as well as efficient and 
effective algorithm development, 
needs to be undertaken.

•	 Integrating model-driven meth-
ods with data mining approaches. 
We have hinted at some possibili-
ties here, but more opportuni-
ties abound—for example, using a 
combination of approaches to de-
sign quarantine policies from field 
data, behavioral models, and a the-
ory-driven statement of epidemio-
logical objectives.

•	 Social-network sensors. Can we 
develop new methods and surro-
gates for identifying sensor popu-
lations from both massive passive 
data (Twitter) and for use in clinics 
and hospitals?

•	Fine-grained modeling of social-
media datasets. As techniques for 
content modeling and text min-
ing become increasingly sophis-
ticated, we believe there will be 
a greater carryover of such meth-
ods to syndromic surveillance 
with real-time epidemiological 
applications.

•	Active data collection, leading to 
coevolving policy, simulation, and 
mining. There’s increasing interest 
in conducting mobile phone sur-
veys and integrating such survey 
data with more passively gathered 
information. Active data can help 
fill in information gaps from tradi-
tional data mining of passive data-
sets. For instance, a survey of dis-
ease symptoms in a targeted region 
combined with mining of tweets 
can give lead time advantages in 
detecting an emerging epidemic.

Tackling these problems will re-
quire a multidisciplinary approach 
and a close collaboration between 
computer scientists, statisticians, 
public health experts, and policy 
analysts. Finally, although we re-
strict our discussion to infectious 
diseases in humans, researchers can 
also study zoonotic diseases and 
many chronic diseases such as obe-
sity and diabetes within this frame-
work. We look forward to seeing 
future developments in this diverse 
and important field.
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