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Abstract. Recent successes in word embedding and document embed-
ding have motivated researchers to explore similar representations for
networks and to use such representations for tasks such as edge pre-
diction, node label prediction, and community detection. Such network
embedding methods are largely focused on finding distributed represen-
tations for unsigned networks and are unable to discover embeddings
that respect polarities inherent in edges. We propose SIGNet, a fast
scalable embedding method suitable for signed networks. Our proposed
objective function aims to carefully model the social structure implicit
in signed networks by reinforcing the principles of social balance theory.
Our method builds upon the traditional word2vec family of embedding
approaches and adds a new targeted node sampling strategy to maintain
structural balance in higher-order neighborhoods. We demonstrate the
superiority of SIGNet over state-of-the-art methods proposed for both
signed and unsigned networks on several real world datasets from dif-
ferent domains. In particular, SIGNet offers an approach to generate a
richer vocabulary of features of signed networks to support representa-
tion and reasoning.

1 Introduction

Social and information networks are ubiquitous today across a variety of do-
mains; as a result, a large body of research has developed to help construct
discriminative and informative features for network analysis tasks such as clas-
sification [2], prediction [11], and visualization [12].
Classical approaches to find features and embeddings are motivated by dimen-
sionality reduction research and extensions, e.g., approaches such as Laplacian
eigenmaps [1], non-linear dimension reduction [17], and spectral embedding [7].
More recent research has focused on developing network analogs to distributed
vector representations such as word2vec [13, 14]. In particular, by viewing se-
quences of nodes encountered on random walks as documents, methods such
as DeepWalk [15], node2vec [5], and LINE [16] learn similar representations for
nodes (viewing them as words). Although these approaches are scalable to large
networks, they are primarily applicable to only unsigned networks. Signed net-
works are becoming increasingly important in online media, trust management,
and in law/criminal applications. As we will show, applying the above methods
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to signed networks results in key information loss in the resulting embedding.
For instance, if the sign between two nodes is negative, the resulting embeddings
could place the nodes in close proximity, which is undesirable.
An attempt to fill this gap is the work of Wang et al. [19] wherein the authors
learn node representations by optimizing an objective function through a multi-
layer neural network based on structural balance theory. This work, however,
models only local connectivity information through 2-hop paths and fails to
capture global balance structures prevalent in a network. Our contributions are:
1. We propose SIGNet, a scalable node embedding method for feature learning
in signed networks that maintains structural balance in higher order neighbor-
hoods. SIGNet is generic by design and can handle both directed and undirected
networks, including weighted or unweighted (binary) edges.
2. We propose a novel node sampling method as an improvement over traditional
negative sampling. The idea is to maintain a cache of nodes during optimization
integral for maintaining the principles of structural balance in the network. This
targeted node sampling technique can be treated as an extension of the negative
sampling strategy used in word2vec models.
3. Through extensive experimentation, we demonstrate that SIGNet generates
better features suitable for a range of prediction tasks such as edge and node label
prediction. SIGNet1 is able to generate embeddings for networks with millions
of nodes in a scalable manner.

2 Problem Formulation

Definition 1. Signed Network: A signed network can be defined as G = (V,E),
where V is the set of vertices and E is the set of edges between the vertices.
Each element vi of V represents an entity in the network and each edge eij ∈
E is a tuple (vi, vj) associated with a weight wij ∈ Z. The absolute value of
wij represents the strength of the relationship between vi and vj, and the sign
represents the nature of relationship (e.g., friendship or antagonism). A signed
network can be either directed or undirected. If G is undirected then the order
of vertices is not relevant (i.e. (vi, vj) ≡ (vj , vi)). On the other hand, if G is
directed then order becomes relevant (i.e. (vi, vj) 6≡ (vj , vi) and wij 6= wji)).

Because the weights in a signed network carry a combined interpretation (sign de-
notes polarity and magnitude denotes strength), conventional proximity assump-
tions used in unsigned network representations (e.g., in [5]) cannot be applied for
signed networks. Consider a network wherein the nodes vi and vj are positively
connected and the nodes vk and vi are negatively connected (see Fig. 1(a)).
Suppose the weights of the edges eij and eik are +wij and −wik respectively.
Now if |+wij | < | −wik|, conventional embedding methods will place vi and vk
closer than vi and vj owing to the stronger influence of the weight (Fig. 1(b)).
This problem remains unresolved even if we consider the weight of a negative
edge as zero, because even though it may place node vi and vj closer, node vk

1 The implementation is available at: https://github.com/raihan2108/signet
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Fig. 1. Given a signed network (a), a conventional network embedding (b) does not
take signs into account and can result in faulty representations. (c) SIGNet learns
embeddings that respect sign information between edges. Of the possible signed triangles,
(d) and (e) are considered balanced but (f) and (g) are not. (h) shows a 2-dimensional
embedding of alliances among New Guinea tribes using SIGNet. Alliance (hostility)
between the tribes is shown in solid blue (dashed red) edges. We can see that edges
representing alliances are comparatively shorter than the edges representing hostility.

may be relatively closer to vi because we ignore the adverse relation between
node vi and vk. This may comprise the quality of embedding space. Ideally, we
would like a representation wherein nodes vi and vj are closer than nodes vi and
vk, as shown in Fig. 1(c). This example shows that modeling the polarity is as
important as modeling the strength of the relationship.
To accurately model the interplay between the vertices in signed networks we use
the theory of structural balance proposed in [6]. This theory posits that triangles
with an odd number of positive edges are more plausible than an even number
of positive edges (see Fig. 1 (d–g)). Although different adaptations of and alter-
natives to balance theory exist in the literature, here we focus on the original
notion of structural balance to create the embedding space since it applies nat-
urally to the experimental contexts considered here (e.g., networks constructed
from adjectives, described in Sec. 4).
Problem Statement: Scalable Embedding of Signed Networks (SIGNet): Given
a signed network G, compute a low-dimensional vector di ∈ RK , ∀vi ∈ V , where
positively related vertices reside in close proximity to each other and negatively
related vertices are distant from each other.
To explain the interpretability of the signed network embedding we utilize a
small dataset denoting relations between 16 tribes in New Guinea. This is a
signed network depicting alliances and hostility between the tribes. We learned
the embeddings using SIGNet in 2 dimensional space as an undirected network
as shown in Fig. 1(h). We can see that in general solid blue edges (alliance) are
shorter than the dashed red edges (hostility) confirming that allied tribes are
closer than the hostile tribes. Therefore the embedding space learned by SIGNet
clearly depicts alliances and relationships among the tribes as intended.
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3 Scalable Embedding of Signed Networks (SIGNet)

3.1 SIGNet for undirected networks

Consider a weighted signed network defined as in Section 2. Now suppose each
vi is represented by a vector xi ∈ RK . Then a natural way to compute the
proximity between vi and vj is by the following function (ignoring the sign for
now):

pu(vi, vj) = σ(xT
j · xi) =

1

1 + exp(−xT
j · xi)

(1)

where σ(a) = 1
1+exp(−a) . Now let us breakdown the weight of edge wij into

two components: rij and sij . rij ∈ N represents the absolute value of wij (i.e.
rij = |wij |) and sij ∈ {−1, 1} represents the sign of wij . Given this breakdown
of wij , pu(vi, vj) = σ(sij(x

T
j · xi)). Now incorporating the weight information,

the objective function for undirected signed network can be written as:

Oun =
∑

eij∈E

rijσ(sij(x
T
j · xi)) =

∑
eij∈E

rijpu(vi, vj) (2)

By maximizing Eqn. 2 we obtain a vector xi of dimension K for each node vi ∈ V
(we also use di to refer to this embedding, for reasons that will become clear in
the next section).

3.2 SIGNet for directed networks

Computing embeddings for directed networks is trickier due to the asymmetric
nature of neighborhoods (and thus, contexts). For instance, if the edge eij is
positive, but eji is negative, it is not clear if the respective representations for
nodes vi and vj should be proximal or not. We solve this problem by treating
each vertex as itself plus a specific context; for instance, a positive edge eij
is interpreted to mean that given the context of node vj , node vi should be
closer. This enables us to treat all nodes consistently without worrying about
reciprocity relationships. To this end, we introduce another vector yi ∈ RK
besides xi, ∀vi ∈ V . For a directed edge eij the probability of context vj given
vi is:

pd(vj |vi) =
exp(sij(y

T
j · xi))∑|V |

k=1 exp(sik(yT
k · xi))

(3)

Treating the same entity as itself and as a specific context is very popular in
the text representation literature [13]. The above equation defines a probability
distribution over all context space w.r.t. node vi. Now our goal is to optimize
the above objective function for all the edges in the network. However we also
need to consider the weight of each edge in the optimization. Incorporating the
absolute weight of each edge we obtain the objective function for a directed
network as:

Odir =
∑

eij∈E

rijpd(vj |vi) (4)
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By maximizing Eqn. 4 we will obtain two vectors xi and yi for each vi ∈ V . The
vector xi models the outward connection of a node whereas yi models the inward
connection of the node. Therefore the concatenation of xi and yi represents the
final embedding for each node. We denote the final embedding of node vi as di.
It should be noted that for undirected network di = xi whereas for a directed
network di is the concatenation of xi and yi. This means |xi| = |yi| = K

2 in the
case of directed graph (for the same representational length).

3.3 Efficient Optimization by Targeted Node Sampling

The denominator of Eqn. 3 is very hard to compute as this requires marginaliz-
ing the conditional probability over the entire vertex set V . We adopt the clas-
sical negative sampling approach [14] wherein negative examples are selected
from some distribution for each edge eij . However, for signed networks, conven-
tional negative sampling does not work. For example consider the network from
Fig. 2(a). Viewing this example as an unsigned network, while optimizing for
edge eij , we will consider vi and vy as negative examples and thus they will
be placed distantly from each other. However, in a signed network context, vi
and vy have a friendlier relationship (than with, say, vx) and thus should be
placed closer to each other. We propose a new sampling approach, referred to as
simply targeted node sampling wherein we first create a cache of nodes for each
node with their estimated relationship according to structural balance theory
and then sample nodes accordingly.

Constructing the cache for each node: We aim to construct a cache of
positive and negative examples for each node vi where the positive (negative)
example cache η+i (η−i ) contains nodes which should have a positive (negative)
relationship with vi according to structural balance theory. To construct these
caches for each node vi, we apply random walks of length l starting with vi to
obtain a sequence of nodes. Suppose the sequence is Ω =< vi, vn0 , · · · , vnl−1

>.

Now we add each node vnp to either η+i or η−i by observing the estimated sign
between vi and vnp . The estimated sign is computed using the following recursive
formula s̃inp = s̃inp−1

× snp−1np . Here s̃inp−1
is the estimated sign between node

vi and node vnp−1
, which can be computed recursively. The base case for this

formula is s̃in1
= sin0

× sn0n1
. If node vnp is not a neighbor of node vi and s̃inp

is positive then we add vnp to η+i . On the other hand if s̃inp is negative and vnp
is not a neighbor of vi then we add it to η−i . For example for the graph shown
in Fig. 2(a), suppose a random walk starting with node vi is < vi, vj , vk, vz >.
Here node vk will be added to η+i as s̃ik = sij×sjk > 0 (base case) and vk is not
a neighbor of vi. However, vz will be added to node η−i as s̃iz = s̃ik × skz < 0
and vz is not a neighbor of vi.
The one problem with this approach is that a node vj may be added to both
η+i and η−i . We denote this phenomena as conflict and define the reason for
this conflict in Theorem 1. We resolve this situation by computing the shortest
path between vi and vj and compute s̃ij between them using the shortest path,
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Fig. 2. (a) depicts a small network to illustrate why conventional negative sampling does
not work. vi and vy might be considered too distant for their representations to be placed
close to each other. Targeted node sampling solves this problem by constructing a cache
of nodes which can be used as sampling. (b) shows how we resolve conflict. Although
there are two ways to proceed from node vi to vl the shortest path is vi, vj , vk, vl, which
estimates a net positive relation between vi and vl. As a result vl will be added to η+i .
However for node vm there are two shortest paths from vi, with the path vi, vp, vo, vn, vm
having more positive edges but with a net negative relation, so vm will be added to η−i in
case of a conflict. (c) and (d) shows a comparative scenario depicting the optimization
process inherent in both SiNE and SIGNet. The shaded vertices represent the nodes both
methods will consider while optimizing the edge eij. We can see that SiNE only considers
the immediate neighbors because it optimizes edges in 2-hop paths having opposite signs.
On the other hand, SIGNet considers higher order neighbors (va, vb, vc, vx, vy, vz) for
targeted node sampling.

then add to either η+i or η−i based on s̃ij . To compute the shortest path we
have to consider the network as unsigned since negative weight has a different
interpretation for shortest path algorithms. If there are multiple shortest paths
with equal length in case of a conflict, then we pick the path with the highest
number of positive edges to compute s̃ij . A scenario is shown in Fig. 2(b).

Theorem 1. (Reason for conflict): Node vj will be added to both η+i and η−i if
there are multiple paths from vi to vj and the union of these paths has at least
one unbalanced cycle.

Targeted edge sampling during optimization: Now after constructing the
cache ηi = η+i

⋃
η−i for each node vi, we can apply the targeted sampling ap-

proach for each node. Here our goal is to extend the objective of negative sam-
pling from classical word2vec approaches [14]. In traditional negative sampling, a
random word-context pair is negatively sampled for each observed word-context
pair. In a signed network both positive and negative edges are present, and thus
we aim to conduct both types of sampling while sampling an edge observing its
sign. Therefore when sampling a positive (negative) edge eij , we aim to sam-
ple multiple negative (positive) nodes from η−i (η+i ). Therefore the objective
function for each edge becomes (taking log):

Oij = log[σ(sij(y
T
j · xi))] +

N∑
c=1

Evn∼τ(sij) log[σ(s̃in(y
T
n · xi))] (5)
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Here N is the number of targeted node examples per edge and τ is a function
which selects from η+i or η−i based on the sign sij . τ selects from η+i (η−i ) if
sij < 0 (sij > 0).
The benefit of targeted node sampling in terms of global balance considerations
across the entire network is shown in Fig. 2 (c) and (d). Here we compare how
our proposed approach SIGNet and SiNE [19] maintain structural balance. For
simplicity suppose only edge eij has negative sign. Now SiNE optimizes w.r.t.
pairs of edges in 2-hop paths each having different signs. Therefore optimiz-
ing the edge eij involves only the immediate neighbors of node vi and vj , i.e.
vl, vm, vn, vo (Fig. 2 (c)). However SIGNet skips the immediate neighbors while
it uses higher order neighbors (i.e., va, vb, vc, vx, vy, vz). Note that SIGNet ac-
tually uses immediate neighbors as separate examples (i.e edge eil, eim etc.). In
this way SIGNet covers more nodes to optimize the embedding space than SiNE.

4 Experiments

Experimental Setup: We compare our algorithm against both the state-of-
the-art method proposed for signed and unsigned network embedding. The de-
scription of the methods are below:
– node2vec [5]: This method, not specific to signed networks, computes embed-
dings by optimizing the neighborhood structure using informed random walks.
– SNE [20]: This method computes the embedding using a log bilinear model;
however it does not exploit any specific theory of signed networks.
– SiNE [19]: This method uses a multi-layer neural network to learn the em-
bedding by optimizing an objective function satisfying structural balance theory.
SiNE only concentrates on the immediate neighborhood of vertices rather than
on the global balance structure.
– SIGNet-NS: This method is similar to our proposed method SIGNet except
it uses conventional negative sampling instead of targeted node sampling.
– SIGNet: This is our proposed SIGNet method which uses random walks to
construct a cache of positive and negative examples for targeted node sampling.
We skip hand crafted feature generation method for link prediction like [9] be-
cause they can not be applied in node label prediction and already shows inferior
performance compared to SiNE. For node2vec the weight of negative edges are
treated zero since node2vec can not handle negative edges.
In the discussion below, we focus on five real world signed network datasets.
Out of these five, two datasets are from social network platforms—Epinions
and Slashdot—courtesy the Stanford Network Analysis Project (SNAP). The
details on how the signed edges are defined are available at the project website.
The third dataset is a voting records of Wikipedia adminship election (Wiki),
also from SNAP. The fourth dataset we study is an adjective network (ADJNet)
constructed from the synonyms and antonyms collected from Wordnet database.
Label information about whether the adjective is positive or negative comes
from SentiWordNet. The last dataset is a citation network we constructed from
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Table 1. Average Euclidean distance between node representations connected by posi-
tive edges versus negative edges with std. deviation. We can see that the avg. distance
between positive edge is significantly lower than negative edges indicating that SIGNet
preserves the conditions of structural balance theory.

Type of
edges

Epinions Slashdot Wiki SCOTUS ADJNet

positive 0.86 (0.37) 0.98 (0.31) 1.06 (0.27) 0.84 (0.25) 0.71 (0.16)
negative 1.64 (0.23) 1.60 (0.19) 1.56 (0.19) 1.64 (0.21) 1.77 (0.08)

ratio 0.524 0.613 0.679 0.512 0.401

written case opinions of the Supreme Court of the United States (SCOTUS).
We expand the notion of SCOTUS citation network into a signed network.
Unless otherwise stated, for directed networks we set |xi| = |yi| = K

2 = 20
for both SIGNet-NS and SIGNet; therefore |di| = 40. For a fair comparison,
the final embedding dimension for others methods is set to 40. For undirected
network (ADJNet) |di| = 40 for all the methods. We also set the total number
of samples (examples) to 100 million, N = 5, l = 50 and r = 1 for SIGNet-NS
and SIGNet. For all the other parameters for node2vec, SNE and SiNE we use
the settings recommended in their respective papers.

Does the embedding space learned by SIGNet support structural bal-
ance theory? Here we present our analysis on whether the embedding space
learned by SIGNet follows the principles of structural balance theory. We calcu-
late the mean Euclidean distance between representations of nodes connected by
positive versus negative edges, as well as their standard deviations (see Table 1).
The lower value of positive edges suggests positively connected nodes stay closer
together than the negatively connected nodes indicating that SIGNet has suc-
cessfully learned the embedding using the principles of structural balance theory.
Moreover, the ratio of average distance between the positive and negative edges
is at most 67% over all the datasets suggesting that SIGNet grasps the principles
very effectively.

Are representations learned by SIGNet effective at edge label predic-
tion? We now explore the utility of SIGNet for edge label prediction. For all
the datasets we sample 50% of the edges as a training set to learn the node
embedding. Then we train a logistic regression classifier using the embedding as
features and the sign of the edges as label. This classifier is used to predict the
sign of the remaining 50% of the edges. Since edges involve two nodes we ex-
plore several scores to compute the features for edges from the node embedding.
They are Concatenation: (concat): fij=di ⊕ dj , Average (avg): fij=

di+dj
2 ,

Hadamard (had): fij=di ∗ dj , L1: fij=|di − dj | and L2: fij=|di − dj |2.
Here fij is the feature vector of edge eij and di is the embedding of node vi.
Except for the method of concatenation (which has a feature vector dimension
of 80) other methods use 40-dimensional vectors. We use the micro-F1 scores to
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Table 2. Comparison of edge label prediction in all datasets. We show the micro F1
score for each feature scoring method. The best score across all the scoring method is
shown in boldface. SIGNet outperforms node2vec, SNE, and SiNE in every case. The
results are statistically significant with p < 0.01.

Eval. Dataset Name Epinions Slashdot Wiki ADJNet SCOTUS

concat

node2vec 0.831 0.776 0.749 0.594 0.543
SNE 0.854 0.778 0.751 0.602 0.528
SiNE 0.856 0.779 0.752 0.598 0.605

SIGNet-NS 0.911 0.793 0.816 0.599 0.56
SIGNet 0.920 0.832 0.845 0.573 0.557

avg

node2vec 0.853 0.775 0.747 0.603 0.516
SNE 0.853 0.776 0.748 0.601 0.532
SiNE 0.853 0.774 0.749 0.599 0.608

SIGNet-NS 0.837 0.771 0.769 0.620 0.509
SIGNet 0.879 0.809 0.801 0.574 0.512

had

node2vec 0.852 0.773 0.748 0.600 0.562
SNE 0.851 0.775 0.745 0.604 0.541
SiNE 0.854 0.772 0.748 0.589 0.609

SIGNet-NS 0.846 0.757 0.741 0.705 0.793
SIGNet 0.883 0.782 0.754 0.722 0.792

l1

node2vec 0.852 0.775 0.747 0.601 0.559
SNE 0.854 0.774 0.749 0.605 0.582
SiNE 0.853 0.773 0.746 0.609 0.608

SIGNet-NS 0.851 0.764 0.743 0.639 0.723
SIGNet 0.901 0.787 0.751 0.703 0.723

l2

node2vec 0.852 0.773 0.747 0.601 0.569
SNE 0.852 0.774 0.748 0.606 0.547
SiNE 0.787 0.776 0.745 0.612 0.611

SIGNet-NS 0.848 0.763 0.743 0.659 0.742
SIGNet 0.903 0.809 0.753 0.716 0.745

gain over node2vec 7.85 7.22 12.82 19.73 39.19
gain over SNE 7.73 6.94 12.52 19.14 36.08
gain over SiNE 7.48 6.80 12.37 17.97 29.62

gain over SIGNet-NS 0.99 4.92 3.55 2.41 -0.13

evaluate our method. We repeat this process five times and report the average
results (see Table 2). Some key observations from this table are as follows:
1. SIGNet, not surprisingly, outperforms node2vec across all datasets. For datasets
that contain relatively fewer negative edges (e.g., 14% for Epinions and 22% for
Slashdot), the improvements are modest (around 7%). For Wiki the gains are
moderate (around 12%) where 25% of edges are negative. For ADJNet and SCO-
TUS where the sign distribution is less skewed, SIGNet outperforms node2vec
by a huge margin (19% for ADJNet and 39% for SCOTUS).
2. SIGNet demonstrates a consistent advantage over SiNE and SNE, with gains
ranging from 6–12% (for the social network datasets) to 17–36% (for ADJNet
and SCOTUS).
3. SIGNet also outperforms SIGNet-NS in almost all scenarios demonstrating
the effectiveness of targeted node sampling over negative sampling.
4. Performance measures (across all scores and across all algorithms) are com-
paratively better for Epinions over other datasets because almost 83% of the
nodes in Epinions satisfy the structural balance condition [3]. As a result in
Epinions edge label prediction is comparatively easier than in other datasets.
5. The feature scoring method has a noticeable impact w.r.t. different datasets.
The avg. and concat. methods subsidize differences whereas the hadamard, L-1
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Table 3. Comparison of methods for node label prediction on real world datasets.
SIGNet outperforms other methods in all datasets.

Metric micro f1 macro f1
Datasets ADjNet SCOTUS ADjNet SCOTUS
node2vec 0.5284 0.5392 0.4605 0.4922
SNE 0.5480 0.5432 0.4840 0.5335
SiNE 0.6257 0.6131 0.6247 0.5796
SIGNet-NS 0.7292 0.8004 0.7261 0.7997
SIGNet 0.8380 0.8419 0.8374 0.8415
gain over node2vec 58.5920 56.1387 81.8458 70.9671
gain over SNE 52.9197 54.9890 73.0165 57.7320
gain over SiNE 33.9300 37.3185 34.0483 45.1863
gain over SIGNet-NS 14.9205 5.1849 15.3285 5.2270

and L-2 methods promote differences. To understand why this makes a differ-
ence, consider networks like ADJNet and SCOTUS where connected components
denote strong polarities (e.g., denoting synonyms or justice leanings, respec-
tively). In such networks, the Hadamard, L-1 and L-2 methods provide more
discriminatory features. However, Epinions and Slashdot are relatively large
datasets with diversified communities and so all these methods perform nearly
comparably.

Are representations learned by SIGNet effective at node label pre-
diction? For datasets like SCOTUS and ADJNet (where nodes are annotated
with labels), we learn a logistic regression classifier to map from node represen-
tations to corresponding labels (with a 50-50 training-test split). We also repeat
this five times and report the average. See Table 3 for results. As can be seen,
SIGNet consistently outperforms all the other approaches. In particular, in the
case of SCOTUS which is a citation network, some cases have a huge number
of citations (i.e. landmark cases) in both ideologies. Targeted node sampling,
by adding such cases to either η+i or η−i , situates the embedding space close to
the landmark cases if they are in η+i or away from them if they are in η−i , thus
supporting accurate node prediction.

How much more effective is our sampling strategy in the presence
of partial information? To evaluate the effectiveness of our targeted node
sampling versus negative sampling, we remove all outgoing edges of a certain
percent of randomly selected nodes (test nodes), learn an embedding, and then
aim to predict the labels of the test nodes. We show the micro f1 scores for
ADJNet (treating it as directed) and SCOTUS in Fig. 3 (a) and (b). As seen here,
SIGNet consistently outperforms SIGNet-NS. Withholding the outgoing edges
of test nodes implies that both methods will miss the same edge information in
learning the embedding. However due to targeted node sampling many of these
test nodes will be added to η+i or η−i in SIGNet (recall only the outgoing edges
are removed, but not incoming edges). Because of this property, SIGNet is able
to make an informed choice while optimizing the embedding space.
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Fig. 3. Micro F1 of ADJNet (a) and SCOTUS (b) datasets varying the percent of
nodes used for training. SIGNet outperforms SIGNet-NS in all cases. (c) and (d) show
execution time of SIGNet varying the number of nodes and threads.

How scalable is SIGNet for large networks? To assess the scalability of
SIGNet, we learn embeddings for an Erdos-Renyi random network for upto one
million nodes. The average degree for each node is set to 10 and the total number
of samples is set to 100 times the number of edges in the network. The size of the
dimension is also set to 100 for this experiment. We make the network signed by
randomly changing the sign of 20% edges to negative. The optimization time and
the total execution time (targeted node sampling + optimization) is compared
in Fig. 3 (c) for different vertex sizes. On a regular desktop, an unparallelized
version of SIGNet requires less than 3 hours to learn the embedding space for
over 1 million nodes. Moreover, the sampling times is negligible compared to the
optimization time (less than 15 minutes for 1 million nodes). This actually shows
SIGNet is very scalable for real world networks. Additionally, SIGNet uses an
asynchronous stochastic gradient approach, so it is trivially parallelizable and as
Fig. 3(d) shows, we can obtain a 3.5 fold improvement with just 5 threads, with
diminishing returns beyond that point.

5 Other Related Work

The concept of unsupervised learning in networks follow the trend opened up
originally by Skip-grapm models [13, 14]. Skip-gram models can be extended to
learn feature representations for documents [8], diseases [4] etc. Recently deep
learning based models have been proposed for representation learning on graphs
to perform prediction in unsigned networks [10,18]. Although these models pro-
vide high accuracy by optimizing several layers of non-linear transformations,
they are computationally expensive, require a significant amount of training
time and are only applicable to unsigned networks as opposed to our proposed
method SIGNet.

6 Conclusion

We have presented a scalable feature learning framework suitable for signed
networks. Using a targeted node sampling for random walks, and leveraging
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structural balance theory, we have shown how the embedding space learned by
SIGNet yields interpretable as well as effective representations. Future work is
aimed at experimenting with other theories of signed networks and extensions
to networks with a heterogeneity of node and edge tables.
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