
Covering Linear Orders with Posets

Proceso L. Fernandez†, Lenwood S. Heath∗,

Naren Ramakrishnan∗, and John Paul C. Vergara†

† Department of Information Systems and Computer Science,

Ateneo de Manila University, Quezon City 1108, Philippines

∗ Department of Computer Science, Virginia Tech, Blacksburg VA 24061, USA

Abstract

Much research has been done on the combinatorial problem of generating the

linear extensions of a given poset. This paper focuses on the reverse of that problem,

where the input is a set of linear orders, and the goal is to construct a poset or set of

posets that generates the input. Such a problem finds applications in computational

neuroscience, systems biology, paleontology, and physical plant engineering. In this

paper, several algorithms are presented for efficiently finding a single poset that gen-

erates the input set of linear orders. Several variations of the problem are addressed.

Algorithms are presented for constructing posets whose set of linear extensions is a

subset of the input. Finally, it is shown that the problem of finding the minimum set

of posets that cover the input is polynomially solvable for one class of simple posets

(kite(2)-posets) but NP-complete for a related class (hammock(2,2,2)-posets).

Categories and Subject Descriptors: H.2.8 [Database Management]: Database Ap-

plications - Data Mining; I.2.6 [Artificial Intelligence]: Learning

General Terms: Algorithms.

Keywords: partial orders, posets, linear extensions.

1

1 Introduction

The problem of reconstructing system dynamics from sequential data traces is an impor-

tant one, with applications in computational neuroscience [10], systems biology [1, 18],

paleontology [16], and physical plant engineering [9]. In these applications, we are given

time-indexed discrete symbolic sequences or continuous-valued measurements, and the aim

is to recover an underlying system-wide network model (reflecting connectivity, hierarchy,

or strength of influences) of the observed temporal data. A key step in such network

reconstruction is to elucidate order-theoretic constraints (e.g., lag, lead, or lack thereof)

among the system variables underlying a given dataset.

In neuroscience, for instance, the goal is to ascertain the connectivity of the neuronal

network from sequential information (time stamps, delays) about individual neuron fir-

ings. In systems biology, researchers seek to reconstruct an underlying reaction pathway

by studying correlations between enzyme concentrations and protein levels. In paleontol-

ogy, the approach is to infer evolutionary relationships among various taxa, in particular

whether evidence supports that one species definitely originated before another species.

Finally, in physical plant engineering, the data comprises symbol sequences indicative of

process stages and diagnostics, and the goal is to identify causative relationships that

might precede an event of interest.

Network reconstruction algorithms for unraveling system dynamics fall into two main

categories. In the first category, we assume a generative model for data and seek to infer

parameters of this model, conditioned on observed data. This is typically approached

probabilistically, e.g., using ML or MAP estimation. In the second category, we identify

constraints inferable from the given data and attempt to piece together these constraints

into a system-wide model that summarizes, reconciles, or compresses the individual con-

straints.

Here, we formalize problems that require the inference of order constraints from sequen-

tial data to reconstruct partial order information, in particular, to infer partially ordered

sets (posets) from linear extensions. Mannila and Meek [11] studied a version of these

2

problems; they cast the problem in a probabilistic setting and also presented algorithms

to mine a specific category of posets. We carefully study the theoretical complexity of

this problem, present a general framework to pose and study various inference tasks and

algorithms for mining restricted classes of posets.

The contexts of the remainder of the paper are as follows. In the next section, some

definitions and notations used in the paper are presented. Section 3 then covers the

problem of determining a single poset that generates the input linear order, and presents

two algorithms for solving the problem. The same problem is investigated for restricted

class of posets in the next section. In Section 5, two variations of the problem are discussed,

and these two may be aptly described as over-generation and under-generation. Section

6 introduces two data structures for storing the input more compactly, and shows how

they can be used by algorithms for deriving the output. The next section covers how

to construct a class of posets inductively, and also shows how this can be done using a

data structure in the previous section. Finally, in Section 8, the problem of finding a

mininmum set of posets to cover the input is formally defined, and the complexity results

for two classes are presented.

2 Preliminaries

Let V be a finite set of cardinality n ≥ 0. A (finite) partially ordered set or poset P =

(V,<P) is a pair consisting of a vertex set V and a binary relation <P⊆ V × V that is

irreflexive, antisymmetric, and transitive. For any u, v ∈ V , we write u <P v if (u, v) ∈<P .

For a given poset P = (V,<P), we say that a pair of distinct elements u, v ∈ V are

comparable in P , written u ⊥P v, if either u <P v or v <P u. Otherwise, u and v are

incomparable in P , written u ‖P v. Moreover, if u <p v and there is no w ∈ V such that

u <P w <P v, then we say v covers u, written u ≺P v, and also say that (u, v) is a cover

relation in P .

A poset P = (V,<P) corresponds to a directed acyclic graph (DAG) G = (V,E) with

edge set E = {(u, v) | u <P v}. The Hasse diagram H(P) for the poset P is a drawing of

3

m

m

m m

m m

m
HHHj

HHHj©©
©*

©©
©*

-

©©
©©

©* HHHHHj

7

2

4

1 6

5

7

Figure 1: Hasse diagram of the example poset

the transitive reduction of the DAG G. Equivalently, the edge set of the Hasse diagram

H(P) consists of all cover relations (u, v) in P .

As an example, let V = {1, 2, 3, 4, 5, 6, 7}, and let

<P = {(1, 6), (1, 3), (2, 1), (2, 3), (2, 4), (2, 5), (2, 6),

(4, 1), (4, 3), (4, 5), (4, 6), (5, 3), (6, 3),

(7, 1), (7, 3), (7, 4), (7, 5), (7, 6)}

be a binary relation on V . The reader may verify that P = (V,<P) is a poset. Its Hasse

diagram H(P) is in Figure 1.

When the Hasse diagram of a poset P = (V,<P) is a single path consisting of all the

n elements of V , then the poset P is also called a linear order. Formally, a linear order

L = (V,<L) is a poset such that u ⊥L v for every pair of distinct elements u, v ∈ V . A

linear order L determines a unique permutation v1, v2, . . . , vn of the elements of V with

v1 <L v2 <L · · · <L vn.

Given two posets P1 = (V,<P1
) and P2 = (V,<P2

) over the same vertex set, we say that

P2 is an extension of P1, written P1 v P2, if <P1
⊆<P2

. Moreover, if P2 is a linear order,

then we say that P2 is a linear extension of P1. For a given poset P , we denote its set of

linear extensions by L (P), and say that P generates L (P). Generating the set of linear

extensions of a given poset P is equivalent to generating all topological sorts of its Hasse

diagram [5]. For the poset P whose Hasse diagram is shown in Figure 1, the set of linear

4

extensions is readily computed to be

L (P) = {(2, 7, 4, 1, 5, 6, 3), (7, 2, 4, 1, 5, 6, 3),

(2, 7, 4, 1, 6, 5, 3), (7, 2, 4, 1, 6, 5, 3),

(2, 7, 4, 5, 1, 6, 3), (7, 2, 4, 5, 1, 6, 3)},

where the six linear extensions are given in permutation notation. Note that for any two

posets P1 and P2 over V , if P1 v P2 then L (P1) ⊇ L (P2). Interestingly, the set of all

posets on a given base set is also a partial order (with binary relation v) and forms a

semi-lattice. The bottom of the lattice is the empty poset, while the top consists of all

the linear orders on the given base set.

Much attention has been given to the combinatorial problems of counting [2, 3] and

generating the linear extensions of a given poset [4, 8, 12, 14, 17]. Brightwell and Winkler

[3] prove that the problem of determining the number of linear extensions of a given poset

is #P-complete. Pruesse and Ruskey [15] provide an algorithm that generates all linear

extensions of a given poset, which may be exponential in n in number. In this paper, we

investigate problems whose input is a set Υ of linear orders on a fixed base set V . The

problem space that we have in mind results in a poset or set of posets that generates (or

approximately generates) Υ, in the senses we develop in the next sections. In some of

these problems, we restrict the poset or set of posets to specific classes. We now define

those classes of posets.

A poset P = (V,<P) is called a leveled poset if the vertex set V can be partitioned

into (levels) V1, V2, . . . , Vk such that for any u ∈ Vi and v ∈ Vj , u <P v if and only if i < j.

Figure 2 illustrates a leveled poset. To facilitate discussion of leveled posets, we denote

the leveled poset P by the ordered set of sets

P = leveled(V1, V2, . . . , Vk).

The poset of Figure 2 is thus written leveled
(

{1, 4, 9}, {5, 10}, {3, 6, 7, 12}, {2, 8, 11}
)

.

The definition for leveled posets implies a couple of important consequences. First, for

5

m

m

m

m

m

m

m

m

m

m

m

mXXXXXz

XXXXXz
»»»

»»:

»»»
»»:

Z
Z
Z
Z
Z~

½
½
½
½
½>

-

-

HHHHHj

HHHHHj©©
©©

©*
©©

©©
©*

¡
¡
¡
¡
¡µ

@
@
@
@
@R

XXXXXz

XXXXXz

XXXXXz
»»»

»»:

»»»
»»:

»»»
»»:

Z
Z
Z
Z
Z~Z

Z
Z
Z
Z~

½
½
½
½
½>½

½
½
½
½>

\
\
\
\
\
\\w

¿
¿
¿
¿
¿
¿¿7

1

4

9

5

10

3

6

7

12

2

8

11

Figure 2: The Hasse diagram of a leveled poset

distinct elements u, v ∈ Vi, we have u ‖P v. Second, the cover relations in P consist of

≺P = {(u, v) | u ∈ Vi and v ∈ Vi+1}

Simple counting will also reveal that the number of linear extensions of a leveled poset P

is given by
∣

∣L (P)
∣

∣ =
∏

1≤i≤k

∣

∣Vi

∣

∣!

Leveled posets belong to a larger class of posets called graded posets, of which the

semi-lattice of posets is an example. By definition, a graded poset is a poset in which

every maximal chain has the same length, where a chain is defined as a totally ordered

subset of the poset [6].

Next, define a hammock poset as a leveled poset where the first and last partitions (V1

and Vk) consist of a single element each, and where for 2 ≤ i ≤ k − 1 either Vi and Vi+1

is a singleton. Figure 2 shows the Hasse diagram of a hammock-poset, with partition

{3}, {4, 14}, {7}, {1}, {6}, {12, 9}, {11}, {2, 8, 13}, {10}, {5}.

In this paper, we call a non-singleton Vi in a hammock poset as a hammock set (or

simply hammock), and call its elements hammock vertices. A vertex in a singleton par-

tition, on the other hand, is called a link vertex. The hammock poset described in Fig-

ure 2 is more specifically called a hammock(2,2,3)-poset to indicate the ordered sizes

6

m

m

m

m m m

m

m

m m m m

m

m
´́3

´́3

´́3

´́3

´́3

´́3QQs

QQs

QQs

QQs

QQs

QQs- - - - -3

4

14

7 1 6

9

12

11 8 10 5

2

13

Figure 3: Hasse diagram of a hammock-poset

of the hammocks. By a slight abuse of notation, we shall refer to this poset as P =
(

3, {4, 14}, 7, 1, 6, {9, 12}, 11, {2, 8, 13}, 10, 5
)

instead of the usual ordered set of sets.

When a hammock-poset has only one hammock, we call it a kite poset, or specifically

a kite(k)-poset if the size of the hammock is k. Kite posets are the simplest class of posets

that we consider in this paper.

We also consider in this paper a tree poset, which is a poset whose Hasse diagram is a

rooted directed tree, with each node (except for the root) covering exactly one other node.

The class of tree posets belongs to a well-known class of posets called series-parallel posets,

whose Hasse diagrams are series-parallel digraphs, and which naturally model electrical

networks.

3 Generating Posets

The simplest nontrivial problem from the problem space we wish to explore asks whether

there is a single poset that generates a set of linear orders.

Generating Poset

INSTANCE: A set Υ = {L1, L2, . . . , Lm} of linear orders on V = {1, 2, . . . , n}.

SOLUTION: A poset P such that L (P) = Υ.

We show that the Generating Poset problem can be solved in time polynomial in

n, the cardinality of V , and in m, the cardinality of Υ.

Theorem 1. The decision problem Generating Poset can be solved with an O(mn2)-

time algorithm that takes a set Υ of m linear orders on n elements as input and finds the

7

ALGORITHM: Generating Poset

INPUT: A set Υ = {L1, L2, . . . , Lm} of linear orders on V = {1, 2, . . . , n}.

OUTPUT: A poset P on V such that L (V) = Υ, if one exists.

1 <P ←
⋂

L∈Υ <L

2 if Υ = L (P)

3 return P

4 else

5 return failure

Figure 4: Polynomial-time algorithm to solve Generating Poset

poset P that generates Υ, if it exists.

Proof. The correctness and time-complexity of the Generating Poset algorithm in Figure 4

proves the theorem. In this algorithm, we build the binary relation <P by computing

∩L∈ΥL, the smallest partial order that contains all relations common to all the given

linear orders. This can be done in O(mn2) since each of the m linear orders has O(n2)

ordered pairs. By setting <P= ∩L∈ΥL, we are sure that P generates all linear extensions,

and no larger one can. It is sufficient, therefore, to show that P does not generate a

linear extension outside Υ. This can be done by generating L (P) and verifying the linear

extensions against Υ. At most m + 1 linear extensions will be generated before we are

sure whether or not L (P) = Υ. This can be done in O(mn) time by using the algorithm

of Pruesse and Ruskey [15] that generates the linear extensions of P in O(n) amortized

time per linear order. Therefore the Generating Poset algorithm in Figure 4 is correct,

and runs in O(mn2) time.

The first algorithm computes the elements of the binary relation of the desired poset

while reading the input linear extensions. Another approach to solving the Generating

Poset problem is to derive the cover relations first, then compute the transitive closure

of the set of these cover relations to determine the desired poset. We first present two

8

lemmas related to this approach.

Lemma 2. Let P = (V,<P) be a poset, and let u, v ∈ V be distinct. Then u ‖P v if and

only if there exists a linear order L ∈ L (P) such that u ≺L v and there exists a linear

order L′ ∈ L (P) such that v ≺L′ u.

Proof. If u ‖P v, then there exists at least one topological sort L of P in which u appears

immediately to the left of v, due to the alternate choices available to the depth first search

used in constructing a topological sort [5]. By the same argument, there must exist a

topological sort L′ of P in which v appears immediately to the left of u. This proves one

direction of the lemma.

For the other direction, suppose there exist linear orders L,L′ ∈ L (P) such that u ≺L v

and v ≺L′ u. The existence of L implies that in the poset P , either u <p v or u ‖P v.

The existence of L′, on the other hand, implies that either v <P u or v ‖P u. It follows

therefore that u ‖P v.

Lemma 3. Let P = (V,<P) be a poset, and let u, v ∈ V be distinct. Then u ≺P v if and

only if there exists a linear order L ∈ L (P) such that u ≺L v and there is no linear order

L′ ∈ L (P) such that v ≺L′ u.

Proof. If u ≺P v, take any linear extension L ∈ L (P). If there exists an element w such

that u <L w <L v, then either w ‖P u or w ‖P v, for otherwise, u 6≺P v. We can move u so

that all elements w satisfying the relation w ‖P u will be on its left, and we can move v so

that all w incomparable with v will be on its right, to produce a topological sort LT . Verify

that LT still satisfies all the elements of <P (since we have just rearranged incomparable

elements) and therefore is a linear extension of P . Therefore, there is a linear extension

L ∈ L (P) for which u ≺L v. Moreover, since u <p v, then for all L ∈ L (P), it follows

that u <L p and therefore there is no linear extension L′ ∈ L (P) for which v ≺L′ u. This

proves one direction of the lemma.

We now prove the other direction. If there exists L ∈ L (P) such that u ≺L v, then

either u <P v or u ‖P v. But since there is no L′ ∈ L (P) such that v ≺L′ u, then, by

9

Lemma 2, u and v cannot be comparable in P . Hence, u <P v. Furthermore, u ≺P v

because if there is a w such that u <P w <P v, then for all L ∈ L (P), it follows that

u <L w <L v, and we therefore cannot have u ≺L v. This proves the other direction of

the lemma.

With Lemma 3, the cover relations of a poset can be computed from the cover relations

of all of its linear extensions. Such cover relations in the linear extensions are the adjacent

entries when encoded in n-tuple form.

Theorem 4. The Generating Poset problem can be solved with an O(mn+ n3)-time

algorithm that takes a set of m linear orders Υ over a vertex set with n elements as input

and finds the poset P that generates Υ, if it exists.

Proof. The algorithm in Figure 5 can be used to prove the theorem. Lemma 3, together

with the uniqueness of the transitivity closure, assures us that the poset P created in

the two algorithms in Figures 4 and 5 are the same. This proves the correctness of the

second algorithm. The time complexity of the algorithm is as follows. Setting up the

n × n matrix C is done in O(n2). Steps 6-8 require O(mn)-time since there are O(n)

orders in each of the O(m) linear orders. Extracting the cover relations in Steps 11-

16 requires O(n2) time. Computing the transitive closure from the cover relations can

be done in O(n3)-time using Floyd-Warshall algorithm. Finally, verifying the generated

linear extensions of the computed poset requires O(mn) time, as discussed in the proof for

the previous algorithm. Therefore, the entire algorithm has a running time of O(mn+n3).

The theorem follows.

It should be noted that the number m of linear extensions of a given poset on n

elements is almost always bigger than O(n), and in the worst case, m = O(n!). The

second algorithm is better than the first one in two significant areas. First, on most

instances, it has a lower time complexity. Second, when only the set of cover relations

is required, the second algorithm immediately gives the desired result, whereas, the first

10

ALGORITHM: Generating Poset Using Cover Relations

INPUT: A set Υ = {L1, L2, . . . , Lm} of linear orders on V = {1, 2, . . . , n}.

OUTPUT: A poset P on V such that L (V) = Υ, if one exists.

1 . First, set up a matrix to record cover relations in all linear orders

2 for u← 1 to n

3 for v ← 1 to n

4 Cu,v ← 0

5 . Next, record each of the n− 1 cover relations for each of the m linear orders

6 for i← 1 to m

7 for (u, v) ∈≺Li

8 Cu,v ← 1

9 . Then extract the cover relations from the matrix

10 ≺P← ∅

11 for u← 1 to n− 1

12 for v ← u+ 1 to n

13 if Cu,v = 1 and Cv,u = 0

14 ≺P ←≺P ∪ (u, v)

15 else if Cu,v = 0 and Cv,u = 1

16 ≺P ←≺P ∪ (v, u)

17 <P ← transitive closure (≺P)

18 if Υ = L (P)

19 return P

20 else

21 return failure

Figure 5: An O(mn+ n3)-time algorithm to solve Generating Poset

11

requires an additional step to find the transitive reduction of the binary relation in the

generating poset.

4 Restricted Generating Poset Problem

If we have any knowledge about the structure of the poset that generates the set of linear

extensions, then specialized algorithms can be used with time complexity better than that

of any of the two previously discussed algorithms. In this section, we consider a restricted

version of the Generating Poset problem and apply it to a few classes of posets.

Let C be a predicate applicable to posets (perhaps C characterizes the Hasse diagram

of a poset). A poset on V that satisfies C is called a C-poset. Each such predicate defines

a class of posets, namely, {P | P is a C-poset}. We define a restricted version of the

Generating Poset problem using a predicate C as follows.

Generating C-Poset (GENPOSETC)

INSTANCE: A nonempty set Υ = {L1, L2, . . . , Lm} of linear orders on V = {1, 2, . . . , n}.

QUESTION: Is there a C-poset P on V that generates Υ, that is, such that C(P) is true

and L (P) = Υ?

As a simple example, let PATH be the predicate that describes a poset whose Hasse

diagram is a simple path. There is exactly one linear extension associated with such a

poset, namely, itself. Hence, GENPOSETPATH is trivially solved in polynomial time.

Consider now the predicate TREE defining the class of tree posets. We show that

GENPOSETTREE is solvable in O(mn+ n2)-time.

Theorem 5. Given a set of m linear extensions on an n-element vertex set, there is an

O(mn+ n2)-time algorithm to solve GENPOSETTREE.

Proof. The algorithm that we present for this problem is the same as the last algorithm,

except for the part that constructs the transitive closure. Since each vertex v ∈ V (except

for the root) covers exactly one other vertex, we can construct all (u, v) ∈<P by simply

12

traversing the path from v to the root. This can be done in O(n)-time for each vertex,

and therefore O(n2) overall. Thus the entire algorithm runs in O(mn + n2)-time. The

theorem follows.

To develop an efficient algorithm for the Generating Poset problem applied to

leveled posets, we first make the following definition and present some useful results related

to it.

Define the depth depth(v;P) of element v in poset P as 1 plus the number of elements

less than v:

depth(v;P) = 1 +
∣

∣{u ∈ V | u <P v}
∣

∣.

Thus, for a linear order, the depth of a vertex is simply its position in the permutation

representation of the linear order. The depth of any vertex in a poset can be determined

from the linear extensions of the poset as follows.

Lemma 6. Let P = (V,<P) be any poset. For any element v ∈ V ,

depth(v;P) = min
{

depth(v;L) | L ∈ L (P)
}

Proof. Let h = depth(v;P) and let L′ ∈ L (P) be a linear extension of P such that

depth(v;L′) = min
{

depth(v;L) | L ∈ L (P)
}

.

The h−1 elements u ∈ V for which u <P v must also precede v in L′. It follows, therefore,

that h ≤ depth(v;L′). Now suppose h < depth(v;L′), and let j = depth(v;L′) − h.

Then there are exactly j elements w ∈ V such that w <L′ v and w 6<P v (and hence

w 6<P u for each of the h − 1 elements mentioned earlier). This also implies that we can

move these j elements immediately after v, while keeping their relative orders, to produce

a linear order L′′ that is also a linear extension of P . This will, however, imply that

depth(v;L′′) < depth(v;L′), a contradiction. Therefore, h = depth(v;L′), and the lemma

follows.

Another result, specifically for leveled posets, is presented next.

13

Lemma 7. Let P = (V,<P) be a leveled poset with vertex partition V1, V2, . . . , Vk such

that u <P v if and only if u ∈ Vi, v ∈ Vj and i < j. The depths of vertices belonging to

the same partition, in all linear extensions of P is fixed within an interval. That is, there

exist integers k1 and k2 such that for all v ∈ Vi, and for all L ∈ L (P), the depth of v is

bounded by k1 ≤ depth(v;L) ≤ k2. In particular, k1 and k2 are given by

k1 = 1 +
∑

h<i

∣

∣Vh

∣

∣

k2 =
∑

h≤i

∣

∣Vh

∣

∣ = k1 + |Vi| − 1

Moreover, the number of linear extensions L of P for which depth(v;L) = k for any

particular k ∈ {k1, . . . , k2} is given by
∣

∣L(P)
∣

∣

/

∣

∣Vi

∣

∣.

Proof. Let V ∗h be the union of all partitions before Vi, and V ∗j be the union of all partitions

after Vi so that u <P v <P w for all u ∈ V ∗h , v ∈ Vi and w ∈ V ∗j . Clearly, V
∗
h ∪Vi∪V ∗j = V .

Any topological sort, therefore, of the Hasse diagram H(P) will have all the vertices in

V ∗h before all the vertices in Vi and all the vertices in V ∗j after all the vertices in Vi. Thus

for all u ∈ V ∗h , depth(u;L) < k1 for every L ∈ L (P), and for all w ∈ V ∗j , depth(w;L) > k2

for every L ∈ L (P). This proves the first part of the lemma.

For the other part, observe that each of the |Vi| vertices of the partition are equal except

in the labelling. Thus, we are sure that the depth of these vertices are equally distributed

among the indicated positions. There are |Vi| such positions, and |L (P) | total linear

extensions. Therefore, a simple formula for counting number of linear extensions L of P

for which depth(v;L) = k for any particular k ∈ {k1, . . . , k2} is given by
∣

∣L(P)
∣

∣

/

∣

∣Vi

∣

∣.

Theorem 8. Let LEVELED be the predicate defining the class of leveled posets. Given

a set of m linear extensions on an n-element vertex set, there is an O(mn + n2)-time

algorithm to solve GENPOSETLEVELED.

Proof. The algorithm in Figure 6 solves the given problem. The correctness is established

by Lemma 7. For the running time of the algorithm, setting up the Min and Max arrays

is done in O(n) while updating them is done in O(mn). Producing the sorted array A

14

can be done in O(n log n)-time using mergesort. Checking if Lemma 7 is satisfied in lines

13-17 is done in O(n), while building the partial order is in O(n2). For the last part,

checking if the number of linear extensions of P matches the size of Υ can actually be

done in constant time if the sizes of the vertex partitions are computed while performing

the Lemma 7 check. Thus, the overall running time of the algorithm is O(mn+ n2). The

theorem follows.

5 Relaxed Generation

In some instances, it is desirable to relax the generating requirement for the poset. For

example, consider as input a recorded set of neuron firing sequences, encoded as permuta-

tions. Even though there is a single neural network that generates each of the sequences, it

is unlikely that all occuring sequences are recorded because of experimental constraints. In

this case, finding a single poset that generates the observed set of sequences will probably

fail. Thus, one way to relax the generating requirement is to allow a poset to generate

linear extensions outside those in the input set. Of course, the empty poset will always be

able to satisfy this, but what is desired is a poset that is able to generate all of the input

linear orders with as few as possible extra linear extensions. This is formalized below.

Poset Extended-Cover

INSTANCE: A nonempty set Υ = {L1, L2, . . . , Lm} of linear orders on V = {1, 2, . . . , n}.

SOLUTION: A poset P such that Υ ⊆ L (P) and
∣

∣L (P)
∣

∣ is minimum.

Theorem 9. The Poset Extended-Cover problem is solvable in polynomial time.

Proof. We claim that the solution to the Poset Extended-Cover problem consists of

getting the intersection of the order relations in the set of linear orders. To see why this

is so, let <P=
⋂

L∈Υ <L. It immediately follows that if P = (V,<P), then P v L for

all L ∈ Υ. What remains to be shown is that there is no poset P ′ that covers all of the

linear extensions in Υ but covers fewer linear extensions than P . But for P ′ to generate

15

ALGORITHM: Generating Leveled Poset

INPUT: A set Υ = {L1, L2, . . . , Lm} of linear orders on V = {1, 2, . . . , n}.

OUTPUT: A leveled poset P on V such that L (V) = Υ, if one exists.

1 . Initialize the arrays to record minimum and maximum depth for each vertex

2 for v ← 1 to n

3 Minv ← n

4 Maxv ← 1

5 . Derive the min and max depths of every vertex in every linear extension

6 for i← 1 to m

7 for h← 1 to n

8 Let v be the element in linear extension Li having depth h

9 Minv ← min(h,Minv)

10 Maxv ← max(h,Maxv)

11 . Check if Lemma 7 is satisfied

12 Set A to be the array of vertices v ∈ V sorted by Minv value

13 for j ← 1 to n− 1

14 u← Aj

15 v ← Aj+1

16 if not ((Minu =Minv and Maxu =Minv) or Maxu < Maxv)

17 return failure

18 . Build the partial order, if passed the Lemma 7 check

19 <P← ∅

20 for u← 1 to n− 1

21 for v ← u+ 1 to n

22 if Minu < Minv

23 <P ←<P ∪ (u, v)

24 else if Minu > Minv

25 <P ←<P ∪ (v, u)

26 if |Υ| = |L (P) |

27 return P

28 else

29 return failure

Figure 6: A polynomial-time algorithm to solve GENPOSETLEVELED

16

a super set of Υ, <′P⊆
⋂

L∈Υ <L. Clearly, removing an orderd pair from <′P will only

increase the number of linear extensions. Therefore, P is the desired poset. To construct

P in polynomial time, we use the first or second algorithm for the Generating Poset

problem, but skip the verification step.

Another possible relaxation that can be applied to the generating requirement is to

allow a poset to not completely generate the input set of linear orders. Let Υ be a set of

linear orders on V . A poset P = (V,<P) is a partial cover of Υ if L (P) ⊆ Υ, that is, if

every linear extension of P is one of the linear orders in Υ. Moreover, P = (V,<P) is said

to be maximal in Υ if there is no poset P ′ 6= P on V such that P ′ v P and L (P ′) ⊆ Υ.

The number of partial cover posets for a set Υ of m linear orders may be exponential

in m. However, if we restrict our attention to some particular classes of posets, it may be

possible to show that the number of partial cover posets in that class is polynomial in m

and indeed can be generated in polynomial time.

Recall that a kite poset is a hammock poset with a single hammock. For kite posets,

there exists a polynomial time algorithm for determining partial covers of such types from

a given set of linear orders, as discussed in the next theorem.

Theorem 10. Let Υ = {L1, L2, . . . , Lm} be a nonempty set of linear orders on V =

{1, 2, . . . , n}. The set of all partial cover kite posets for Υ can be generated in O(mn4)

time.

Proof. Suppose that P is a kite poset that is a partial cover of Υ and let Vh ⊂ V be its

hammock. Then there exists unique elements u, v ∈ V such that for all winVh, u ≺P

w ≺P v. Let i = depth(u;P) and j = depth(v;P). It follows that 1 ≤ i < j ≤ n and

j− i ≥ 3. We search for the elements u and v by considering the O(n2) possible i, j pairs.

For each linear order L = (v1, v2, . . . , vn), define its i, j-restriction to be

L(i, j) = (v1, v2, . . . , vi−1, vi, vj , vj+1, . . . , vn).

For a given i, j pair, sort the elements of Υ by their i, j restrictions, ordered by the

entries from the leftmost to the rightmost. This can be done in O(mn) time using radix

17

sort. Let Lr ∈ Υ. There is a partial cover kite poset that has linear extension Lr if and

only if there are (j − i − 1)! elements of Υ having the same i, j restriction as Lr. This

is easily determined by scanning the sorted linear orders in O(mn) time. Thus, detecting

partial cover kites requires O(mn3) time.

To complete the time-complexity analysis, we count the number of possible kite posets

that can be returned by this algorithm. For kite(2)-posets, a linear order L ∈ Υ can

be a linear extension of at most O(n) kite(2)-posets since there are only O(n) adjacent

positions in a linear order. Thus, at most O(mn) kite(2)-posets can be found for Υ.

For each of these, constructing the binary relation requires O(n2). Thus all partial cover

kite(2)-posets can be constructed in O(mn3) (after being detected). The same is true for

all kite(k)-posets for 2 < k < n − 2. Thus for all possible kites, at most O(mn4)-time

for construction is required. The running time of this algorithm is therefore O(mn3) for

detection and O(mn4) for construction. The theorem follows.

We now proceed to an extension of this result to a class of hammock posets.

Theorem 11. Given a set Υ of m linear extensions on an n-element vertex set V , de-

termining all partial cover hammock posets having exactly 2 hammocks can be done in

O(mn5).

Proof. The algorithm we use is the same as the one for finding partial cover kite posets,

except, rather than considering only (i, j) pairs, we now consider two pairs (i1, j1) and

(i2, j2), with 1 ≤ i1 < j1 ≤ i2 < j2 ≤ n, and restrict the linear extensions based on these

two pairs. There will be O(n4) pairs (of pairs) to consider instead of O(n2). For each

restriction, we sort in O(mn)-time and check if there are (j1 − i1 − 1)! · (j2 − i2 − 1)!

linear orders in Υ having the same restriction. Detecting all partial cover hammock posets

(having exactly 2 hammocks) therefore requires O(mn5) time. It is easy to see that there

will be less such hammocks than kite posets for the same Υ. Therefore the construction

time will not require more than the O(mn4)-time needed for constructing all partial cover

kites. The theorem thus follows.

18

The last theorem can be extended to hammock posets with exactly k hammocks. Using

a similar reasoning, we can prove the following theorem.

Theorem 12. Given a set Υ of m linear extensions on an n-element vertex set V , de-

termining all partial cover hammock posets having exactly k hammocks can be done in

O(mn2k+1).

6 Using Trees and DAGs

The previous section touched on some algorithms for mining some classes of partial cover

posets. The general strategy involves sorting the set of linear extensions over different

possible restrictions. Such algorithms however are expensive when the input is stored in

a database since they require possibly many access to secondary storage. In this section

we consider (potentially) more compact data structures for representing the linear orders,

which can be used not only to reduce storage space but may improve some algorithms for

finding partial cover posets.

Given a set Υ = {L1, L2, . . . , Lm} over the base set V = {1, 2, . . . , n}, we define a

linear order tree of Υ as a rooted directed tree T (Υ) satisfying the following conditions:

1. There arem different paths from the root to the leaves, each corresponding to a linear

order (in n-tuple form) from Υ. Each of the vertices is labeled by the corresponding

element in the linear order.

2. No two distinct subpaths from the root to any node in the tree have the same vertex

sequence. Equivalently, each distinct prefix of the linear orders (in n-tuple form)

corresponds to a single subpath in the tree.

3. Each edge (u, v) is assigned a weight weight(u, v) equal to the number of distinct

paths (from root to leaves) that contain it. Equivalently, this weight is the number

of leaves in the maximal subtree whose root is the node v.

19

Figure 7 shows an example of a linear order tree. The space complexity of any linear

order tree is discussed in the next theorem.

Theorem 13. Let T (Υ) be a linear order tree for a set Υ of m linear orders on an n-

element base set. Then the linear order tree requires O(mn)-space in the worst case, and

Ω(m+ n)-space in the best case.

Proof. In the worst case, none of the linear orders have common prefix. In such a case,

the tree consists of m paths of length n that intersect only at the root node. The tree,

therefore, requires O(mn)-space in such an instance.

Consider now the case when m = k! for some k. In the best possible scenario, all

of these linear orders share a common prefix, and the common prefix is as long as it is

possible for a given set of linear orders. We count the number of nodes after the subpath

corresponding to the common prefix. When m = 2!, there are 4 nodes in the best case

(see Figure 8). When m = 3!, the best case has 15 nodes, and is constructed by adding

a (parent) node to the 4 nodes earlier, and then making 3 copies of it (which are then

connected to the subpath representing the common prefix). The number ak of nodes

occuring after the subpath of the common prefix in the best possible scenario for k! linear

orders is given recursively as follows:

ak = k(ak−1 + 1) = kak−1 + k

20

with the base case ak = 1. We can expand this equation to derive the desired result.

ak = (kak−1) + (k)

=
(

k(k − 1)(ak−2)
)

+
(

k(k − 1)
)

+ (k)

=
(

k(k − 1)(k − 2)(ak−3)
)

+
(

k(k − 1)(k − 2)
)

+
(

k(k − 1)
)

+ (k)

...

=
(

k(k − 1)(k − 2) · · · 1
)

+
(

k(k − 1)(k − 2) · · · 1
)

+
(

k(k − 1)(k − 2) · · · 2
)

+ · · ·+
(

k(k − 1)
)

+ (k)

= k! + k! +
(

k(k − 1)(k − 2) · · · 2
)

+ · · ·+
(

k(k − 1)
)

+ (k)

< k! + k! + k!

Thus, for m = k!, it is possible to have a (best) case where less than 3m nodes are

added after the subpath corresponding to the longest common prefix. Because the longest

common prefix can be O(n) long, then the best case has Ω(m+ n)-space complexity. The

theorem follows.

The linear order tree for an input set Υ can be constructed in O(mn2)-time. This is

because processing each of themn elements requires checking for a worst-case n children of

a particular node in the tree. Actually, there is no need to check n children of a particular

node, if for each node an array of (fixed) n pointers is used. However, if such is the data

structure used, then the size of the tree will be increased by a factor of n in the worst case.

Let L = (v1, v2, . . . , vn) be a linear order on V . We define the path p = (r, v1, v2, . . . , vn)

to be the path associated with L in the linear order tree D (Υ), from the root r to the leaf

vn. For each vertex v, let branchp(v) be the number of children the node v from the path

p has in the tree D (Υ).

A brute force way of extracting partial cover kites from the tree T is given in Figure

9. This algorithm processes each linear order and checks whether it is possible to have a

kite at any set of contiguous positions. The linear order tree in this case is simply used to

21

kr
5 1

k1
2 2 1

k2
1

k2
1 1

k3
1 1

k4
1

k1
1

k3 k4 k2 k4 k2 k3
1 1 1 1 1 1

k4 k3 k4 k2 k3 k4
1 1 1 1 1 1

k5 k5 k5 k5 k5 k5

Figure 7: A linear order tree for Υ = {12345, 12435, 13245, 13425, 14235, 21345}

search for specific linear orders in Υ quickly. The overall running time of this algorithm,

however, is O(m2n4), mainly due to the loops in Steps 3-8. Step 3 requires O(mn) since

there are m paths each of length O(n). Steps 4-5 clearly run in O(n2), then, finally, Step

7 may require O(mn), in the worst case when all the paths in T have to be traversed.

We can improve the brute force algorithm in Figure 9 by doing the checking of the

linear extensions of P =
(

v1, . . . vi−1, {vi, vi+1, . . . , vj}, vj+1, . . . , vn

)

only once instead of

the current (j − i + 1)! times. This can be done in several ways. One such way is to

check this only on a path where the hammock {vi, vi+1, . . . , vj} is arranged in increasing

order. Another is to put flags on the nodes in the tree T in order to indicate the size of

the hammocks (in partial cover kites) that begin with that node. In any case, the brute

force algorithm leaves a lot of room for improvement. One such improvement is to take

advantage of the edges (and their weights) in the linear order tree in order to prune the

search space further. The lemma that follows is the basis for this strategy.

Lemma 14. Let P =
(

v1, v2, . . . , vi, {vi+1, vi+2, . . . , vi+k}, vi+k+1, . . . , vn

)

be a kite(k)-

poset. P is a partial cover of Υ only if the following conditions are satisfied:

22

s s
s s
s

s s s s s s
s s s s s s
s s s

s

s

s
s
s

s
s
s

s
s
s

...
...

...

m = 2!

4 non-prefix nodes

m = 3!

15 non-prefix nodes

m = k!

ak = kak−1 + k

non-prefix nodes

Figure 8: Compact linear order trees requiring O(m+ n) space

23

ALGORITHM: Brute Force Mining of Partial Cover Kite Posets

INPUT: A set Υ = {L1, L2, . . . , Lm} of linear orders on V = {1, 2, . . . , n}.

OUTPUT: A set P = {P1, P2, . . . , Pn} of kite posets on V such that for each P ∈ P, L (P) ⊆ Υ.

1 Let T be the keyword tree for the set Υ

2 P ← ∅

3 for each path p = (r, v1, v2, . . . , vn) in the tree T

4 for i← 2 to n− 2

5 for j ← i+ 1 to n− 1

6 Poset P ←
(

v1, . . . vi−1, {vi, vi+1, . . . , vj}, vj+1, . . . , vn

)

7 if every linear extension L ∈ L (P) has a corresponding path in T

8 P ← P ∪ P

9 return P

Figure 9: Mining kite posets from a linear order tree using brute force algorithm.

24

1. the path p = (r, v1, v2, . . . , vi, vi+1, . . . , vi+k, vi+k+1, . . . , vn) exists in the tree T (Υ)

2. weightp(vi−1, vi) ≥ k!

3. branchp(vi) ≥ k

Proof. Clearly, the first item has to be satisfied, otherwise the linear extension

L = (v1, v2, . . . , vi, vi+1, . . . , vi+k, vi+k+1, . . . , vn)

of the poset P is not in Υ, and therefore P is not a partial cover of Υ. The second item

follows from the number of linear extension of kite(k)-poset, i.e., k!, each of which has the

common prefix (v1, v2, . . . , vi). The final item is due to the fact that any of the k elements

in the hammock can follow the vertex vi. The lemma follows.

Other pruning strategies can be implemented. For instance, we can also check if the

vertex vi has an edge of weight at least (k − 1)! to at least k of its children, and do the

checking recursively (i.e., to the descendants of v1). Another way to prune the search

space is to improve the data structure itself.

Define a linear order DAG D of a set Υ of linear orders as a directed acyclic graph

derived from combining common suffixes in the linear order tree of Υ into single paths.

See Figure 10 for a sample linear order DAG that corresponds to the tree in Figure 7. A

bottom-up strategy for combining the nodes defining common suffixes will generate the

desired DAG from a given tree. Verify that such construction requires fewer steps than

constructing the tree from Υ. Thus, the linear order DAG can still be constructed in

O(mn2) time from a given set Υ of linear orders (by first producing the tree T (Υ)).

Clearly, for a given set Υ of linear orders, the DAG D (Υ) is more compact than the

tree T (Υ), unless there exists no common suffix among the set of linear orders. In fact, we

can think of the DAG D (Υ) as a loss-less compression of both Υ and T (Υ) since both of

these can be completely reconstructed from the DAG. However, on the worst case, it still

requires O(mn) space, while in the best case, only O(m + n) is required, and therefore,

the same as those of the linear order tree. What the DAG D (Υ) offers, though, is a more

25

ks
5 1

k1
2 2 1

k2
1

k2
1 1

k3
1 1

k4
1

k1
1

k3 k4 k2 k4 k2
2

1
1
1

1

k4 k2 k3
A
AA
3 1

¡
¡¡
2

k5
6

kt

Figure 10: A linear order DAG for Υ = {12345, 12435, 13245, 13425, 14235, 21345}

efficient way to mine certain classes of posets than can be done using the linear order tree.

The next lemma can be used to find partial cover kite posets from a linear order DAG.

Lemma 15. Let P =
(

v1, v2, . . . , vi, {vi+1, vi+2, . . . , vi+k}, vi+k+1, . . . vn

)

be a kite(k)-

poset. P is a partial cover of the set Υ of linear orders if and only if the following

conditions hold.

1. The path p = (s, v1, v2, . . . , vi, vi+1, vi+2, . . . , vi+k, vi+k+1, t) exists in the DAG D (Υ).

2. There are k! subpaths from the nodes vi and vi+k+1 (of the path p).

Proof. If P is a partial cover of Υ, then since L = (v1, v2, . . . , vi, vi+1, vi+2, . . . , vi+k, vi+k+1)

is one of its linear extensions and is therefore an element of Υ, the path p defined in

the lemma must be a path in the DAG D (Υ). Moreover, its k! linear extensions must

also be in Υ, and therefore there must be k! subpath associated with the hammock

(vi, {vi+1, vi+2, . . . , vi+k}, vi+k+1). This proves one direction of the lemma. For the other

direction, since each path consists of a permutation of the n vertices in the base set of the

26

poset P , then if there are exactly k! subpaths from the nodes vi and vi+k+1 (of the path

p), then we are certain that (since the prefix and suffixes are common), it must follow that

the elements in these k! subpaths are the same, but in different order. Consequently all

of the k! linear extensions of P have their corresponding paths in the DAG D (Υ). Thus,

L (P) ⊆ Υ and therefore P is a partial cover of Υ, proving the other direction. The lemma

follows.

Figure 11 shows an algorithm that makes use of Lemma 15. In particular, the second

condition in Step 8 is sufficient to prove that the kite(2)-poset in Step 9 is a partial cover

of the input set. Steps 6-7 are also added to prune the search space. The basis for this

pruning technique is Lemma 14. By performing the tests on all paths in the DAG D (Υ),

we are certain that the set of all partial cover kite(2)-posets is returned by the algorithm.

Thus, only the time complexity of the algorithm in Figure 11 is needed to prove the next

theorem.

Theorem 16. Given an input set Υ of m linear orders on an n-element base set, the set

of all partial cover kite(2)-posets can be determined in O(mn3)-time.

Proof. Figure 11 shows an algorithm for mining the partial cover kite(2) posets. The

correctness is established in the preceding paragraph. For the time complexity, observe

the following crucial steps in the algorithm.

(a) Construction of the DAG in Step 1 can be done in O(mn2)-time as discussed previ-

ously.

(b) The loop in Step 3 iterates O(m) times, exactly the number of linear orders in Υ.

(c) Step 5 clearly iterates O(n) times.

(d) For the second condition in Step 8, we can start the search with vi and need only to

check in O(n)-time if vi+2 is a child of vi, then proceed to check (again in O(n)-time)

vi+1 and finally v1+3. Checking the second condition, therefore, requires O(n)-time.

27

ALGORITHM: Mining Partial Cover Kite(2)-Posets from Linear Order DAGS

INPUT: A set Υ = {L1, L2, . . . , Lm} of linear orders on V = {1, 2, . . . , n}.

OUTPUT: The set P = {P | P is a kite(2)-poset and L (P) ⊆ Υ}.

1 Let D be the linear order DAG for the set Υ

2 P ← ∅

3 for each path p = (s, v1, v2, . . . , vn, t) in the DAG D

4 v0 ← s

5 for i← 1 to n− 3 . vi is the candidate fork node (i.e., vertex before hammock)

6 if weight(vi−1, vi) < 2! . impossible to form kite(2)-poset

7 i← n . break the inner for-loop

8 else if vi+1 < vi+2 . ensure no duplicate checking is done

and subpath (s, v1, . . . , vi, vi+2, vi+1, vi+3) ends in same node vi+3 of p

9 P ← P ∪
(

v1, . . . vi, {vi+1, vi+2}, vi+3, . . . , vn

)

10 return P

Figure 11: Mining kite(2)-posets from a linear order DAG

28

(e) Performing the set union in Step 9 requires no additional scanning of P since we are

sure that, because of the first condition in Step 8, the poset to be added is not yet

in P. Thus, this can Step can be done in O(n)-time, proportional to the length of

the tuple.

The algorithm in Figure 11, therefore, runs in O(mn3)-time. Howeve, this is just done

to collect the kite(2)-posets in tuple form. Constructing the actual partial order from

the permutations requires additional processing. Similar to the discussion of the proof of

Theorem 10, there will be at most O(mn) permutations representing kite(2)-posets that

can be detected. For each of these permutations, there are O(n2) elements in the binary

relation of the corresponding poset. Therefore, constructing the partial cover kite(2)-

posets detected by the algorithm in Figure 11 runs in O(mn3)-time. The theorem follows.

7 Inductive Construction of Partial Cover Posets

This section discusses techniques for mining partial cover posets based on previously de-

termined partial covers. For instance, we can build partial cover kite(k)-posets if we know

all the partial cover kite(k − 1)-posets. This is presented formally as a lemma.

Lemma 17. Let P =
(

v1, . . . , vi, {vi+1, . . . , vi+k}, vi+k+1, . . . , vn

)

be a kite(k)-poset. Then

P is a partial cover of an input set Υ if and only if for each j ∈ {1, 2, . . . , k}, the poset

Px(j) =
(

v1, . . . , vi, vi+j , {vi+1, . . . , vi+j−1, vi+j+1, . . . , vi+k}, vi+k+1, . . . , vn

)

is a partial

cover poset of Υ.

Similarly, P is a partial cover of Υ if and only if for each j ∈ {1, 2, . . . , k}, the poset

Py(j) =
(

v1, . . . , vi, {vi+1, . . . , vi+j−1, vi+j+1, . . . , vi+k}, vi+j , vi+k+1, . . . , vn

)

is a partial

cover poset of Υ.

29

Proof. The proof is clearly established by the fact that

L (P) =
⋃

1≤j≤k

L (Px(j))

=
⋃

1≤j≤k

L (Py(j)) .

Each of these three expressions consists of the set of linear orders having all possible

permutations of {vi+1, . . . , vi+k} in between the same prefix (v1, v2, . . . , vi) and suffix

(vi+k+1, vi+k+2, . . . , vn).

The lemma offers two options for building partial cover kites having larger hammocks

inductively. Either start with the left end of the hammock or start with the other end.

Both of these ideas can be taken advantage of in mining for partial cover kites using the

linear order DAG. Observe also that for the base case (i.e., mining kite posets for k = 2)

has been discussed in two separate parts (using two different approaches) of this paper.

The same inductive approach can be extended to leveled-posets. The proof is also

similar to that of the preceding lemma, that is by verifying that the set of linear extensions

generated is exactly the same. Similar also to the previous lemma, the inductive approach

can start with the left end of a partition or on the right end, but in this case only one side

will be presented, for brevity.

Lemma 18. Let P = (V1, V2, . . . , Vk) be a leveled poset, and consider any partition Vh,

for some h ∈ {1, . . . , k}. Without loss of generality, suppose Vh has j > 2 vertices

vi+1, vi+2, . . . , vi+j (for some integer i). Then P is a partial cover leveled poset of a

set Υ of linear orders if and only if for all l ∈ {1, 2, . . . , j},

Ph(l) = (V1, V2, . . . , Vh−1, {vi+l}{vi+1, . . . , vi+l−1, vi+l+1, . . . , vi+j}, Vh+1, . . . , Vk)

is also a partial cover leveled poset in Υ.

30

8 Poset Cover Problem

A poset cover for a set Υ of linear orders on V is a set P of posets such that the union of

all linear extensions of all posets in P is Υ, that is, such that Υ =
⋃

P∈P L (P). There is

always at least one poset cover of Υ, since Υ is a poset cover of itself. The computationally

interesting problem is to minimize the number of posets in a poset cover.

Poset Cover

INSTANCE: A nonempty set Υ = {L1, L2, . . . , Lm} of linear orders on V = {1, 2, . . . , n}.

SOLUTION: A poset cover P = {P1, P2, . . . , Pk} of Υ such that k is minimum.

Most sets of linear orders do not have a corresponding generating poset. Hence, the

Poset Cover problem is usually the one that must be addressed. Heath and Nema [7],

however, have recently proved that Poset Cover is NP-complete. Hence, to investigate

polynomial-time solvable variants of Poset Cover, we restrict our attention to particular

classes of posets and poset covers whose elements come from a particular class.

C-Poset Cover (COVERC)

INSTANCE: A nonempty set Υ = {L1, L2, . . . , Lm} of linear orders on V = {1, 2, . . . , n}.

SOLUTION: A poset cover P = {P1, P2, . . . , Pk} of Υ such that k is minimum and C(Pi)

is true for every Pi ∈ P.

In fact, if we restrict our attention to KITE(2)-posets, the Poset Cover problem is

solvable in polynomial time.

Theorem 19. There is an O(m1.5n+mn3)-time algorithm to solve COVERKITE(2).

Proof. For a set Υ of linear orders on V , the set of all partial cover posets that satisfy

the predicate KITE(2) can be generated in O(mn3) time as discussed in the proof of

Theorem 10. Let p be the number of partial cover posets returned; clearly, p = O(mn),

since every linear order is associated with n− 1 kite posets satisfying KITE(2). Construct

an undirected graph with vertex set Υ and an edge between Lr and Ls if one of the

generated posets has both Lr and Ls as linear extensions. This graph has m vertices and

31

p edges. We can find a maximum matching in the graph using the algorithm of Micali and

Vazirani [13], which runs in O(m1/2p) = O(m1.5n) time. Choosing the kite poset for each

of the edges in a maximum matching plus one edge for every unmatched vertex yields an

optimal solution to COVERKITE(2).

In this section, we also show the NP-completeness of COVERHAMMOCK(2,2,2) using

a reduction similar to what Heath and Nema [7] used. In particular, we reduce from the

Cubic Vertex Cover, a known NP-complete problem, which is described below.

Cubic Vertex Cover

INSTANCE: A nonempty undirected graph G = (V,E) that is cubic, that is, in which

every vertex has degree 3; and an integer K ≤ |V |.

QUESTION: Is there a subset V ′ ⊂ V of cardinality K or less such that every edge in E

is incident on at least one vertex in V ′?

The main idea in the reduction is to represent edges with linear extensions, and vertices

with posets so that a linear extension representing an edge (u, v) can only be covered by

the hammock posets representing the vertices u and v. We construct it in such a way such

that if a vertex cover contains a particular vertex, t hen the corresponding poset cover

contains the corresponding hammock poset. This is further elucidated in the proof of the

following theorem.

Theorem 20. The problem COVERHAMMOCK(2,2,2) is NP-complete.

Proof. It is easy to easy to see that COVERHAMMOCK(2,2,2) is in the class NP. Given a

set of posets P, we check if it satisfies the cardinality requirement and then the covering

requirement. For the second requirement, we generate the linear extensions of every poset

P ∈ P, and collect these in the set Υ′. If Υ′ = Υ, then we have a poset cover. Each ham-

mock(2,2,2) poset has exactly 2!2!2! = 8 linear extensions that can be easily generated in

polynomial time. Collecting these linear extensions into a single set Υ′ and then comparing

this set with Υ can also be done in polynomial time using known efficient algorithms for set

union and comparison. Thus, the COVERHAMMOCK(2,2,2) problem is in NP. To complete

32

(a) A cubic graph example

n n¡¡

¡¡@@

@@

n n

n n¡
¡
¡
¡¡

PPPPPPP

PPPPPPPv1

v2 v3

v4

v6 v5

e1

e2

e3

e4

e5

e6

e7

e9 e8

(b) Template for constructing the hammock posets

Hammocks used for generating
edge-corresponding linear extensions

Hammocks used
for clean-up

i i i i i i i i i i i i i
i i i i i i i i i i i i

i i i i i i i i i i i i
¡µ ¡µ ¡µ ¡µ ¡µ ¡µ ¡µ ¡µ ¡µ ¡µ ¡µ ¡µ

@R @R @R @R @R @R @R @R @R @R @R @R¡µ ¡µ ¡µ ¡µ ¡µ ¡µ ¡µ ¡µ ¡µ ¡µ ¡µ ¡µ

@R @R @R @R @R @R @R @R @R @R @R @R
1 4 7 10 13 16 19 22 25 28 31 34 37

2 5 8 11 14 17 20 23 26 29 32 35

3 6 9 12 15 18 21 24 27 30 33 36

e1 e2 e3 e4 e5 e6 e7 e8 e9

(c) Hasse diagram of the hammock poset Pv1
corresponding to vertex v1 (incident on e1, e6, e9)

i i
i

i
i i

i

i
i i

i

i
i i i i i i1 4 16 19 25 28 37

2

5

17

20

26

29

3

15

18

24

27

¡µ

¡µ@R

@R ¡µ

¡µ@R

@R ¡µ

¡µ@R

@R- - - - - -- - - - -.

(d) Linear extensions that correspond to edges e1, e6 and e9

Le1=(1,3,2,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37)

Le6=(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,18,17,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37)

Le9=(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,27,26,28,29,30,31,32,33,34,35,36,37)

Figure 12: A cubic graph in an instance of Cubic Vertex Cover, and the hammock

posets and linear extensions that correspond to the vertices and edges respectively.

33

the proof of the theorem, we show a polynomial-time redcution from the Cubic Vertex

Cover problem, a known NP-complete problem, to the COVERHAMMOCK(2,2,2).

Let G = (VG, EG) and K ≤ |V | be an instance of the Cubic Vertex Cover problem.

If nv = |VG| and ne = |EG| then ne = 3nv/2 since G is a cubic graph. From the Cubic

Vertex Cover instance, define a COVERHAMMOCK(2,2,2) instance as follows. The

base set is V = {1, 2, . . . , 3(ne + 3) + 1}, and the set of linear orders Υ contains the base

linear order (1, 2, . . . , 3(ne + 3) + 1), written in tuple notation. The other elements of Υ

will depend on the labeling of the edges in G. In any case, we fix the elements of the tuple

at positions 1, 4, 7, . . . , 3(ne + 3) + 1 and let the other elements be possibly interchanged

with their adjacent non-fixed elements (see Figure 12). Using this idea, an edge ei is

represented by the linear order derived from the base linear order but whose elements at

3i− 1 and 3i have been interchanged.

Although we do not include the posets in the instance of the COVERHAMMOCK(2,2,2)

problem, we imagine that for every vertex v in the cubic graph G, there corresponds a

unique hammock(2,2,2) poset Pv. This hammock must cover the three linear orders corre-

sponding to the edges incident on v. This can be accomplished by making the vertices 3i−1

and 3i be elements of a hammock in Pv if the edge ei is incident on v (see Figure 12(c)).

We include all of the linear extensions of Pv in the set Υ. With such construction, the

linear order Lei
corresponding to the edge ei can only be covered by hammocks that cor-

respond to the vertices that are incident on ei. The only problem is that the hammock

poset Pv that covers a linear order Le also generates linear orders that do not represent

any edge in the cubic graph. These are the base linear order and four other linear orders

(which we shall extra linear orders) that result from interchanging the adjacent entries in

at least two of the three hammocks. The base linear order is covered by all hammocks

that correspond to vertices. For the remaining four linear orders, a clean-up operation is

performed.

For clean-up, we introduce enough linear orders and make some partial cover hammock

posets (not representing a vertex in the cubic graph) essential elements of any poset cover.

34

This way, we can ensure that the extra linear orders will always be covered. Let L be one

such (extra) linear order. By our construction, the pair of interchanged elements can not

occur beyond the pair of elements (3ne−1, 3ne). Let P be a hammock(2,2,2) poset whose

linear extensions include L, and whose hammocks occur at the last 3 possible hammock

positions i.e., on the pairs (3ne+2, 3ne+3), (3ne+5, 3ne+6) and (3ne+8, 3ne+9), as shown

in the template in Figure 12(b). Thus the first 3nv + 1 elements will form a chain, and

this chain is a chain copy of the first 3nv+1 elements of L. P generates exactly 2!2!2! = 8

linear orders, one of which is L. See Figure 13 for an illustration of clean-up for one extra

linear extension of the hammock poset of Figure 12(c). We include the seven other linear

extensions of P in the input intance Υ in our reduction. Furthermore, we include P in

the poset cover since the seven additinonal linear extensions that we introduce using it

cannot be covered by any other hammock(2,2,2) poset in the reduction. After processing

each extra linear order (i.e., constructing additional linear orders and pre-selecting the

hammock(2,2,2) poset that cover it), exactly 4nv hammock(2,2,2) posets (used for clean

up) will have been pre-selected for the poset cover, and 32nv linear orders in the set Υ

will have been covered. Furthermore, the only linear orders not covered will be those that

correspond to edges in the cubic graph, together with the base linear order.

Verify that every edge-corresponding linear order can only be covered by the two

hammock posets corresponding to the vertices that the edge is incident on. The base

linear order, on the other hand, is covered by every vertex-corresponding poset. With

the following construction, if there exists K vertices in the cubic graph that forms a

vertex cover, then K ′ = K + 4nv posets can cover the set Υ of linear orders in the

corresponding instance of the COVERHAMMOCK(2,2,2) problem. This is done by selecting

the K hammock posets that correspond to the elements of the vertex cover, together with

the 4nv hammock posets that are used for the clean-up. Similarly, if there exists K ′

posets that can cover Υ, then the K = K ′ − 4nv vertices that correspond to the vertex-

corresponding hammock posets in the poset cover of Υ also forms a vertex cover in the

cubic graph instance of theCubic Vertex Cover problem. Thus our reduction is correct.

35

(a) A sample extra linear order L

L=(1,3,2,4,5,6,7,8,9,10,11,12,13,14,15,16,18,17,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37)

(b) A hammock(2,2,2) poset P to cover L

i i i i
i i i

i i i
¡µ ¡µ ¡µ

@R @R @R¡µ ¡µ ¡µ

@R @R @Ri i i i i- - - - - i i i i i- - - - - - -.1 3 2 4 5 16 18 17 19 20 28 31 34 37

29 32 35

30 33 36

(c) Additional linear orders

L1=(1,3,2,4,5,6,7,8,9,10,11,12,13,14,15,16,18,17,19,20,21,22,23,24,25,26,27,28,30,29,31,32,33,34,35,36,37)

L2=(1,3,2,4,5,6,7,8,9,10,11,12,13,14,15,16,18,17,19,20,21,22,23,24,25,26,27,28,30,29,31,33,32,34,35,36,37)

L3=(1,3,2,4,5,6,7,8,9,10,11,12,13,14,15,16,18,17,19,20,21,22,23,24,25,26,27,28,30,29,31,32,33,34,36,35,37)

L4=(1,3,2,4,5,6,7,8,9,10,11,12,13,14,15,16,18,17,19,20,21,22,23,24,25,26,27,28,30,29,31,33,32,34,36,35,37)

L5=(1,3,2,4,5,6,7,8,9,10,11,12,13,14,15,16,18,17,19,20,21,22,23,24,25,26,27,28,29,30,31,33,32,34,35,36,37)

L6=(1,3,2,4,5,6,7,8,9,10,11,12,13,14,15,16,18,17,19,20,21,22,23,24,25,26,27,28,29,30,31,33,32,34,36,35,37)

L7=(1,3,2,4,5,6,7,8,9,10,11,12,13,14,15,16,18,17,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,36,35,37)

Figure 13: Performing a clean-up by handling the extra linear orders.

36

What needs to be done now is to check that the reduction can be done in polynomial

time. Let nv and ne =
3nv

2 be the number of vertices and edges respectively in the

cubic graph, part of the instance of the Cubic Vertex Cover problem. The number

of elements in the base set, and hence the length of each linear order, will be given by

3ne+10. The number of linear extensions that will be created is exactly 7nv+1+4 ·7nv =

35nv + 1. Thus, the input set Υ of linear orders can be constructed in time polynomial

to the number of vertices and edges in the cubic graph instance. Also, since computing

K ′ = K + 4nv is done in constant time, then the entire reduction is done in polynomial

time. Because the Cubic Vertex Cover problem is NP-complete, we can now conclude

that the COVERHAMMOCK(2,2,2) problem is also NP-complete.

9 Conclusions

This paper has formalized problems related to identifying sets of posets that summarize

or compress order-theoretic data sets. Through formalization, we hope to open the door

for greater research into these problems. While the problems bear much resemblance to

classical set cover problems, they also have striking differences, as the objects to be used

in a solution are only available implicitly, rather than explicitly given as in set cover prob-

lems. There are also variations of Poset Cover that ask for approximate solutions.

For example, one might allow a solution that is a set of posets that has linear extensions

outside of the input set of linear orders; in this case, one must decide what it means to

have a good approximation.

Acknowledgements

This research was supported in part by NSF Grant ITR-0428344

37

References

[1] A. Arkin, P. Shen, and J. Ross. A Test Case of Correlation Metric Construction of

a Reaction Pathway from Measurements. Science, Vol. 277(5330):pages 1275–1279,

Aug 1997.

[2] G. Brightwell, H. J. Promel, and A. Steger. The average number of linear extensions

of a partial order. Journal of Combinatorial Theory Series a, 73(2):193–206, 1996.

[3] G. Brightwell and P. Winkler. Counting Linear Extensions. Order, Vol. 8(3):pages

225–242, 1991.

[4] E. R. Canfield and S. G. Williamson. A loop-free algorithm for generating the linear

extensions of a poset. Order, 12(1):57–75, 1995.

[5] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein. Introduction to Algorithms,

Second Edition. The MIT Press and McGraw-Hill Book Company, 2001.

[6] J. R. Griggs. Matchings, cutsets, and chain partitions in graded posets. Discrete

Math., 144(1-3):33–46, 1995.

[7] L.S. Heath and A.K. Nema. The Poset Cover Problem. Submitted, 2007.

[8] J. F. Korsh and P. LaFollette. Loopless generation of linear extensions of a poset.

Order, 19(2):115–126, 2002.

[9] S. Laxman, P.S. Sastry, and K.P. Unnikrishnan. Discovering Frequent Episodes and

Learning Hidden Markov Models: A Formal Connection. IEEE Transactions on

Knowledge and Data Engineering, Vol. 17(11):pages 1505–1517, 2005.

[10] A. K. Lee and M. A. Wilson. A Combinatorial Method for Analyzing Sequential

Firing Patterns Involving an Arbitrary Number of Neurons Based on Relative Time

Order. Journal of Neurophysiology, Vol. 92(4):pages 2555–2573, 2004.

38

[11] H. Mannila and C. Meek. Global Partial Orders from Sequential Data. In Proceedings

of the Sixth ACM SIGKDD International Conference on Knowledge Discovery and

Data Mining (KDD’00), pages 161–168, 2000.

[12] A. Ono and S. Nakano. Constant time generation of linear extensions. Fundamentals

of Computational Theory, Proceedings, 3623:445–453, 2005.

[13] P.A. Peterson and M.C. Loui. The General Maximum Matching Algorithm of Micali

and Vazirani. Algorithmica, Vol. 3:pages 511–533, 1988.

[14] G. Pruesse and F. Ruskey. Generating the linear extensions of certain posets by

transpositions. SIAM Journal on Discrete Mathematics, 4(3):413–422, 1991.

[15] G. Pruesse and F. Ruskey. Generating Linear Extensions Fast. SIAM Journal on

Computing, Vol. 23(2):pages 373–386, 1994.

[16] K. Puolamaki, M. Fortelius, and H. Mannila. Seriation in Paleontological Data: Using

Markov Chain Monte Carlo Methods. PLoS Computational Biology, Vol. 2(2), Feb

2006.

[17] F. Ruskey. Generating linear extensions of posets by transpositions. Journal of

Combinatorial Theory Series B, 54(1):77–101, 1992.

[18] C.H. Wiggins and I. Nemenman. Process Pathway Inference via Time Series Analysis.

Experimental Mechanics, Vol. 43(3):pages 361–370, Sep 2003.

39

