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Abstract

Qualitative assessment of scientific computations is an
emerging application area that applies a data-driven approach
to characterize, at a high level, phenomena including condi-
tioning of matrices, sensitivity to various types of error prop-
agation, and algorithmic convergence behavior. This paper
develops a spatial aggregation approach that formalizes such
analysis in terms of model selection utilizing spatial struc-
tures extracted from matrix perturbation datasets. We fo-
cus in particular on the characterization of matrix eigenstruc-
ture, both analyzing sensitivity of computations with spectral
portraits and determining eigenvalue multiplicity with Jordan
portraits. Our approach employs spatial reasoning to over-
come noise and sparsity by detecting mutually reinforcing in-
terpretations, and to guide subsequent data sampling. It en-
ables quantitative evaluation of properties of a scientific com-
putation in terms of confidence in a model, explainable in
terms of the sampled data and domain knowledge about the
underlying mathematical structure. Not only is our method-
ology more rigorous than the common approach of visual in-
spection, but it also is often substantially more efficient, due
to well-defined stopping criteria. Results show that the mech-
anism efficiently samples perturbation space and successfully
uncovers high-level properties of matrices.

Introduction
A significant trend has recently developed in the numeri-
cal and scientific computing community, with researchers
employingdata-drivenmethodologies to assess broad, ex-
plicative features characterizing scientific computations. A
typical application is in the analysis and “explaining away”
of computations that may not be producing correct results.
Such an approach is in stark contrast to the traditional fo-
cus on developing ever-stable numerical methods, to avoid
the dangers of finite-precision computations. The philo-
sophical shift is significant, since as Chaitin-Chatelin and
Fraysśe point out, “the aim is no longer to control the com-
puting error, but rather to extract [high-level] meaning from
results.” (Chaitin-Chatelin & Frayssé 1996) Data-driven
methodologies have been successfully applied in studying
phenomena including conditioning of matrices, sensitivity
to various types of error propagation, and algorithmic con-
vergence behavior.
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This approach to analysis of scientific computations has
been labeled by one scientific computing group asquali-
tative computing(Chaitin-Chatelin & Traviesas 2002), and
has many parallels to its namesake in the artificial intelli-
gence community, particularly qualitative spatial reasoning
in the style advocated by (Abelsonet al. 1989). (1) It uti-
lizes imagistic reasoning, expressing data in a suitable spa-
tial context, and extracting and analyzing higher-level spa-
tial structures in order to characterize, explain, or optimize
a phenomenon of interest (Yip & Zhao 1996). Just as dy-
namical systems are qualitatively characterized with phase
portraits (Yip 1991) and kinematic mechanisms in configu-
ration spaces (Joskowicz & Sacks 1991), scientific compu-
tations are now characterized in perturbation and precision
spaces. (2) It must harnessdomain-specific knowledge, here
encoding the underlying mathematical structure, e.g. seman-
tics arising from perturbation theory and computational in-
variants. Such information is important in order to discard
spurious models of data, and to define rigorous acceptability
criteria for models. (3) It shouldintegrate data collection
and analysis, focusing sample collection to gather informa-
tion most useful for the key purpose of extracting qualitative
insight. Intelligently closing-the-loop by interleaving sam-
ple selection and model assessment carefully exercises the
degrees of freedom in collecting data in order to extract re-
inforcing interpretations that overcome noise and sparsity.

These facets present novel research issues when encoun-
tered in the context of assessing scientific computations. Our
goal in this paper is to cast the assessment problem in a for-
mal setting emphasizing qualitative model selection and iter-
ative data collection. We do this within a spatial aggregation
mechanism that identifies structures in the data, according
to domain knowledge about the mathematical structure. To
the best of our knowledge, this work presents thefirst sys-
tematic algorithms for performing complete imagistic anal-
yses on matrix perturbation datasets (as opposed to rely-
ing on human visual inspection (Chaitin-Chatelin & Frayssé
1996)), and which interleave data collection and model eval-
uation until a high-confidence model is obtained. We first
introduce the underlying problem domain and briefly survey
background work in spatial aggregation, before describing
our specific qualitative analysis mechanism. Results on im-
portant classes of matrix problems are then presented.



Qualitative Assessment of
Matrix Eigenstructure

Many tasks in scientific computing involve assessing the
eigenstructure of a given matrix, i.e., determining the lo-
cations of eigenvalues, their multiplicities, and their sensi-
tivities to perturbations. Eigenstructure helps characterize
the stability, sensitivity, and accuracy of numerical methods
as well as the fundamental tractability of problems. For in-
stance, the eigenstructure of a matrix underlying the behav-
ior of a harmonic oscillator gives valuable information about
the vibration characteristics of the oscillator, as a function of
forced inputs.

The spectral portraithas emerged as a popular tool for
graphically visualizing eigenstructure in the complex plane;
it displays how the eigenvalues of a matrix change as pertur-
bations are introduced. The spectral portrait of a matrixA is
defined as the map in the complex plane:

Φ(z) = log10 ‖A‖2 ‖(A− zI)−1‖2, (1)

whereI is the identity matrix. The singularities ofΦ are
located at the eigenvalues ofA, and the analysis determines
the sensitivity of computation to numerical imprecision by
analyzing how the map decreases (from∞) moving away
from the eigenvalues. To see why, notice that whenz is
an eigenvalue, the expression(A− zI)−1 is undefined be-
cause the determinant of(A− zI) is zero, and in such a case
‖(A− zI)−1‖2 is taken to be∞. Whenz is near an eigen-
value,‖(A− zI)−1‖2 will be a large but finite number and
can be expressed in terms of‖A‖2 as 1

10−k‖A‖2
, for somek.

Here,Φ(z) is simply given byk.
Why is the spectral portrait useful? Notice that the con-

dition ‖(A− zI)−1‖2 ≥
1

10−k‖A‖2
describes the region en-

closed by a level curve labeledk in the spectral portrait. It
can be proved (e.g., see (Chaitin-Chatelin & Frayssé 1996))
that such a region also denotes the eigenvalues of perturbed
matricesA+ E where‖E‖2 ≤ 10−k‖A‖2. Hence the level
curves in a spectral portrait correspond to perturbation mag-
nitudes, and the region enclosed by a level curve contains
all possible eigenvalues that are equivalent with respect to
perturbations of the given magnitude. The above discussion
will lead us to believe that the spectral portrait should con-
sist of small circles around the eigenvalues, with radii given
by Φ(z) = k. For many matrices this is indeed true. Un-
fortunately, for other classes of matrices (known as ‘non-
normal’ (Golub & Van Loan 1996)) this ideal behavior does
not emerge, and this is where the graphical depiction of the
spectral portrait becomes an invaluable tool.

Fig. 1(a) shows the spectral portrait of a non-normal ma-
trix with eigenvalues at1, 2, 3, and4. The qualitative in-
terpretations from such a portrait are several-fold. First, if
the matrix is represented only to a certain (normwise) per-
turbation level, and we try to compute its eigenvalues, then
we might obtain any point inside the region enclosed by the
corresponding curve! The level curves summarize the ex-
tent to which we can afford loss of precision. Observe that
at small perturbation levels, the spectral portrait is discon-
nected (which is desirable), but it gets connected at higher
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Figure 1: Qualitative assessment of matrix eigenstructure
by analysis of portraits in the complex plane. (a) Spectral
portrait. Perturbation levels increase going outward from
singularities at the (unperturbed) eigenvalues, and a curve
surrounding multiple eigenvalues indicates a level of preci-
sion (labeled with negative logarithm base 10) beyond which
those eigenvalues cannot be distinguished. Eigenvalues at2
and 3 are the most sensitive to perturbation, but that at4
becomes indistinguishable under a larger perturbation, and
1 merges under a very large perturbation. (b) Jordan por-
trait. Multiple positive and negative perturbations cause the
computed eigenvalues to lie on the vertices of two slightly
shifted polygons, yielding a star with degree twice the eigen-
value multiplicity. The six-fold symmetry of the star reveals
a multiplicity of three for the eigenvalue at1.

levels. Second, notice that there is a “drift” toward the eigen-
value at1 as perturbations are increased. This gives impor-
tant information about the “defectiveness” of the eigenval-
ues and the non-normality of the matrix. Finally, the spec-
tral portrait suggests how iterative computations involving
the matrix will converge; the defectiveness of the eigenval-
ues indicates that there might be periods of instability and/or
periods of slow convergence.

Having determined the relationship between the eigen-
values at given perturbation levels, we typically desire to
ascertain the (geometric) multiplicities of the eigenvalues,
for further insight into matrix stability. This information is
summarized in the so-called Jordan decomposition, whose
direct computation is often difficult or impossible (Golub
& Van Loan 1996). Once again, we can employ a data-
driven approach, here determining the multiplicities by qual-
itatively assesing a different portrait in the complex plane,
which we call aJordan portrait. The Jordan portrait uses
the property that, due to finite precision arithmetic, thecom-
puted eigenvalueswill actually be thetrue eigenvaluesof a
suitably perturbed matrix. Specifically, the computed eigen-
values corresponding to an actual eigenvalueλi under per-
turbationδ are given by:

λi + |δ|
1

ρi e
iφ
ρi , (2)

whereλi is of multiplicity ρi, and the phaseφ of the per-
turbationδ ranges over{2π, 4π, . . . , 2ρiπ} if δ is positive
and over{3π, 5π, . . . , 2(ρi + 1)π} if δ is negative. These
phase variations imply that the computed eigenvalues lie on
the vertices of a regular polygon with2ρi sides, centered on
λi, and with diameter influenced by|δ|. Therefore, qualita-
tive analysis of thesymmetryin a Jordan portrait that graph-



Samples Evaluate perturbation level (Eq. 1) for locations in com-
plex plane, initially on a coarse uniform grid.

Spatial aggregatesAggregate interpolated samples with Delau-
nay triangulation. Construct iso-contour curves from con-
nected points at same perturbation level.

Correspondence Establish analogy for connected points on dif-
ferent curves; abstract into curve merge events.

Qualitative model merge tree; constructed by tracking iso-
contour correspondence outward from eigenvalues. For each
pair of eigenvalues, evaluate model by separation and sur-
roundedness.

Sampling policy Sample until absolute separation and absolute
surroundedness are above limits, and relative values are con-
verging.

Table 1: Spatial aggregation for spectral portrait analysis.

Samples Perform random normwise perturbation (Eq. 2) at de-
sired level.

Spatial aggregatesAggregate samples into triangles. Identify
congruent triangles by geometric hashing.

Correspondence Establish analogy between congruent vertices;
abstract as rotation.

Qualitative model polygon isomorphism; obtained by identify-
ing rotations applicable to many points. Evaluate model by
likelihood calculation.

Sampling policy Collect additional samples at same or subse-
quent perturbation level, until posterior distribution of models
is peaked enough.

Table 2: Spatial aggregation for Jordan portrait analysis.

ically superimposesnumerous such perturbed calculations
reveals the multiplicityρi. For example, the Jordan portrait
in Fig. 1(b) depicts a6-gon around the eigenvalue at1, hence
indicating that the eigenvalue multiplicity is three.1

Spatial Aggregation Mechanism
As the previous section illustrates, matrix eigenstructure can
be characterized by imagistic analysis of responses to matrix
perturbations. Our goal is to automatically and confidently
extract high-level matrix properties through application of
spatial reasoning. We develop here an integrated mechanism
that abstracts perturbation data into spatial structures, quan-
titatively evaluates and compares models of matrix proper-
ties, and collects additional perturbation samples as needed.
For spectral portraits, the analysis can be viewed as yield-
ing a model we call amerge tree(Fig. 2, right), indicating
for each pair of eigenvalues the perturbation level at which
the iso-contours surrounding them merge. For Jordan por-
traits, our model is apolygon isomorphism(Fig. 3) captur-
ing the symmetry of perturbations around an eigenvalue, and
thereby revealing the multiplicity. The key components and
knowledge for the spatial reasoning mechanism are summa-
rized in Tabs. 1 and 2; detailed in the following subsections;
and illustrated in Figs. 2 and 3.

1The ‘noise’ around the star is an artifact of the given matrix;
while this ‘hallucination’ effect is not modeled in this paper, it can
pose problems for automatic imagistic analysis.

Extracting Spatial Structures
We ground our analysis mechanism in the Spatial Aggrega-
tion Language (SAL) (Bailey-Kellogg, Zhao, & Yip 1996;
Yip & Zhao 1996; Zhao, Bailey-Kellogg, & Fromherz
2003), which defines a set of uniform operators and data
types that exploit domain knowledge to identify structures
in spatial data. SAL was developed in order to make ex-
plicit the reasoning performed by a number of successful AI
applications (e.g., dynamical systems analysis (Yip 1991),
kinematic mechanism analysis (Joskowicz & Sacks 1991)),
and to provide a suitable vocabulary and mechanism for new
applications. Subsequent reasoners utilized SAL in a num-
ber of different areas, including decentralized control de-
sign for thermal regulation (Bailey-Kellogg & Zhao 2001),
object manipulation (Zhao, Bailey-Kellogg, & Fromherz
2003), weather data analysis (Huang & Zhao 1999), anal-
ysis of diffusion-reaction morphogenesis (Ordóñez & Zhao
2000), and identification of pockets underlying gradient
fields (Bailey-Kellogg & Ramakrishnan 2001).

Two key aspects of SAL are particularly relevant here:
use of aspatial aggregaterepresentation identifyingrela-
tionshipsamong spatial objects in data, and exploitation of
domain knowledgein uncovering these aggregates. The spa-
tial aggregates in matrix eigenstructure analysis identify re-
lationships among perturbations in portraits, and the domain
knowledge coveys the underlying mathematical properties.
We note that the matrices being studied are defined by dif-
ferent applications, so additional, specific knowledge about
those domains could provide even more guidance; we do not
pursue that here but focus on generic portrait analysis.

Our spectral portrait analysis algorithm groups perturba-
tion samples into iso-contours and “tracks” these contours
outward from eigenvalues through containment and merging
events. The construction of iso-contours follows a stadard
spatial aggregation paradigm; the tracking requires an ex-
tension discussed below. Samples are taken initially on a
uniform grid, and isocontours extracted by interpolating lo-
cations at which desired perturbation levels are achieved.
Spatial aggregates are computed by (1) localizing computa-
tion by aggregating interpolated points into a Delaunay tri-
angulation (relating nearby objects); (2) grouping connected
points in a perturbation level (relating similar objects); and
(3) constructing curve objects for the groups of points (com-
posing lower-level objects into higher-level objects).

Our Jordan protrait analysis algorithm groups perturba-
tion samples into polygons and recognizes symmetry by a
rotation aligning polygons. (The eigenvalue multiplicity is
then apparent from the polygon degree.) As with spectral
portraits, the first step follows a standard spatial aggrega-
tion approach, and the second requires extensions. Samples
are taken by random normwise perturbation, and so appear
“scattered” around the complex plane. The underlying math-
ematics indicates, however, that there is a structure in the
portrait, such that, except for noise, points lie on vertices
of regular polygons. In order to identify the polygon, we
first group triples of points and compose them into triangles
whose congruence will allow a subsequent analysis step to
identify the symmetry defining the polygon.

In both cases, then, spatial aggregation groups samples



into some higher-level structure (iso-contours, triangles).
The abstraction step allows further analyses to treat the ob-
jects “holistically,” with more global properties (e.g. cur-
vature and congruence) that aren’t defined on mere sets of
lower-level objects. In particular, the key to the applica-
tions studied here iscorrespondencerelationships. Corre-
spondence among level curves in spectral portraits reveals
the merge events indicating when eigenvalues become in-
distinguishable. Similarly, correspondence among triangles
of Jordan samples reveals the underlying symmetry. As an
imagistic analysis aid, correspondence has been well stud-
ied in computer vision and pattern recognition. Our pur-
pose here is to distill essential principles into the traditional
SAL mechanism, exploiting the hierarchical composition of
spatial aggregates, and demonstrating the effective use of
such a correspondence mechanism in overcoming noise and
sparisty in interpreting portraits.

In the context of SAL computations, it is easy to see
that correspondence is intimately connected with locality
and continuity, since close, similar parts of one object typ-
ically correspond to close, similar parts of another. Fur-
ther, identification of sites at which this isn’t true can be
interesting events about which to reason (e.g. in the spec-
tral portrait application, this distinguishes straight contain-
ment of iso-contours from merge events). Thus our corre-
spondence mechanism leverages the fact that a SAL hierar-
chy composes lower-level objects into higher-level objects
based on locality and continuity. Our mechanism has two
key steps: (2) establishanalogyas a relation among lower-
level constituents of higher-level objects; (2) establishcor-
respondencebetween higher-level objects as anabstraction
of the analogy between their constituents.

Definition 1 (Analogy) Given a setL of lower-level SAL
objects that have been composed into a setH of higher-
level objects,li, lj ∈ L is said to be ananalogous pairwith
respect tohk, hl ∈ H if li ∈ hk, lj ∈ hl. An analogyis a
relationA onL with respect toH containing a subset of the
possible analogous pairs.

Definition 2 (Correspondence)Given setsL and H and
an analogyA as in Definition 1, acorrespondenceon H
abstractingA is a relationM ⊆ H × H defined for each
pair of objects with analogous components inA, so that the
objects can be transformed (approximately) onto each other.

The analogy between constituents is well-defined only be-
cause of the context provided by the higher-level objects;
higher-level correspondence then captures a more global
view of the local matches. In spectral portrait analysis,
analogy is defined for the interpolated samples on separate
curves, connected by Delaunay edges. Correspondence then
identifies pairs of curves with a strong set of analogies. In
Jordan portrait analysis, analogy is defined by identifying
(e.g. with geometric hashing) pairs of congruent triangles
and mapping the vertices between each pair. Correspon-
dence abstracts the analogy into a rotation such that anal-
ogous vertices map onto each other.

Representing and Evaluating Models

Our goal is to identify and evaluate models explaining the
perturbation data in terms of high-level matrix properties.
The qualitative spatial models considered here capture spa-
tial objects and their relationships, but do not otherwise im-
pose any restrictions on how models are posited; in particu-
lar, a model could be derived by means other than SAL, and
could be represented using a rich vocabulary of relationship
types (e.g. (Cui, Cohn, & Randell 1992)). Given a model,
derived either by the aggregation / correspondence mech-
anism or by some other means, we desire to decide how
well the data support it, that is, to quantify confidence in
the posited relationships. We employ a confidence function
f(M,d) to assess a qualitative spatial modelM in terms of
a datasetd.

In a spectral portrait, a model encapsulates level curves
and their merging relationships in the merge tree structure
(can also be a forest), with leaves for eigenvalues, internal
nodes for curves, and a parent function such that a parent’s
perturbation level is one larger than its child’s. Such a model
indicates, for each pair of eigenvalues, the magnitude of the
smallest perturbation level at which they are equivalent. The
datasetd is a sampled grid of points in the complex plane,
and we would like to ensure that the eigenvalues are def-
initely separate before their lowest common ancestor, and
that the level curve for that ancestor definitely surrounds the
eigenvalues. For each pair of eigenvaluesi andj, letv be the
level of the ancestor, and defineRi,v−1, Rj,v−1, andRij,v

to be the regions (sets of samples) containing respectively
i, j, and both, as computed by region growing with sam-
ples of at most the given perturbation level. We measure the
separation by the smallest number of samples on any grid
walk between regionsRi,v−1 andRj,v−1. We measure the
surroundedness by the maximum flow on the grid forRij,v,
from sourcesRi,v−1 to sinksRj,v−1 (i.e. strong connection
between the regions).

In a Jordan portrait, the polygon isomorphism model re-
lates pairs of vertices of two polygons. Such a model cap-
tures the symmetry relation of the sample points by the in-
duced rotationθ around the eigenvalueλ, minimizing dis-
tance between related pairs. We can solve a straightforward
least-squares problem forθ andλ, and calculate multiplic-
ity ρ as180◦/θ. The datasetd is a random set of sample
points in the complex plane, each of which can be viewed
as an i.i.d. estimate of the eigenvalue. Thus we define the
scoref(M,d) to be the likelihoodP (d|M). This likelihood
can be simply given asΠkP (dk|λ, ρ, δ) whereλ andρ are
the eigenvalue location and multiplicity as revealed by the
modelM , andδ is the perturbation level. The likelihood
of each data elementdk = a + ib is in turn assessed using
Eq. 2, distributing probability mass of1 among all vertices
of the implied polygon mapping for the eigenvalue and per-
turbation level corresponding to pointdk. For instance, each
vertex of the triangle isomorphism in Fig. 1(b) at a given
perturbation level receives probability of1

6 . This particular
formulation off can be viewed as assessing the posterior of
a model under a uniform prior over all models.



Intelligently Collecting Additional Samples
Interleaving model generation, model assessment, and addi-
tional data collection steps can be viewed as causing a pro-
gressive peaking of the posterior distribution of models (un-
der a probabilistic interpretation of model assessment). We
treat data analysis in the simultaneous updating sense, al-
though the Jordan portrait application lends itself to sequen-
tial updating (owing to the i.i.d. samples). In other words,
with each additional data point, the analysis is performed
over the entire dataset accumulated so far; this means that
some models hastily ruled out in earlier stages could become
relevant later. At some point, enough confidence is gained
so that sampling can be stopped. Until that point, decisions
must be made as to which additional samples to collect, un-
der the degrees of freedom provided. Asampling policyde-
fines the stopping criteria and sample selection strategy. It
could be designed by optimization or based on heuristic con-
siderations.

In the spectral portrait, data collection is driven by sys-
tematic global subsampling, where we begin with an uni-
form grid and the sampling strategy has the choice of ex-
panding the grid (to ensure a merge tree rather than for-
est) or recursively subsampling (to gain more confidence).
The design of the stopping criterion for the spectral portrait
borrows from discretization refinement in numerical quadra-
ture (Krommer & Ueberhuber 1998), wherepairs of formu-
las with different levels of approximation are used so that
one of the formulas isexpectedto yield more accuracy than
the other, for most classes of problems. Between such suc-
cessive applications, if the estimated answer doesn’t change
significantly, we declare to the model to be a sufficient ap-
proximation of the given function. Similarly, to assess the
quality of the spectral portrait model, we evaluate the stabil-
ity of merge and separation events, under the metrics pro-
vided by model assessment, with respect to additional sub-
sampling.

In the Jordan portrait, data collection is driven by increas-
ing the number of independent samples from which the mul-
tiplicity is estimated. The sampling strategy here must de-
cide whether to sample (i) at the same perturbation level,
(ii) at a higher perturbation level, or (iii) at the same pertur-
bation level unless the number of posited models increased
(thereby avoiding hallucination). Stopping criteria for the
Jordan portrait assess the peakedness of the posterior distri-
bution forM and whether the log-likelihood scoref crosses
a certain threshold (guaranteeing adequacy of a dataset be-
fore generalization).

Results
We have applied the our qualitative analysis mechanism on
the testbank of matrices described in (Chaitin-Chatelin &
Fraysśe 1996). These matrices are drawn from a variety of
application domains such as hydrodynamics, stress analy-
sis, control theory, fluid flow, and membrane transport phe-
nomena. For want of space, we illustrate our results on
only two matrices—RoseandBrunet—from this collection,
highlighting the intuition behind the mechanism and perfor-
mance results.

Fig. 2 illustrates the spectral portrait analysis for the
10 × 10 Rosematrix, motivated by the problem of deter-
mining the roots of the underlying characteristic equation.
A priori, a double-factorial number of binary merge trees
are possible, but the approach presented here eliminates al-
most all of them without even considering them. Instead, it
considers only one plausible tree for a given number of sam-
ples, and decides whether or not the merge events captured
in the tree can be clarified. Depending on model assess-
ment, the mechanism then subsamples or expands, or halts.
While some amount of correspondence is found even with
the coarse initial grid (top of Fig. 2), the model is a forest
and the model assessment yields low confidence (few sep-
arating points). As a result, our mechanism computes ad-
ditional samples on a finer, larger grid (bottom of Fig. 2),
yielding high confidence in the (correct) curve merge tree
shown. The mechanism converges from this point when ad-
ditional data are collected.

We have applied this approach to a variety of matrices
(e.g., polynomial companion matrices, matrices from finite
discretization of continuous models), with different num-
bers and spacings of roots. In each case, the correspondence
mechanism correctly identifies the correct model with high
confidence, essentially declaring that any other model that
would be proposed would be highly inconsistent with the
data, after 1–3 subsamples and 1–3 grid expansions.

Fig. 3 demonstrates the results of applying our Jordan por-
trait analysis with the10 × 10 Brunetmatrix. The top part
uses a small set of sample points, while the bottom two parts
use a larger set and illustrate a good vs. bad correspondence.
As the number of samples increases, so does the risk of
model “hallucination” — finding some subset of points that
by chance happen to correspond, as in bottom of Fig. 3. This
illustrates the importance of monitoring relative model con-
fidence and controlling the sampling to avoid over-sampling.

We tested 10 matrices across 4–10 perturbation levels. To
study the effect of sampling strategy, we organized data col-
lection into rounds of 6–8 samples each and experimented
with the three sample collection policies mentioned earlier.
We varied a tolerance parameter for triangle congruence
from 0.1 to 0.5 (effectively increasing the number of mod-
els posited) and determined the number of rounds needed to
determine the Jordan form, for each of the sampling policies
described earlier. Policy 1 required an average of 1 round
at a tolerance of 0.1, up to 2.7 rounds at 0.5. Even with a
large number of models proposed, additional data quickly
weeded out bad models. Policy 2 fared better only for cases
where policy 1 was focused on lower perturbation levels, and
policy 3 was preferable only for the Brunet-type matrices.
In other words, there is no real advantage to moving across
perturbation levels! In retrospect, this is not surprising since
our Jordan form computation treats multiple perturbations
(irresp. of level) as independent estimates of eigenstructure.

The effectiveness of our spatial aggregation mechanism
lies as much in the targeted use of domain knowledge as in
the design of a suitable sampling policy, as revealed by the
following count of feasible models:
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Figure 2: Example ofRosematrix spectral portrait analysis for (top) a small, coarse grid, and (bottom) an extended, subsampled
grid. (left) Delaunay triangulation analogy for interpolated points comprising contours. (middle) Analogy at an example merge
event; separating samples marked with “+”. (right) Curve merge tree: eigenvalues at bottom; node for curves labeled with
perturbation level. Merge events indicate at what perturbation level descendant eigenvalues are indistinguishable.
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larger sample set but lower-scoring model. (left) Approximately-congruent triangles. (middle) Evaluation of correspondence
in terms of match between original (red dots) and rotated (green circles) samples. (right) Associated eigenvalue and rotation
symmetry.



application initial round 1 round 2 round 3
spectral (Rose) 15 1 (forest) 1 1
Jordan (Brunet) 1000 1 1 2

Discussion
Automated imagistic reasoning, of the form presented here,
is an important aid to reasoning about the quality, efficiency,
and robustness of numerical computations involving matri-
ces. Since matrix computations underly many areas of sci-
ence and engineering (especially where linear models are
employed), qualitative analysis of spectral portraits and Jor-
dan portraits will play a central role in these domains.

The analysis of correspondence using our spatial aggre-
gation mechanism is similar in spirit to that of (Huang &
Zhao 1999) for weather data interpretation, and can be seen
as a significant generalization, formalization, and applica-
tion of techniques studied there for finding patterns in me-
teorological data. Similarly, our methodology captures and
generalizes the computations employed in object recogni-
tion, allowing the body of research developed there to be
applied to a broader class of applications, such as in scien-
tific computing. This work is also very much philosophi-
cally aligned with work on structure-mapping (e.g. (Falken-
hainer, Forbus, & Gentner 1989)), which seeks to develop
a cognitively plausible theory and computationally efficient
engine for analogical reasoning. The cited paper points out
that “analogies are about relations rather than simple fea-
tures.” As with recent work from that same group (and oth-
ers) on sketching (e.g. (Forbus, Tomai, & Usher 2003)), our
mechanism applies this key insight to spatial reasoning; an
important aspect of this paper is the integration of analog-
ical relationships within the context of spatial aggregation
relationships.

Similarly to compositional modeling (Falkenhainer &
Forbus 1991), we advocate targeted use of domain knowl-
edge, and as with qualitative/quantitative model selection
(e.g. (Capelo, Ironi, & Tentoni 1998)), we seek to deter-
mine high level models for empirical data. Our focus is
on problems requiring integrated qualitative model analy-
sis and sampling to overcome sparsity and noise in spatial
datasets. A possible direction of future work is to explore if
the inclusion-exclusion methodology popular in grid algo-
rithms (Bekaset al. 2001) can be fruitfully harnessed in
a SAL-based framework. Our long-term goal is to study
data collection policies and their relationships to qualita-
tive model determination. The decomposable nature of SAL
computations promises to both support the design of effi-
cient, hierarchical algorithms for model estimation as well
as provide a deeper understanding of the recurring roles that
domain knowledge plays in spatial data analysis.
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