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ABSTRACT

Forecasting a domestic political crisis (DPC) in a country of
interest is a very useful tool for social scientists and policy
makers. A wealth of event data is now available for historical
as well as prospective analysis. Using the publicly available
GDELT dataset, we illustrate the use of frequent subgraph
mining to identify signatures preceding DPCs, and the pre-
dictive utility of these signatures through both qualitative
and quantitative results.
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1. INTRODUCTION

Predicting and monitoring political events is known to
be an important and challenging task in social science re-
search [2]. Of particular interest is forecasting domestic po-
litical crises (DPCs), which refer to significant opposition
against the government usually triggered by an election or
legalizing an unfavorable law [22, 15]. As discussed in [1],
forecasting a DPC is an arduous tasks compared to predic-
tion of other types of events such as rebellion and interna-
tional crises.

Recent times have significantly increased the wealth of re-
sources available to the computational social scientist. Re-
sources such as ICEWS [9] and GDELT [12] span most of the
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countries of the world and have been used to develop predic-
tion models for a range of events such as international and
domestic crises, insurgency, rebellion, and ethic and religion
violence [3, 4]. Methods used include discriminant analy-
sis [17], HMMSs [16], Bayesian time series forecasting [14, 5,
19, 11}, and vector auto regression (VAR) methods [10, 6].
For a survey on these predictive models, we point the readers
to [18].

We take a contrast data mining approach wherein we seek
patterns in interaction graphs that are frequent in situations
with DPCs but infrequent in situations without DPCs, and
thus discriminative. To the best of our knowledge, our work
is the first graph mining analysis of intra-country events
from GDELT. Using the features (interaction patterns) ex-
tracted, we demonstrate how they are both explanatory for
the underlying crises and predictive of future DPCs.

2. PRELIMINARIES
2.1 The GDELT Dataset

The Global Database of Events, Language, and Tone (GDELT)

is a new CAMEO-coded dataset containing geolocated events
with global coverage from 1979 to the present [12]. The data
are collected from news reports throughout the world. Cur-
rently, this dataset provides daily coverage on the events
found in news coverage published on that day. The event
types in CAMEO taxonomy are divided into four primary
classifications: verbal cooperation and material cooperation,
which are represented by numbers 1 to 10, and verbal con-
flict and material conflict, which are represented by numbers
11 to 20. Moreover, there are 32 different roles for the actors
in each event, e.g., Police Forces, Government, and Military.

In GDELT, each record captures information pertaining
to a specific event. To generate our models, we use the fol-
lowing attributes from an event: MonthYear, ActorlType,
Actor2Type, RootEventCode, AvgTone, and GoldsteinScale,
where ActorlType and Actor2Type store the role of the ac-
tors participating in the event, RootEventCode € {1,...,20}
identifies whether this event is cooperative or conflicting,
AvgTone is a subtle measure of the importance of an event
and plays as a proxy for the impact of that event, and the



Primary Description

Role Codes
copr Police forces, officers
GOV Government: the executive, governing parties, coalitions partners
JUD Judiciary: judges. courts
MIL Military: troops, soldiers, all state-military personnel
orp Political opposition: opposition parties, individuals, activists
REB Rebels: armed and violent (non-state) groups, individuals
SPY State intelligence, secret service

Secondary | Description

Role Codes
BUS Business: businessmen, companies, etc.
CVL Civilian individual or group
EDU Education: educators, schools, students
ELI Elites: former government officials or celebrities
LAB Labor: workers, unions
LEG Legislature: parliaments, assemblies, “lawmakers”
MED Media: journalists, newspapers, television stations,etc.
REF Refugees

Tertiary Description

Role Codes
MOD Moderate: “moderate,” “mainstream.” etc.
RAD Radical: “radical,” “extremist,” “fundamentalist,” etc.
UAF Armed forces that cannot be identified as MIL, COP, or REB

Figure 1: Actors defined in the CAMEO codebook.

GoldsteinScale captures the impact of this event on stability
of a country.

2.2 Modeling Domestic Interactions

We define an interaction graph of CAMEO event-types
involving CAMEO actors. Let G = (V, E,l,w) denote an
undirected, labeled multigraph. The set of nodes V rep-
resent CAMEOQO actors; each node is given a distinct actor
code (label) by the node label function I. The set of edges
E represent the CAMEO interactions (events) between ac-
tors. The edge label function w assigns a label to an edge e
corresponding to the type of an interaction.

We construct the interaction graph from a collection of
entries in the GDELT dataset. For example, a record in-
dicating a “Demand” interaction (type 10) between govern-
ment (GOV) and refugees (REF) is represented in the in-
teraction graph as an edge e = (u,v) between the nodes
with labels I(u) = GOV and I(v) = REF; the label of this
edge is w(e) = 10. In this paper, we use monthly interac-
tions graphs; for a given country, we compile the entries in
GDELT for one month and construct the graph as described
above.

We now present several definitions that will be used in the
detection and forecasting tasks of Section 3:

Support. Let G and G be two graphs, D = {G1,...,Gn}
be a collection of graphs, and let Gs C G denote that G is
a subgraph of G. We define the support of G in dataset D,
denoted as supp(Gs, D), as the number of graphs G € D for
which Gs C G. In other words, supp(Gs,D) = |{G € D |
Gs C G}

Frequent Subgraph. Given a collection of graphs D =
{G1,...,Gn} and a threshold value 6 € (0, 1], a graph G,
is frequent if it is a subgraph of at least § x N graphs in D,
or, equivalently, supp(Gs, D) >= 6N.

Subgraph Matching. If a graph S is isomorphic to at
least one subgraph G of G, then G; is a match of S in G.

3. PROPOSED METHODS

We hypothesize that the interactions between specific ac-
tors of a country are important indicators of a DPC in that
country. For instance, if there are a high number of conflicts

between the government and civilians, the country is likely
to experience a DPC imminently or in the near future. Fur-
thermore, interactions between actors during a DPC should
be different from interactions in periods of peace. The meth-
ods presented below are motivated by this idea.

3.1 Classifying and Detecting DPCs

We pose the problem of detecting DPCs as a classifica-
tion task. Given the interaction graph G of a country for
some period of time ¢, we use a subset of the subgraphs
of G to classify ¢t as DPC or non-DPC. Formally, let X =
{z1,2,...,2.} be aset of multigraphs; the nodes of a graph
in X are a subset of the CAMEOQO actor codes, and its edges
represent CAMEO interactions. We refer to X as the feature
set. Let G* be an interaction graph corresponding to a pe-
riod of time ¢, and let G% be a vector of length n, where the
the it" entry in G% is 1 if 2; € X is a subgraph of G¢, and
0 otherwise. We call G% the feature vector of G*. Our task
is to find a detection function f that indicates whether a
feature vector corresponds to a period of DPC or non-DPC;
that is f : G% — {DPC,nonDPC}.

A key step in finding a good detection function is to find
features, i.e. subgraphs, that appear frequently in interac-
tion graphs and, at the same time, are discerning enough to
separate DPC graphs from non-DPC ones. We separate the
monthly interaction graphs in our dataset into two groups,
D+ and D_, representing DPC and non-DPC graphs, re-
spectively. We then find the frequent subgraphs in each
dataset, F and F_ using the gSpan algorithm [23]. Since
we are interested in finding the most discriminative features
for the classification task, we ignore all the subgraphs that
are common between F; and F_, thus obtaining a discrimi-
native feature set DF'S = {Fy UF_} —{F;NF_}, which we
use for classification. As explained in Section 4, at this point
in our process, we find that, in most cases, the intersection
between F} and F_ is very small. This means that actor
interactions are very different on months with and without
DPC, and the set of frequent subgraphs in the two groups
are promising discriminator features for classification.

After obtaining the DF'S, we can compute the feature
vector of a graph using a subgraph matching algorithm [24,
25, 20]. We use a simplified version of the TreeSpan algo-
rithm [25] to find the exact matching in this paper. Once
we have the feature vectors for all graphs in our dataset, we
train different classification algorithms to obtain the detec-
tion function.

3.2 Forecasting a Domestic Crisis

We now turn to the task of predicting DPCs using the in-
teraction graph. To this end, we develop various regression
models that estimate the probability of a DPC occurring
in the near future. We employ the LASSO methodology
(Least Absolute Shrinkage and Selection Operator) [21].
Like a regular linear regression, LASSO minimizes the sum
of squared errors, but with an added constraint on the sum
of the absolute values of the coefficients. We use LASSO
over a standard linear regression in order to encourage a
sparse representation; that is, we are interested in reducing
the original feature set, as some of the initial graph proper-
ties are expected to be redundant. We develop three types
of LASSO-based logistic regression models that use (i) event
counts (M_Event), (ii) graph properties (M_Graph), and (iii)
features from both M_Event and M_Graph (hybrid model
designated as M_Event_Graph).



Event Counts: In this baseline model, we use the monthly
counts of each event type in each country as explanatory
variables. Moreover, we include the average AvgTone and
the average GoldsteinScale associated with these events. For-
mally, the regression model estimates D PC', the probability
of a DPC at time ¢, as

20
DPC; = Z(aiEit—l + BiTit—1 + ¥ Git—1) + DPCy—1 (1)

i=1

In the above equation, F; is the counts of events of type i,
T; is the average AvgTone, G; is the average GoldsteinScale
for the event type ¢ and DPC} is the dependent variable.
We also use the lagged value of DPC in all of the regression
models, since DPCs can persist over consecutive months.

Graph Properties: In this regression model, we use graph-
based features. We compute structural properties of the in-
teraction graphs: Total Number of Edges (TotEdge), Aver-
age Weighted Degree (AvgWDeyg), Diameter (Diam), Num-
ber of connected components (Comp). In addition, we cal-
culate the weighted degree of each actor and their centrality,
based on different measures, such as betweenness (betwCen),
closeness (closCen), and degree (degCen). The model esti-
mates DPC; as

DPCy = ZiEV a;degCen;i—1 + BibetwCenit—1+
~viclosCen;t—1 + w1 AvgW Degi—1 + we Diamy—1+ (2)
w2Compi—1 + wsTotEdge;—1 + DPCy_1

The summation is over all the nodes (actors) of the interac-
tion graph.

Hybrid model: In this model, we combine the features of
the event count model and the graph-based model. The per-
formance and predictive power of each model are evaluated
in Section 4.

4. EXPERIMENTS

Our experiments are designed to address the following
questions:

e Are interactions in a country different during “normal”
times and during a DPC? Can we capture this differ-
ence and use it to detect DPCs? (Section 4.2)

e How adept are graph-based properties at forecasting
DPCs in a country? (Section 4.3)

e Are graph-based models for DPC detection and fore-
casting better than a history-based approach or a vanilla
event count approach? Is there value in combining fea-
tures from different models? (Sections 4.2 and 4.3)

4.1 Data

We evaluate our methods using GDELT interaction graphs
from five countries: Brazil, Colombia, Mexico, Argentina,
and Venezuela. The data are collected from January 2003
to the December 2013. Thus, for each country, we have 132
monthly interaction graphs. Table 4.1 shows the number
of DPCs in each country for the period mentioned above.
GDELT does not include information about DPCs. As ground
truth for our experiments, we used the similarly motivated
ICEWS dataset, which includes information on whether or
not there was a DPC in a country in a given month. We note

Table 1: Number of DPC months in the 132 months
of our experiment on different countries

Country | # of Months with DPC (out of 132)
Brazil 6
Argentina 76
Mexico 10
Venezuela 36
Colombia 3

that our proposed methods exhibit quantifiably good detec-
tion and predictive power in spite of using features from one
dataset and supervisory labels from another.

4.2 Classifying DPC events

We use the gSpan algorithm to find frequent subgraphs
in Fy and F_. For our experiments, we set the threshold
parameter in gSpan to obtain a number of features rang-
ing from 500 to 1,000. Figure 2 represents the top frequent
subgraphs associated with DPCs in Brazil, Colombia, Mex-
ico, and Venezuela. The thick edges represent more ad-
versarial interactions (event types 11-20) whereas the thin
edges represent cooperative interactions (event types 01-10).
The figure shows that, in Colombia, conflicts between Rebel-
lion, Military, and Government are frequent during domestic
crises. This graph corresponds to the real-life political ten-
sion between the Colombian government and the guerrilla
groups in the country. On the other hand, during political
crises in Brazil, the actors involved in conflict are Govern-
ment, Police, Media, and the Opposition. Actors involved
in a DPC and the respective interactions vary across differ-
ent countries. For instance, Goverment and Media seem to
engage in more conflict in Brazil than they do in Colombia
or Venezuela. Understanding the role of each actor during
a DPC requires a thorough analysis of the social and politi-
cal aspects of each country and is beyond the scope of this
paper.

For classification, we use algorithms from the LibSVM [7]
and LogitBoost [8] libraries. We compare the performance
of the frequent subgraph approach to a baseline model that
does not take into account event types (ignoreEventType).
In the baseline approach, all graphs are unlabeled which
gives us a different set of frequent subgraphs. Our model
and the baseline are evaluated using the Area Under Curve

(AUC) metric and the Matthews Correlation Coefficient (MCC)

measure. MCC is a quality metric for binary classification in
unbalanced datasets; its range is [—1, 1], where 1 indicates
perfect classification, -1 indicates inverse classification, and
0 represents a random classifier.

Figures 3 and 4 compare our proposed method to the base-
line based on the AUC and MCC metrics. We note that, for
Brazil and Colombia, the gSpan algorithm could not find the
appropriate number of subgraphs for the baseline method,
and it runs out of memory; this is the case even if we run a
parallel version of the algorithm described in [13]. In every
case in the figures, the frequent subgraph approach beats
the baseline; the difference is more noticeable when we com-
pare both methods using the MCC metric. For instance, we
can see that although we have only three months of DPC
for Colombia, the proposed method is able to classify all the
graphs in dataset. Moreover, this illustrates the importance
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Figure 3: Classifying DPCs (AUC values).

of features that are selected for the classification and solidi-
fies our claim about the effect of actors’ interactions on the
instability of a country.

4.3 Forecasting DPC events

We evaluate the three regression models described in sec-
tion 4.2. We focus on Argentina, Mexico, and Venezuela
because these countries have a sufficient number of DPCs
to train the models. When the distribution of DPC to non-
DPC samples is not even, LASSO puts too much weight on
the non-DPC months, resulting in a low-performance model.
In order to deal with this issue, we focus on the months in
which the countries suffered DPC and take the preceding
and subsequent months as the training set. (A more sys-
tematic approach would be to adopt a classifier specifically
meant for imbalanced classes, but our goal here is to explore
the utility of graph features using basic machine learning
methods.) In the training period (90 months), Argentina
experienced 44 months of DPC, compared to 18 in the test
period (42 months). For Venezuela, we use a smaller training
period —70 months— in order to have a balanced number of
DPCs in training and testing data (11 and 10 events, respec-
tively). Finally, Mexico had only 10 months of DPC in 130
months, 3 of which are in the last 3 months of the dataset.
Therefore, we only use 45 months to train the model. In

i 1 1 0.92

08 073 B 08|

0.63
06 4 Z o6

ure

04 0.31 0.33

D 1077.1072
0 0
oL e Lo oo |

MCC measure
MCC me:

(a) LogitBoost

(b) LibSVM

Figure 4: Classification results (MCC measure).
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Figure 5: ROC curves for the DPC prediction mod-
els. The combination of graph features and event
counts outperforms each individual model.

this case, we run experiments with 20 months, 10 months
and 6 months as the test set to evaluate the performance of
the model over different periods. Figure 4.3 illustrates the
performance of the baseline, graph-based and hybrid mod-
els for Argentina, Mexico and Venezuela. We observe that
the hybrid model outperforms the individual models for all
countries. The hybrid model for Argentina and Venezuela
result in very high precision (around 0.89 for both), and ac-
curacy reaches 0.92 for Argentina and 0.95 for Venezuela.
As we have discussed above, we try different test periods
for Mexico and we observe a significant improvement as the
number of test days decrease. The precision gets as high as
1, and the accuracy 0.95. When the test period is the last
6 months in our dataset (i.e. July 2013 to December 2013),
the model predicts the DPC of the last 3 months and the
absence of DPC in the previous months perfectly.

S. DISCUSSION

We have introduced the problem of forecasting DPCs in
a given country using graph features. Future work will fo-
cus on three aspects. First, we aim to situate our approach



in a temporal context so that frequent discriminative sub-
graphs can be viewed in terms of their evolution over time.
Second, we seek to create subgraph features using compo-
sitions of basic CAMEO codes, to improve the expressive-
ness of discovered patterns. Finding such patterns without
overwhelming computational complexity is a key issue here.
Finally, we aim to develop a maximum entropy modeling
of interaction graph evolution so that we can aim to model
not just crises but surprising geopolitical developments in
general.
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