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INTRODUCTION

Extant sequences in a protein family provide evidence for con-

straints on choices of amino acids. Some residues may be strictly con-

served, allowing only a single amino acid type in order to preserve

proper structure and function. Other residues may tolerate some

mutations, and in some of these cases, proper structure and function

may require compensating mutations for other residues. We call such

co-evolving residue pairs coupled. Conservation and coupling arise

from various sources, including internal properties of the protein

(maintaining overall stability and functionality1–3), environmental

forces (e.g., adaptations for thermal extremes4), and interactions with

other proteins (e.g., forming complementary binding regions5,6). We

focus here on co-evolution of residues in interacting protein families,

and call co-evolving residue pairs (one from each family) cross-

coupled. Key tasks in cross-coupling studies include identifying cross-

coupled residues, abstracting the cross-coupling information into a

model, and using the model predictively.

One type of approach to identifying cross-coupled residues is to

draw on the extensive literature for studying coupling within individ-

ual protein families,7–12 and employ metrics such as correlation or

mutual information between amino acid types at a pair of positions

over the protein family/families.6,13–15 The basic idea is to infer

coupling from correlation—if a pair of (cross-family) residues has

correlated amino acid types, then that could be due to a compensa-

tory evolutionary process maintaining and adjusting the protein–pro-

tein interaction. Alternatively, phylogeny can be explicitly incorpo-

rated by testing whether an independent model or a dependent

model best explains observed amino acid types for residue pairs.16,17

Cross-coupled residues identified by correlated mutations have been

used directly as predictors of contact, on the assumption that compen-

sating mutations tend to happen between physically interacting resi-

dues and that those tend to be in contact. While one study found that

cross-coupled positions tend to be close in space and thus useful for
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ABSTRACT

Protein–protein interactions are mediated by

complementary amino acids defining comple-

mentary surfaces. Typically not all members of

a family of related proteins interact equally well

with all members of a partner family; thus anal-

ysis of the sequence record can reveal the com-

plementary amino acid partners that confer

interaction specificity. This article develops

methods for learning and using probabilistic

graphical models of such residue ‘‘cross-cou-

pling’’ constraints between interacting protein

families, based on multiple sequence alignments

and information about which pairs of proteins

are known to interact. Our models generalize

traditional consensus sequence binding motifs,

and provide a probabilistic semantics enabling

sound evaluation of the plausibility of new pos-

sible interactions. Furthermore, predictions

made by the models can be explained in terms

of the underlying residue interactions. Our

approach supports different levels of prior

knowledge regarding interactions, including

both one-to-one (e.g., pairs of proteins from the

same organism) and many-to-many (e.g., experi-

mentally identified interactions), and we pres-

ent a technique to account for possible bias in

the represented interactions. We apply our

approach in studies of PDZ domains and their

ligands, fundamental building blocks in a num-

ber of protein assemblies. Our algorithms are

able to identify biologically interesting cross-

coupling constraints, to successfully identify

known interactions, and to make explainable

predictions about novel interactions.
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guiding docking,13 another study tested a number of typ-

ical coupling metrics and found them not to be indicative

of intermolecular contacts.14 A recent large-scale study

did find co-evolving pairs to be in general closer than

other pairs.17 Another indirect manifestation of cross-

coupling is in differential conservation, which has been

used to identify binding sites, for example, by evolution-

ary trace,18 ConSurf,19 and phylogenetic motifs.20

One key difference between coupling and cross-cou-

pling studies is that in coupling studies, correlation is

evaluated between pairs of amino acids from the same

sequence, whereas in cross-coupling studies, correlations

are between pairs from different sequences, and it may

not be clear which sequences actually interact (and thus

should contribute to correlation analysis). This issue is

easily resolved if we assume a one-to-one relationship,

for example, when we only consider interactions between

proteins from the same organism, and only assess corre-

lated mutations in such pairs. In that case, we can form

a ‘‘super-sequence’’ by concatenating the partner sequen-

ces and employ traditional coupling metrics.6,14 How-

ever, these assumptions break down with multiple pro-

teins from an organism, or cross-organism interactions.

In moving to a more general model of possible interac-

tions (many-to-many, rather than one-to-one), cross-cou-

pling can provide insights into interaction specificity,

when not all members of one family interact equally well

with all members of the other family. Specificity due to

cross-coupling is often modeled indirectly. For example,

consensus sequence motifs21 for different classes of

ligands recognized by a family (e.g., the ‘‘class I’’ and

‘‘class II’’ motifs for ligands of PDZs) capture the cross-

coupling between sets of sequences. Such motifs can then

be used predictively—the presence of a particular motif in

a given ligand suggests that it will be recognized by corre-

sponding members of the recognition family.22–25 Such

coarse representations, however, lose information; conse-

quently, there is often debate as to how many classes are

appropriate and how to partition the classes.25,26

SPOT27,28 employs a more refined model by breaking

recognition modules (e.g., SH3, PDZ, WW) into classes

by recognized ligand, and gathering position-specific

amino acid type statistics within the separate classes.

Additional experimental data regarding interactions of

the seven PDZ domains on hINADL against a combina-

torial peptide library was gathered in order to improve

SPOT statistics.29 As with consensus sequence binding

motifs, SPOT models can be used to predict interactions;

SPOT was able to successfully identify many of the natu-

ral binding partners of SH3 domains from a scan of the

SWISSPROT database.27

This article develops a more general and powerful

model of the cross-coupling basis for interaction specific-

ity, by integrating sequence information and available

interaction data in a probabilistic graphical model. By

assessing frequencies of cross-coupled amino acid types,

our approach provides more refined insights into the

interactions conferring specificity than can be provided by

simple consensus sequence motifs. By factorizing cross-

coupling statistics into a formal probabilistic model rather

than treating each cross-coupled pair as independent, our

approach enables sound evaluation of interaction likeli-

hoods. By representing constraints in a graphical model,

our approach supports prediction of sequence interactions

in an explainable manner, justifying predictions in terms

of the underlying residue-level interactions. Finally, by uti-

lizing interaction data and making explicit the assump-

tions regarding its completeness, our approach can handle

one-to-one (e.g., pairs of proteins from the same orga-

nism) as well as many-to-many (e.g., experimentally iden-

tified interacting pairs) cases and can attempt to factor

out the bias that may be present in the many-to-many

case. We assume that the sequences are evolutionarily

diverse, though it remains interesting future work to

account for potential phylogenetic artifacts.

We demonstrate the use and effectiveness of our mod-

els in studies of PDZ domains and their ligands. Our

models uncover a number of cross-coupling constraints

supported by the literature and by structural evidence

(even though we did not use structural information in

identifying constraints). Experimentally validated PDZ/

ligand interactions tend to have high likelihoods under

our model, giving us confidence in making predictions

for additional PDZ/ligand pairs. Simulation studies show

that we can achieve relatively high predictive ability even

with a sparse amount of interaction data. Finally, we

show that our methods outperform the state-of-the-art

existing method in predicting PDZ/ligand interactions.

METHODS

As input, we are given multiple sequence alignments

(MSAs) S and S0 for two protein families. We are also

given an interaction table, T � S 3 S0, containing infor-

mation about which members of the protein families

interact (see the left part of Fig. 1). Each column (resi-

due) in the MSAs can be thought of as a random vari-

able, taking on values from the set of possible amino

acid types. Throughout, we use capital letters for random

variables and lowercase for values, bold for sets, and

prime marks (0) to distinguish the second family from

the first. Thus, V 5 {V1, V2, . . . , Vn} and V0 5 {V0
1, V0

2,

. . . , V0
m} are the random variables for the columns in S

and S0, respectively; Vi is the random variable for the ith

column in S and V0
j is the random variable for the jth

column in S0. Furthermore, a 5 {ala,arg,asp, . . . , –} is

the set of amino acid types (note that we treat the gap

character ‘‘–’’ as an amino acid type), p(Vi 5 ala) is the

probability that column i in S is an alanine, and an

entire sequence v 5 {v1, v2, . . . , vn} is an assignment of

amino acids for all the random variables.

J. Thomas et al.

912 PROTEINS



In presenting our methods, we first discuss how to

detect residues that are cross-coupled, drawing analogies

to the detection of coupled residues within a single pro-

tein family. We then present our approach to learning a

graphical model that provides a compact probabilistic

representation for cross-coupling information. Finally, we

show how to use such graphical models to score possible

new interactions, thereby providing a mechanism for pre-

dicting whether or not a pair of proteins will interact,

based on satisfaction of cross-coupling constraints.

Detecting residue cross-coupling

In the case of a single MSA, many statistical and infor-

mation-theoretic measures have been employed to evalu-

ate coupling between columns.10 For instance, we can

quantify the mutual information between columns i and j

in S, in terms of the column random variables Vi and Vj,

as

MIðV i;V jÞ ¼
X
a2a

X
b2a

pðVi ¼ a;Vj ¼ bÞ

� log
pðVi ¼ a;Vj ¼ bÞ

pðVi ¼ aÞ pðVj ¼ bÞ ð1Þ

A high mutual information between two residues indi-

cates that knowing the amino acid type for one strongly

restricts what the amino acid type for the other can be.

A low value of mutual information, conversely, implies

that the residues are quite independent of each other.

To extend mutual information to work with interact-

ing families with a pair of MSAs, the key question is how

to utilize the interaction table. We develop here two

approaches with differing assumptions about the com-

pleteness of the data in the interaction table.

Our first approach concatenates sequences from the

first family with their interaction partners from the sec-

ond family, creating a single MSA suitable for traditional

coupling analysis. The ‘‘table-count’’ panel in Figure 1

shows the resulting combinations for one pair of resi-

dues. Observe that sequences with many identified part-

ners have more influence on the coupling. That is, if one

protein is involved in many interactions while another is

involved in only a few, the first protein will be overly

represented in the merged MSA. If this overrepresenta-

tion is an artifact of how T was collected, then the iden-

tified couplings may be spurious. That is, if one protein

in the family was extensively studied and has many

known interactions while another has equally many inter-

actions but they have not been experimentally identified

yet, then the better-studied protein will have a larger

contribution in the concatenated MSA leading to artifi-

cially created cross-coupling relationships. If, on the

other hand, this overrepresentation is truly indicative of

the underlying biological relationships, then the cross-

coupling will be correctly identified.

To address the concern of possible overrepresentation,

we develop an alternative ‘‘perturbation’’ approach (Fig. 1,

right panels). This approach assesses how selection for a

particular amino acid type (i.e., a perturbation, or condi-

tioning context) in one family changes the distribution

of amino acid types at another position in the partner

family, for those sequences that interact with the selected

ones. In the perturbation approach, multiple partners

that have the same amino acid type at a particular posi-

tion are treated as a single instance when considering

that position. In the example shown in Figure 1, this

approach actually concludes (near) independence of

columns i and j while the table-count approach appears

more dependent. This is a desirable feature when the

interaction table is heavily biased toward several

Figure 1
Alternative approaches for computing mutual information for residue cross-coupling. We are given two MSAs S and S0 and a table T of interacting

partners. We desire to assess the mutual information between column i in the left alignment (denoted by squares) and column j in the right alignment (circles). The

‘‘table-count’’ approach proceeds as if interacting sequences were concatenated. All amino acid combinations listed in the table are counted separately. In this case, when

column j is filled, column i tends to be as well. The ‘‘perturbation’’ approach defines subsets over one alignment and joins through T to identify distributions of resi-

dues in the other alignment. For instance, in perturbing S0 to the sequences with filled residues (1, 2, and 3), the set of partners contains sequences A and B, which

yield one filled and one unfilled (square) residue, respectively. In perturbing S0 to the sequence with unfilled residues (4), the set of partners contains sequences A, B,

and C. In contrast to the table-count approach, these perturbations together make the two columns appear relatively independent. Similarly, we can define subsets in

the left alignment and track distributions in the right alignment. [Color figure can be viewed in the online issue, which is available at www.interscience.wiley.com.]
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experimentally well-studied proteins that have a large

number of interactions. On the other hand, it downplays

the impact of truly promiscuous members and may miss

some cross-coupling constraints.

We employ different techniques to estimate probabil-

ities under the table-count vs. perturbation approaches.

In computing mutual information [Eq. (1)], we can fac-

tor the joint probability, p(Vi 5 a, Vj
0 5 b), into the

product of a conditional probability, p(Vi 5 a | Vj
0 5 b),

times the marginal probability, p(Vj
0 5 b). The marginal

probability is straightforward to compute as the number

of sequences in S0 that have amino acid type b in col-

umn j, or more formally, |{s0 [ S0 : s0j 5 b}|. Then for

the conditional probability, suppose we are selecting

from S0 those sequences with amino acid type b at col-

umn j, and computing the change in S of the distribu-

tion of amino acid type at column i. In the table-count

approach, we compute, of those entries in the interaction

table with b at column j in S0, the fraction that also have

a at column i in S:

pðVi ¼ ajV 0
j ¼ bÞ ¼

jfðs; s0Þ 2 T : si ¼ a; s0j ¼ bgj
jfðs; s0Þ 2 T : s0j ¼ bgj ð2Þ

On the other hand, in the perturbation approach we

compute, of the sequences in S that have partners in S0

with b at column j, the fraction that also have a at

column i:

pðVi ¼ ajV 0
j ¼ bÞ

¼
jfs : si ¼ a ^ 9s0 2 S0 s:t: s0j ¼ b ^ ðs; s0Þ 2 T gj

jfs : 9s0 2 S0 s:t: s0j ¼ b ^ ðs; s0Þ 2 T gj ð3Þ

[In this and other equations, we use ‘‘s.t.’’ to denote

‘‘such that’’ before the predicate(s) in an existential quan-

tification, and a colon to do so in a set comprehension.

We use logical operators (^ and ´) to denote boolean

connectives (‘‘and’’ and ‘‘not,’’ respectively).]

Similar expressions follow if we use the other type of

perturbation, computing p(V0
j 5 b | Vi 5 a). As we will

see later, the formulas we employ in our graphical mod-

els avoid the asymmetry in the two types of perturba-

tions.

Table-count and perturbation represent the only two

informative approaches to computing mutual informa-

tion with our formalization of families and interaction

table. Using database terminology, there are two compo-

nents to computing mutual information (see Fig. 1): pro-

jecting onto the columns of interest and joining via the

interaction table. Projection maps sequences to single

amino acids, removing duplicates; joining creates pairs

(of either sequences or amino acids) of interacting part-

ners. Table-count does the join first; perturbation

projects onto a column in one family, joins, and then

projects onto a column in the other family. Doing both

projections first would only produce a list of observed

amino acid pairs, losing any frequency information.

Another way of seeing the difference in the two

approaches is to consider how they count ‘‘votes’’ for

coupling. In table-count, each interaction casts a vote,

whereas in perturbation, each sequence from the family

opposite the perturbation casts a vote. Thus in perturba-

tion, a sequence interacting with multiple sequences that

have the same amino acid type in the column of interest

essentially divides its vote among them. This voting per-

spective suggests other possible ways to assess coupling,

for example, by also considering sequence similarity or

evolutionary relationships within a family when tallying

votes (as ClustalW30 does for multiple alignment).

Because of limited data for assessing all the possibilities,

we stick with the distinct approaches of table-count and

perturbation.

Learning graphical models of residue
cross-coupling

While the approaches presented in the previous section

are sufficient to identify potentially cross-coupled resi-

dues, our goal is to encapsulate cross-coupling con-

straints in a model that can be used predictively (‘‘is it

likely that these two new proteins from these families

interact?’’) and that provides a sound probabilistic

semantics for such predictions. To do that, we develop in

this section an approach to learning what we call ‘‘graph-

ical models of residue cross-coupling’’ (GMRCCs); the

next section shows how to use a model to predict inter-

actions.

A GMRCC G 5 (V, V0, E) is a bipartite graph where

vertices V 5 {V1, . . . , Vn} and V0 5 {V0
1, . . . , V0

m}

denote the random variables for the columns in the two

MSAs and edges E ( V 3 V0 represent dependence and

independence of the random variables. The traditional

semantics of undirected graphical models focuses on

probabilistic independence: two vertices are conditionally

independent given their neighbors in the graph. To see

this, and to make the jump from identifying cross-

coupled residues to constructing such a model that

appropriately factorizes them, it is important to recognize

that a simple list of cross-coupled residues might be

redundant. For example (examples like this arise in the

PDZ/ligand study in the Results section), suppose that

two residues in one family are either HV or QA, and that

the sequences with HV interact with sequences with a T

while those with QA interact with sequences with a Y.

Then we would detect both H–T vs. Q–Y cross-coupling

and V–T vs. A–Y cross-coupling. However, note that

these two cross-couplings are in fact redundant; once we

have H–T, we also have V–T, and vice-versa. If we were

to evaluate a new pair of sequences for probability of

interaction by combining scores separately provided by

J. Thomas et al.
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each cross-coupled pair (testing if the amino acid types

in the new sequences are consistent with the expected

correlated amino acid types), we might artificially be

viewing these pairs of couplings as independently con-

firming the cross-coupling hypothesis whereas there is

really only one piece of evidence available. The crux of

the issue is that couplings are themselves dependent on

each other and such information has to be carefully fac-

tored out.

In order to properly account for dependence and inde-

pendence, we must be able to assess whether a pair of

residues is highly cross-coupled in a context where we al-

ready know another residue (or some other residues). To

do so, we move from mutual information to conditional

mutual information. Consider a pair of potentially cross-

coupled residues Vi and Vj, in the context of some other

residue Vk. Then the conditional mutual information,

written MI(Vi, Vj | Vk), is a low value when, if we know

the value of Vk, then knowing the value of Vi does not

provide much more information about the value of Vj.

Thus even if two residues have high pairwise mutual in-

formation, they may have low mutual information condi-

tioned on another residue. This is the case in the exam-

ple in the preceding paragraph, with the residues from

the one family alone or conditioned on the residue from

the other family.

We employ a perturbation subsetting method to esti-

mate conditional mutual information. This method is

inspired by the statistical coupling analysis method of

Lockless and Ranganathan8 but preserves symmetry; we

have previously utilized it for identifying single-family

coupling.12 The conditional mutual information between

columns i and j, given column k, is

MIðVi;Vj jVkÞ

¼
X
c2a�

pðVk ¼ cÞ
"X

a2a

X
b2a

pðVi ¼ a;Vj ¼ bjVk ¼ cÞ

� log
pðVi ¼ a;Vj ¼ bjVk ¼ cÞ

pðVi ¼ ajVk ¼ cÞ pðVj ¼ bjVk ¼ cÞ

#
ð4Þ

The ‘‘perturbations’’ here are the selections of particular

amino acid types for column k, which might or might

not change the distributions at columns i and j. Since

this article focuses strictly on cross-coupling constraints,

we assess conditional mutual information with Vi and Vj

in one family and Vk in the other. As mentioned at the

end of the previous section, this also avoids the potential

asymmetry in selecting which type of perturbation to

perform. The probability distributions in the equation

are estimated from the MSAs; we give further details

below. Note that we compute the conditionals by condi-

tioning column k only to ‘‘frequent-enough’’ amino acid

types a* � a (we use only those in at least 15% of the

sequences). This is a typical approach to ensure that we

maintain fidelity to the original MSA.8

To learn a GMRCC, we can aim to apply Eq. (4) to

find edges that decouple other residues. Unfortunately,

this is fraught with the typical difficulties of estimating

conditional mutual information reliably. For example, it

is quite unrealistic to expect the conditional mutual in-

formation to be exactly 0, due to noise, finite sample

size, etc. Instead, we define a score for a GMRCC that

measures the amount of ‘‘residual’’ cross-coupling that

remains, given some edges E:

ScoreðV;V0; EÞ ¼
X
Vi2V

X
Vj2V

MIðVi;Vj jNðViÞÞ

þ
X
V 0
i
2V0

X
V 0
j
2V0

MIðV 0
i ;V

0
j jNðV 0

i ÞÞ ð5Þ

where N(�) is set of the neighbors of the vertex according

to the edges. We can use this score to measure the overall

reduction in mutual information that results from the

addition of a single edge e, by comparing the score with

E vs. the score with E | {e}.

This leads to a sequential algorithm to build a

GMRCC (Algorithm 1): begin with a graph that has no

edges; pick an edge that most improves the score; condi-

tional on the context provided by this edge, pick a sec-

ond edge; and so on. This greedy procedure is analogous

to the procedure we have previously developed to capture

constraints on a single protein family12 and is similar in

spirit to the ‘‘sparse candidate’’ algorithm of Friedman

et al.31 This algorithm has the advantage of being appli-

cable to both the table-count and perturbation views of

the interaction table. In addition, it can employ a prior

on the set of edges under consideration (D in the algo-

rithm), for example a structural prior limiting the edges

to residue pairs that are near each other in the complex.

When D includes all possible edges, we call it the ‘‘unin-

formative prior.’’

Graphical Models of Protein–Protein Interaction Specificity
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The algorithm terminates when none of the available

edges are statistically significant. We focus here on assess-

ing individual significances of edges rather than the sig-

nificance of the entire model. This allows us to ensure

that every cross-coupled residue pair is statistically mean-

ingful. After identifying the edge that would best reduce

the Score, the algorithm ensures that the edge is signifi-

cant before adding it to the growing model. We employ a

P-value approach to test the hypothesis that two vertices

are truly independent rather than cross-coupled; smaller

P-values indicate stronger confidence in dependent rela-

tionships. A v2 formulation compares the observed num-

ber of times that a particular amino acid pair appears in

interacting pairs of sequences, against the expected num-

ber of such observations:

v2 ¼
X
a2ai

X
b2aj

ðfi;jða; bÞ � gi;jða; bÞÞ2

gi;jða; bÞ
ð6Þ

Here ai, aj are the amino acid types at column i in one

MSA and j in the other, fi,j(a,b) the observed number of

co-occurrences of a at column i and b at column j in

sequences that interact in T , and gi,j(a,b) the expected

number of such co-occurrences if the positions were inde-

pendent (see below). We note that this v2 formulation nat-

urally corresponds to the counting assumptions underlying

the table-count method; it would be interesting to develop

an analogous formulation for the assumptions underlying

the perturbation method. To compute a P-value, we deter-

mine the probability of getting a v2 value, with (|ai| 2

1)(|aj| 2 1) degrees of freedom, having a magnitude at

least as large as obtained under this formula. To account

for multiple hypothesis testing, a simple Bonferroni cor-

rection could be applied, scaling the P-value threshold by

the number of tests performed, n � m, where n and m are

the numbers of columns in the two MSAs.

It is straightforward to tabulate fi,j(a, b), the observed

number of co-occurrences of amino acid pairs with

respect to a given interaction table and pair of alignments.

To compute the expected number of co-occurrences,

gi,j(a, b), while ensuring fidelity to the given interaction

table, we employ a randomization approach. We permute

the alignments column-wise, thereby rendering the resi-

dues independent, and then do the co-occurrence tabula-

tion on the permuted alignments. Performing a large

number (say 100,000) of permutations allows us to com-

pute an appropriate statistic for the expected number of

co-occurrences.

The runtime of the algorithm depends on n 1 m, the

size of V | V0, along with d, the maximum degree of

nodes in the prior. A naı̈ve implementation would

require O(d(n 1 m)3) mutual information computations

per iteration, but we can bring this down to O(d(n 1 m))

per iteration by caching mutual information estimates

(C in Algorithm 1) and revising these estimates only for

those pairs of residues whose conditioning contexts have

changed (lines 9–11).

Predicting protein–protein interactions

The probabilistic semantics of a graphical model ena-

bles the evaluation of the joint probability of a set of val-

ues for its random variables. For a GMRCC, the values

specify two amino acid sequences, and the joint probabil-

ity captures how likely it is that they interact. Given a

GMRCC G 5 (V, V0, E) and a new pair of sequences

(one from each family) v 5 {v1, . . . , vn} and v0 5 {v01,

. . . , v0m}, we write the probability of interaction as

pG(I(v, v0)), where I is shorthand for ‘‘interact.’’

Using the standard semantics for an undirected graphi-

cal model,32 this joint probability is computed as

pG¼ðV;V0;EÞðIðv; v0ÞÞ ¼
1

Z
�

Q
e¼ðVi ;V

0
j
Þ 2 E pðIðv; v0ÞjVi ¼ vi;V

0
j ¼ v0jÞQ

Vi 2 V : degðViÞ>1

pðIðv; v0ÞjVi ¼ viÞdegðViÞ�1 Q
V 0
j
2 V0 : degðV 0

j
Þ>1

pðIðv; v0ÞjV 0
j ¼ v0jÞ

degðV 0
j
Þ�1

ð7Þ

Here, deg(�) indicates the degree of the vertex and Z nor-

malizes the products into a probability measure (the

equation for Z is given in the Supporting information).

The joint probability is given by the product of likelihoods

defined over the edges divided by those defined over the

edge adjacencies. The bipartite form of a GMRCC leads to

the ability to compute exact likelihoods efficiently. The

edge adjacencies are simply the vertices, and they contrib-

ute one fewer term than their degree (e.g., a vertex with

two edges has a single contribution).

We must provide distributions for the terms contrib-

uted to Eq. (7) from the edges and vertices. We focus on

the edge contributions; vertex contributions are derived

similarly (and are given in the Supporting information).

The contribution of one edge can be rewritten using

Bayes theorem:

pðIðv; v0ÞjVi ¼ vi;V
0
j ¼ v0jÞ ¼

pðIðv; v0ÞÞ � pðV 0
j ¼ v0j jIðv; v0ÞÞ � pðVi ¼ vijV 0

j ¼ v0j ; Iðv; v0ÞÞ
pðVi ¼ vi;V

0
j ¼ v0jÞ

ð8Þ
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For the prior probability of interaction, p(I(v, v0)), we

simply use the number of observed interactions relative

to the number possible:

pðIðv; v0ÞÞ ¼ jT j
jSjjS0j ð9Þ

The prior probability of not interacting is then

1 2 p(I(v, v0)).

The remaining terms depend on the connection of

sequences via the interaction table, and thus have differ-

ent estimators for the table-count and perturbation

methods.

Table-count-based estimators

Let us first consider p(V0
j 5 v0j | I(v, v0)). In the table-

count approach, every interaction is treated equivalently,

regardless of which members are interacting. Therefore,

this probability can be estimated as the fraction of the

observed interactions that have amino acid v0j in column j:

pðV 0
j ¼ v0j jIðv; v0ÞÞ ¼

jfðs; s0Þ 2 T : s0j ¼ v0jgj
jT j ð10Þ

The next term, p(Vi 5 vi | V0
j 5 v0j, I(v, v0)), is computed in

the table-count approach as the fraction of those interac-

tions that have amino acid v0j in column j, that also have

amino acid vi in column i:

pðVi ¼ vijV 0
j ¼ v0j ; Iðv; v0ÞÞ

¼
jfðs; s0Þ 2 T : si ¼ vi; s

0
j ¼ v0jgj

jfðs; s0Þ 2 T : s0j ¼ v0j jg
ð11Þ

Since the joint probability p(Vi 5 vi, V
0
j 5 v0j) depends on

whether or not the sequences interact, we marginalize over

those possibilities:

pðVi ¼ vi;V
0
j ¼ v0jÞ ¼ pðIðv; v0ÞÞ � pðVi ¼ vi;V

0
j ¼ v0j jIðv; v0ÞÞ þ pð:Iðv; v0ÞÞ � pðVi ¼ vi;V

0
j ¼ v0j j:Iðv; v0ÞÞ

¼ jT j
jSjjS0j �

jfðs; s0Þ 2 T : si ¼ vi; s
0
j ¼ v0jgj

jT j þ jSjjS0j � jT j
jSjjS0j �

jfðs; s0Þ 62 T : si ¼ vi; s
0
j ¼ v0jgj

jSjjS0j � jT j

¼
jfðs; s0Þ 2 T : si ¼ vi; s

0
j ¼ v0jgj þ jfðs; s0Þ 62 T : si ¼ vi; s

0
j ¼ v0jgj

jSjjS0j

¼
fiðviÞfjðv0jÞ
jSjjS0j

ð12Þ

Recall from Eq. (6) that f measures the frequency of given

amino acids or amino acid combinations in specific posi-

tions across a MSA. The final reduction occurs because

every sequence in S that has a vi in column i either inter-

acts or does not interact with every sequence in S0 that has

a v0j in column j.

Perturbation-based estimators

While the table-count method estimates probabilities

by considering each interaction separately, the perturba-

tion method considers each sequence independently,

regardless of how many interactions it is involved in. In

this interpretation, p(V0
j 5 v0j | I(v, v0)) is the fraction of

the interacting sequences from S0 that have amino acid

v0j in column j:

pðV 0
j ¼ v0j jIðv; v0ÞÞ

¼
jfs0 : s0j ¼ v0j ^ 9s 2 S s:t:ðs; s0Þ 2 T gj

jfs0 : 9s 2 S s:t:ðs; s0Þ 2 T gj ð13Þ

In contrast with Eq. (10), note that rather than counting

the number of interactions that have a sequence with

v0j in column j, we instead count the number of sequen-

ces involved in interactions that meet this criterion.

Thus a sequence with numerous interactions receives

the same representation as a sequence with only one

interaction.

For p(Vi 5 vi | V0
j 5 v0j, I(v, v0)), we likewise compute,

of those sequences that interact with a sequence with

amino acid v0j in column j, the fraction that also have

amino acid vi in column i:

pðVi ¼ vijV 0
j ¼ v0j ; Iðv; v0ÞÞ

¼
jfs : si ¼ vi ^ 9s0 2 S0 s:t: s0j ¼ v0j ^ ðs; s0Þ 2 T gj

jfs : 9s0 2 S0 s:t: s0j ¼ v0j ^ ðs; s0Þ 2 T gj ð14Þ

Finally, we again compute the joint probability p(Vi 5 vi,

V0
j 5 v0j) via marginalization:
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pðVi ¼ vi;V
0
j ¼ v0jÞ ¼ pðIðv; v0ÞÞ � pðVi ¼ vi;V

0
j ¼ v0j jIðv; v0ÞÞ

þ pð:Iðv; v0ÞÞ � pðVi ¼ vi;V
0
j ¼ v0j j:Iðv; v0ÞÞ

¼ pðIðv; v0ÞÞ � pðVi ¼ vijV 0
j ¼ v0j ; Iðv; v0ÞÞ � pðV 0

j ¼ v0j jIðv; v0ÞÞ
þ pð:Iðv; v0ÞÞ � pðVi ¼ vijV 0

j ¼ v0j ;:Iðv; v0ÞÞ � pðV 0
j ¼ v0j j:Iðv; v0ÞÞ

¼ pðIðv; v0ÞÞ � pðVi ¼ vijV 0
j ¼ v0j ; Iðv; v0ÞÞ � pðV 0

j ¼ v0j jIðv; v0ÞÞ

þ pð:Iðv; v0ÞÞ �
jfs : si ¼ vi^ 6 9s0 2 S0 s:t: s0j ¼ v0j ^ ðs; s0Þ 2 T gj

fs : 6 9s0 2 S0s:t: s0j ¼ v0j ^ ðs; s0Þ 2 T gj

�
jfs0 : s0j ¼ v0j^ 6 9s 2 S s:t: ðs; s0Þ 2 T gj

jfs0 :6 9s 2 S s:t: ðs; s0Þ 2 T gj

ð15Þ

Unlike in the table-count approach, there is no way in

general to further reduce the combined terms. However,

there are two important special cases in which they

reduce to the formulas as the table-count approach:

when each sequence in S interacts with exactly one

sequence in S0 and vice versa, and when every sequence

in S interacts with every sequence in S0.

Adding pseudocounts

It is likely that both the MSAs and the interaction

table are somewhat incomplete—there are other proteins

in the family, and there are other interactions that are

possible. To ensure that such missing data do not cause

the probability of a protein–protein interaction to be 0

(i.e., to satisfy the Hammersley-Clifford theorem32), we

add ‘‘pseudocounts’’ to the likelihood. Pseudocounts are

used routinely in sequence profiles and hidden Markov

models33 to allow for unobserved data, by adding a

small count to each possible observation, so that some-

thing that has not (yet) been seen has a small but non-

zero score. Here, we include two types of pseudocounts:

‘‘interaction pseudocounts,’’ which account for potentially

missing entries in the interaction table, and ‘‘residue

pseudocounts,’’ which account for missing data in the

protein families.

Figure 2 shows the parameterization of these pseudo-

counts. Interaction pseudocounts give every possible

interaction an a priori weight of q. Observed interactions

(in the interaction table) then have weight of 1 1 q,

whereas the rest have a weight of q. Setting q 5 0 is

equivalent to assuming to that the interaction table rep-

resents ground truth, while higher values of q put less

weight on the observed interactions. Similarly, residue

pseudocounts give every possible amino acid type at

every possible position an a priori weight of a. This is

equivalent to adding 21 a (20 amino acids and a gap

character) additional ‘‘pseudosequences’’ to the end of

each protein family. By setting a to 0, we assume that

the only members of a protein family are those that are

in our MSA, while higher values of a allow for unob-

served sequences.

It is straightforward but verbose to revise our estima-

tors to include pseudocounts; the Supporting informa-

tion provides the formulas.

RESULTS

PDZ domains are protein–protein interaction domains

that are involved in a wide variety of biological processes.

One role of PDZ domains is assisting in the formation of

protein complexes by binding to the C-termini of certain

ligands.34,35 Figure 3 shows a representative three

dimensional structure of a PDZ domain interacting with

a ligand. The structure of the complex reveals that the

interaction is localized to a small area: the last four resi-

dues of the ligand interact directly with the beta strand

bB, the alpha helix aB, and a carboxylate binding loop

(CBL) between beta strands bA and bB.37

Figure 2
The structure of the two different types of pseudocounts used when

scoring a protein–protein interaction under a GMRCC. Interaction

pseudocounts, parameterized by q, allow for missing interactions in the

interaction table. Residue pseudocounts, parameterized by a, allows for

unobserved sequences in the MSAs. [Color figure can be viewed in the

online issue, which is available at www.interscience.wiley.com.]
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To develop a PDZ/ligand GMRCC, we gathered a

training set consisting of 167 PDZ domains and 230

ligands, along with 374 experimentally validated interac-

tions derived from a literature search (Dr. Shireen Vali,

IBAB, personal communication). We profile-aligned the

PDZ domains to an existing PDZ domain alignment29

using ClustalW,30 yielding an alignment of 94 PDZ resi-

dues. For visualization and interpretation purposes, we

matched these residues to the crystal structure of the

third PDZ domain of synaptic protein PSD-95 in com-

plex with a peptide derived from CRIPT (pdb id

1BE937); the PDZ residues correspond to 82 residues in

the range of P308 to Y392, and the 4 ligand residues to

the range of Q6 to V9. Both the PDZ domains and

ligands were filtered for uniqueness (arbitrarily eliminat-

ing one of each identical pair of sequences), yielding 147

unique PDZs and 164 unique ligands involved in 327

unique interactions. On average, each PDZ domain in

the training set interacts with 2.2 ligands. The minimum

number of interactions is 1 (69 PDZs) while the maxi-

mum is 16 (the PDZ with UniProt38 id. P31016). Figure

4 shows the distribution of the PDZ interactions for our

training set.

In addition to this training set, we established a test

set of 169 experimentally validated PDZ/ligand interac-

tions that are not included in the training set. These

interactions (along with 63 present in our training set)

are part of a dataset used in the development of the

iSPOT tool.28 Since the list of PDZs in our training set

is quite extensive, the PDZs in the testing set necessarily

occur in the training set. Their ligands, however, are

quite different. For an interacting PDZ-ligand pair in the

testing set, the closest interacting ligand for that PDZ in

the training set is identical in on average only 1.2 (out

of 4) positions.

We ran our GMRCC learning algorithms on our train-

ing set, using 100,000 randomizations to compute the

P-value, and choosing edges with a P-value threshold of

0.005 or better. This P-value choice could readily be

adjusted as desired to account for multiple hypothesis

testing. For example, employing a simple Bonferroni cor-

rection for an uncorrected P-value of 0.05, when consid-

ering 376 possible edges, would result in a corrected

threshold of �1025. Most of the edges identified by our

algorithms meet even this far more stringent threshold.

We employed the uninformative prior, considering all

376 possible edges rather than restricting them to con-

tacting residue pairs. The algorithm selected 51 and 17

Figure 3
Cartoon representation of a PDZ domain (blue) interacting with a ligand (magenta), pdb id 1BE9, rendered via Pymol.36 Four C-terminal residues

of the ligand have direct interactions with PDZ residues in the beta strand bB, the alpha helix aB, and the loop between beta strands bA and bB.

(Left) The first 15 edges (green) identified by table-count approach. (Right) The 17 edges (green) identified by the perturbation approach. Many of

the edges involve the physically interacting residues.

Figure 4
Histogram for the number of ligands with which each PDZ domain

interacts in our training set. [Color figure can be viewed in the online

issue, which is available at www.interscience.wiley.com.]
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edges for the table-count and perturbation methods,

respectively. The Supporting information includes these

edge lists, indexed to the columns in the MSAs.

The following sections test these models in a number

of different ways. First, we examine their edges, and

show that many edges are supported by the literature or

by structural studies. Second, we demonstrate that the

models are able to predict interaction among the experi-

mentally tested PDZ/ligand pairs. Third, we study the

effect of data sparsity on the predictive ability of the

models, and show that they maintain good predictive

ability with even sparser data. Finally, we study the

effects of the assumptions underlying the SPOT approach

to predicting interaction, and show that the graphical

model approach outperforms SPOT, and why.

Identified constraints

Figure 3 graphically illustrates the cross-coupling edges

identified by our algorithm for both table-count (left)

and perturbation (right). For clarity, we only show the

first 15 edges learned by the table-count approach. The

figures show that many of the edges occur between a

ligand residue and a residue in the PDZ domain near the

interaction site, even though we did not use structural

information to learn the model. Table I lists the edges

identified by our algorithm, as well as the Ca2Ca distan-

ces of the residues in the 1BE9 structure. For the first

fifteen edges identified by the table-count approach, all

but two of the edges that can be mapped to the 1BE9

structure are within 12 Å. This is true also for the pertur-

bation approach, where eleven of the seventeen identified

cross-coupling constraints connect residues with Ca dis-

tance less than 12 Å. We further compared the distances

between all residue pairs vs. those for identified edges

(Fig. 5). The mean distance between all residue pairs is

14.5 Å, while that for pairs in the 51 table-count edges is

11.6 Å and that between pairs in the 17 perturbation

edges is 11.0 Å. The differences between the all-pairs dis-

tribution and each edge distribution are statistically sig-

nificant, by t-test (P 5 1025 for all-pairs vs. either table-

count or perturbation).

One cannot directly compare graphical models by

looking at their edge lists, since factorization of a joint

probability is not unique, and thus edge lists that differ

could actually represent exactly the same probabilistic

model. Nonetheless, we note that all but four edges (the

4th, 5th, 10th, and 14th) that are included in the pertur-

Table I
Cross-Coupling Edges Identified by Our Algorithm

PDZ residuea
Ligand
residuea Ca distb,c P-value

By table countd

372 aB1 7 22 8.2 < 1 3 10224

n/a 6 23 n/a 4.66 3 10215

n/a 9 0 n/a 1.14 3 1024

322 CBL 7 22 11.5 1.19 3 10210

330 6 23 9.8 6.77 3 1026

380 aB9 7 22 10.3 1.33 3 1029

339 bC4 6 23 8.3 2.43 3 10213

339 bC4 7 22 9.5 2.49 3 1029

330 7 22 11.0 2.55 3 10213

322 CBL 9 0 5.5 3.85 3 10210

376 aB5 7 22 6.8 4.05 3 10212

340 bC5 6 23 9.9 9.97 3 10212

360 bD4 6 23 17.2 5.26 3 10210

360 bD4 9 0 15.6 < 1 3 10224

n/a 6 23 n/a 2.12 3 10212

By perturbatione

372 aB1 7 22 8.2 < 1 3 10224

376 aB5 7 22 6.8 4.05 3 10212

372 aB1 8 21 11.3 9.86 3 1024

356 7 22 15.0 2.35 3 1023

347 aA2 7 22 14.8 7.02 3 1025

347 aA2 9 0 10.0 1.41 3 1028

324 CBL 6 23 13.2 1.35 3 1024

330 7 22 11.0 2.55 3 10213

330 6 23 9.8 6.77 3 1026

330 9 0 14.5 1.28 3 1027

380 aB9 7 22 10.3 9.91 3 10210

323 CBL 7 22 11.5 1.11 3 10216

323 CBL 9 0 5.5 < 1 3 10224

323 CBL 6 23 14.5 4.67 3 1027

376 aB5 9 0 6.7 8.63 3 1024

329 bB5 7 22 9.7 1.55 3 10215

329 bB5 9 0 13.8 6.83 3 1028

aResidues are numbered according to their position in the appropriate chain of

the 1BE9 crystal structure (with ‘‘n/a’’ where that sequence has gaps in the MSA)

and under the numbering system used by Songyang et al.39

bDistances, in Å, are according to the 1BE9 crystal structure, for cases where both

residues are represented.
cRows in dark gray are known to have interacting side chains while those in light

gray are likely to. Unhighlighted rows are not known to have direct interactions

but are within a single residue of those that do.
dFirst 15 of 51 by table-count.
eAll 17 by perturbation.

Figure 5
Distributions of Ca��Ca distances, with respect to the 1BE9 crystal

structure, of all PDZ-ligand pairs (blue), and those participating in

edges in the table-count (green) and perturbation (red) models. [Color

figure can be viewed in the online issue, which is available at

www.interscience.wiley.com.]
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bation model are also included in the table-count model.

Thus the models are making use of many of the same

residue relationships, although arriving at the choices

from different perspectives.

Many of the edges identified by our models involve

pairs of residues that have been previously determined to

play important roles. Several of the edges occur between

residues whose side chains are predicted to directly inter-

act during binding.39 For example, both of our models

identify a cross-coupling relationship between aB1 and

ligand residue 22, which is predicted to have a side

chain interaction. Also, aB5 is predicted to have side

chain interactions with both 0 and 22 but not 21 or

23. Both our models identify both of those predicted

interactions (the table-count approach adds it as its 25th

edge) and neither identifies either of the noninteracting

residue pairs. In total, 4 of the first 15 edges identified

by the table-count approach and 3 of the 17 edges identi-

fied by the perturbation approach are predicted to have

interacting side chains (dark gray in Table I). If we allow

interactions to include adjacent side chains (accounting

for modest flexibility in complex formation), an addi-

tional two edges in both models are predicted to have

side chain interactions (light gray in Table I). Another

cross-coupling edge identified by our algorithms is

between a residue in CBL in the PDZ domain and the

last residue of the ligand (position 0), which form hydro-

gen bonds during peptide binding in the crystal structure

of PDZ-337 but are not predicted to have side chain

interactions with the peptide in other cases.39 In total,

the table-count methods identifies six residue pairs that

are in close physical proximity in the complex structure

and have evidence of direct interaction during the bind-

ing process while the perturbation approach identifies

five.

The biological significance of the remaining edges is

unknown. Both models identify strong cross-coupling

between residue 330 and the ligand. Residue 330 is the

first residue after b strand B, which forms a portion of

the binding pocket. Though it does not fill the binding

pocket, this strong cross-coupling in both methods sug-

gests that it does have a role in ligand binding. With a

few exceptions, the remaining edges tend to be further in

three-dimensional space than the edges known to be

involved in ligand binding. Since there is very little con-

formational change between the bound and unbound

structure of the PDZ domain,37 it is unlikely any of

these residues plays an indirect role in ligand binding.

Nonetheless, the sequence record and interaction data

shows a statistically significant level of cross-coupling

involving these residues.

Predicting interaction

The cross-coupling constraints capture strong residue

relationships mediating interaction, suggesting that the

models may be useful in predicting PDZ/ligand interac-

tions. To test the predictive ability of our model, we con-

sidered the interactions in our test set between PSD95-2

and six ligands. Recall that interactions in our test set

were gathered separately and are not part of our training

set. Using Eq. (7), we evaluated the likelihood of PSD95-

2 interacting with these six ligands. We also evaluated its

likelihood of interaction with the 164 unique ligands

from our training set, eight of which are known interac-

tions (i.e., are in the training set), while 156 are not (i.e.,

the training set includes interactions between the ligands

and other PDZs). For pseudocounts, we employed an

interaction pseudocount (q) of 0.001 and a residue pseu-

docount (a) of 0.01; we have found our results to be

largely insensitive to these parameters (see the ‘‘Compari-

son to SPOT’’ section).

Figure 6 shows, for both the table-count and perturba-

tion methods, the 25 ligands with the highest likelihood

scores for predicted interaction with PSD95-2. Of the

eight previously known PSD95-2 interactions in our

training set (green squares), six occur in the top 25 for

the table-count approach, while seven appear in the top

25 for the perturbation approach. The remaining training

ligands are ranked 33rd and 46th in the table-count

approach and 28th in the perturbation approach. Three

of the six interactions from the test set score in the top

15 of the interactions (red triangles) in the table-count.

The remaining are ranked 26th (LTDV), 29th (FTDV),

and 64th (QSLV), respectively. For the perturbation

approach, three of the six are again ranked in the top 15

while the others are ranked 33rd (FTDV), 63rd (LTDV),

and 109th (QSLV), respectively. Note that FTDV scores

highly under both methods (although not in the top 25)

while LTDV scores highly under the table-count

approach but not as highly in the perturbation approach.

Finally, QSLV scores poorly under both methods, sug-

gesting that some classes of interactions are simply not

represented in our training set and therefore are not pre-

dicted well under our models.

Some of the predicted interactions have not yet been

experimentally tested, but serve as interesting hypotheses

proposed by our methods. For instance, four untested

ligands (ETHV, ETLV, ETPV, and ETQV) rank near the

top of interactions against PSD95-2 for both methods. In

addition, several other ligands (ESLV, ESYV, and ESKV)

have higher likelihoods for both methods than do ligands

from our training set. Finally, some predicted interac-

tions are scored quite differently under the two methods

(e.g., NTVV is the highest ranking under table-count,

but 27th under perturbation), and would help provide

insight into the relative quality of the models.

The choice of 25 ligands is somewhat arbitrary; we are

effectively selecting a threshold and predicting that

ligands scoring above that threshold interact, while those

below do not. In the case of Figure 6, we are essentially

using a threshold of 267 for the table-count approach
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and 251 for the perturbation approach. However, these

thresholds also have an effect on the predicted interac-

tions of other PDZ/ligand pairs. To study the effect of

the threshold, we scored all interacting pairs in the train-

ing set, all interacting pairs in the test set, and all possi-

ble pairs from the training set (147 PDZs 3 164 ligands).

Figure 7 shows the fraction of these interactions scoring

higher than each possible threshold. For instance, using

the table-count approach, by selecting a threshold of

292, our model predicts all the interacting pairs in the

training set and 61% of those in the test set. At this

threshold, it predicts interaction between 24% of all pos-

sible pairs. This is in contrast to the perturbation

approach, which requires a threshold of 287 to predict

all the training interactions, while also predicting 94% of

the test interactions. At this threshold, 92% of all possi-

ble pairs are predicted to interact. Lower thresholds yield

fewer predicted interactions overall, but also miss more

Figure 7
The fraction of interactions which score above a given log likelihood threshold according to the table-count (left) and perturbation (right)

approaches. x-axis: log likelihood threshold; y-axis: fraction of interactions scoring above that threshold. The blue line is for interactions from our

training set, the red dashed lines is for those in our test set, and the black dot-dashed line is for all possible PDZ/ligand interactions. [Color figure

can be viewed in the online issue, which is available at www.interscience.wiley.com.]

Figure 6
The 25 ligands with the highest likelihood of interacting with PSD95-2 according to the table-count (left) and perturbation (right) approaches.

x-axis: ligand sequence; y-axis: log likelihood score. Green squares are interactions in the training set, red triangles are known interactions from the

test set, and blue circles are ligands that have not (yet) been observed to interact with PSD95-2. [Color figure can be viewed in the online issue,

which is available at www.interscience.wiley.com.]
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known interactions; higher thresholds result in many of

the possible pairs being predicted to interact.

Effect of interaction table sparsity

Our approach explicitly incorporates interaction data

in the interaction table T and assumptions about its

completeness in the choice of table-count vs. perturba-

tion-based probability models. To assess the effects of the

relative incompleteness, or sparsity, of the observed inter-

action table, we conducted a simulation study. The basic

idea is to learn a model using only a random portion of

the interactions, and compare interaction predictions

from the sparse-data model with those from the original

‘‘complete’’ model.

A key question is how to compare interaction predic-

tions, since we do not know the ground truth for all

24108 PDZ/ligand pairs that could be scored. We

employed a classification-based approach, in which a

score threshold under the ‘‘complete’’ model establishes

whether a PDZ/ligand pair is classified as interacting or

noninteracting. We tried three different thresholds for

the complete model, such that it would classify as inter-

acting 10, 30, or 70% of the PDZ/ligand pairs. We

treated these classifications as the truth, and evaluated

how well the classifications by the sparse models agreed.

In this classification setting, we employed ROC curves to

evaluate the quality of the predictions under the sparse

models. To generate an ROC curve, we varied the score

threshold that separates the interacting class from the

noninteracting class. For each such threshold, we meas-

ured the true positive rate (the fraction of ‘‘true’’ interac-

tions, under the complete model, that the sparse model

correctly classified as interacting according to the thresh-

old) and the false positive rate (the fraction of noninter-

actions that it incorrectly classified as interacting). An

ROC curve plots the true positive rate against the false

positive rate, over the choices of thresholds. We then

evaluated the predictive ability of each approach by the

area under the ROC curve, or AUC; an AUC of 1 is per-

fect, while random guessing would have an AUC of 0.5.

In order to generate a sparse model, we randomly

selected 25 starting interactions. After learning and evalu-

ating both the table-count and perturbation models with

these edges, we randomly added 25 of the remaining

known interactions. We repeated this process until all the

known interactions are included. At each level of sparsity

we compared the sparse models to the complete model.

We repeated this experiment 10 times, using a different

random 25 starting interactions each time. For each level

of sparsity we report the mean and standard deviations

of these 10 simulations.

The results (Fig. 8) clearly demonstrate the impact of

sparsity on both methods for the three different thresh-

olds. As we would expect, the more data provided, the

greater the ability of the models to predict the ‘‘true’’

interactions. However, the effect of sparsity on both

methods is very different. In general, the table-count

approach does very poorly with sparse data (almost ran-

dom guessing with a few interactions provided) and

gradually increases as more information is added. The

perturbation approach, on the other hand, starts much

better and rapidly improves with only a little more

interaction data. After quickly improving to a high AUC

Figure 8
Evaluation of interaction predictions under increasing (to the left) sparsity in the interaction table for the table-count (left) and perturbation

(right) methods. The x-axis indicates the number of interactions in the table; the y-axis indicates the area under the ROC curve, or AUC, which

assesses the overall predictive ability of the resulting model. Blue circles corresponds to a 70% complete model, while red triangles and green

squares correspond 30% and 10% complete, respectively. [Color figure can be viewed in the online issue, which is available at

www.interscience.wiley.com.]
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(� 0.9), it then gradually improves as more interaction

data are added. Since each interaction in the table-count

approach is given equal weight, when fewer interactions

are provided for training, the method can deviate from

the underlying edge scores and produce a poorer predic-

tor. The perturbation approach, on the other hand, is

able to quickly learn from sparse data because the more

redundant interactions are not counted as much. Thus,

for sparser interaction data, the edge weights are closer

to the true model, allowing the perturbation approach to

outperform the table-count approach.

Another interesting observation from the simulation

study is that the threshold for the complete model

(defining the ‘‘true’’ interactions) has a different effect on

the two methods. In the table-count approach, the more

‘‘true’’ interactions, the worse the predictions are. One pos-

sible explanation is that the few ‘‘true’’ interactions do

interact strongly, and as such, always look better than the

other possible interactions, regardless of the level of spar-

sity. As the threshold is increased, however, more noninter-

actions are included in the ‘‘true’’ interactions and are thus

harder to predict with sparse data. The exact opposite is

observed with the perturbation approach—the more

‘‘true’’ interactions, the better the predictions are. This

suggests that unlike the table-count approach, the pertur-

bation approach may score many interactions highly.

When only a few of these high scoring sequences are

included in the ‘‘true’’ interactions, the sparse models have

a harder time predicting which were included and which

were not. As more of these interactions are included, the

predictive ability of the sparse models improves.

Comparison to SPOT

SPOT,27 like our method, uses cross-coupling to pre-

dict PDZ/ligand interactions, based on the consistency of

residue pairs in a test sequence pair with residue pairs in

the training sequence pairs. In our terminology, SPOT

essentially employs a structural prior but uses all contact-

ing residue pairs as edges, and scores according to a

table-count like score. That is, the SPOT score for one

amino acid pair (edge) is determined by the number of

training interactions that have that amino acid pair.

While using a structural prior provides for a mechanistic

explanation of the observed cross-coupling, it requires

solved structures and assumes that the structures are suf-

ficiently representative of all interacting pairs. Further-

more, as we showed above, our method discovers many

cross-coupled pairs that are close in space across the

interface, even without this prior restriction. The other

significant difference between our method and SPOT is

that, as discussed in the ‘‘Methods’’ Section, we provide a

probabilistic semantics for evaluating likelihood, avoiding

‘‘double counting’’ of edges that are themselves depend-

ent. Thus we don’t use all edges, but instead factorize

them to eliminate redundant information.

To assess the impact of the special case assumptions of

SPOT (structural prior, all edges, and table-count), we

trained our methods with the same dataset used to train

SPOT.27 The SPOT training set contains 15 PDZ

domains, multiply aligned to 94 residues, as well as 229

ligands, each consisting of 4 residues. Based on three dif-

ferent PDZ/ligand structures (pdb ids. 1QAV, 1KWA, and

1BE9), SPOT restricts cross-coupling statistics to 43 con-

tacting residue pairs. Each PDZ domain in the SPOT

dataset interacts with 15.5 ligands on average (232 inter-

actions total); the minimum number of ligand interac-

tions is 6 (psd95-2, MAGI-2) and the maximum number

is 61 (nNos). Figure 9 provides a histogram for the com-

plete distribution. Comparing to our training set (see

Fig. 4), the SPOT training set contains many fewer PDZ

domains sequences than ours does and each PDZ

domain is involved in many more interactions. Further,

with the exception of a single PDZ domain, most PDZ

domains in the SPOT dataset interact with approximately

the same number of ligands.

For a test set, we use the results of a solid phase PDZ/

ligand immunoassay, created to improve SPOT statis-

tics29 but not included in the training set. In this experi-

ment, 14 ligands were screened against 7 PDZ domains.

Of the 98 possible interactions, 27 were experimentally

determined to interact while the other 71 were deter-

mined not to interact.

For our models, we ran our GMRCC algorithm on the

new training set, again employing 100,000 randomiza-

tions to compute the P-value and only choosing edges

with a P-value of .005 or better. We generated a model

with a structural prior, considering the 43 edges used by

SPOT, as well as a model with an uninformative prior,

considering all 376 (94 3 4) possible edges.

Figure 9
Distribution of PDZ domain interactions in the SPOT training set.

[Color figure can be viewed in the online issue, which is available at

www.interscience.wiley.com.]
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We scored all test sequence pairs under both our mod-

els and SPOT (using the iSPOT webserver28). For our

models, we applied Eq. (7) for each method (table-count

and perturbation) and prior (structural and uninforma-

tive), using as above an interaction pseudocount (q) of

.001 and a residue pseudocount (a) of .01.

Figure 10 shows the ROC curves for the different

approaches. The AUC values for the variations of our

approach are .92 for table-count/uninformative, .91 for ta-

ble-count/structural, .88 for perturbation/uninformative,

.85 for perturbation/structural. Since iSPOT only returns

scores for interactions scoring more than .5 (interactions

scoring lower than .5 are assumed not to interact), we

were unable to score 4 true interactions and 35 false inter-

actions. If we evaluated SPOT using only those 59 interac-

tions whose scores were reported, the AUC value would

be .77. We can bound the value for the complete set by

noting that in the best case, the 4 true interactions would

score the highest among those scoring under .5. If this

were the case, the value would be at most .83. It could be

worse, as low as .75, if the 4 true interactions scored low-

est. Thus, even when employing a structural prior, our

methods outperform SPOT in predictive ability. By using

only informative cross-coupled pairs, scoring them in a

probabilistic setting, and factorizing them appropriately,

our models do not overfit our the data and are able to

better predict interactions. This test shows that the struc-

tural restriction does reduce the useful information,

slightly weakening the predictive ability.

To further illustrate the predictive ability of the models,

Figure 11 shows the precision-recall (PR) curves for the

different approaches. Each point in the curve corresponds

to a score threshold where interactions with scores above

the threshold are predicted to interact while those with

scores below it are predicted not to interact. The precision

at a threshold is given by the fraction of true interactions

above the threshold divided by the total number of inter-

actions above it. The recall is the fraction of true interac-

tions above the threshold. The PR curve for a perfect clas-

sifier would go through the point (1, 1). Notice that for

all levels of recall, the precision of the table-count

approach outperforms the SPOT approach. The perturba-

tion approach outperforms the SPOT approach for nearly

all values of recall. The performance can be characterized

by the maximum F-score (the harmonic mean of preci-

sion and recall) along the curve. The maximum F-scores

are .8708, .8670, and .6352 for the table-count, perturba-

tion, and SPOT approaches, respectively.

In this study, the table-count approach slightly outper-

forms the perturbation approach. There are two key

factors at play here. First, the distribution of the interac-

tions is nearly uniform (see Fig. 9), so that all sequences

are equally represented in the interaction table, without

the kind of bias alleviated by the perturbation method.

Furthermore, recall that the perturbation approach deals

with unique sequences rather than all interactions; since

there are only 15 PDZs, it faces the problem of generaliz-

ing from a very small training set.

To test the robustness of our approach to the selection

of pseudocount parameters, we scored the test sequence

pairs with a range of different settings. Figure 12 shows

the AUC values for different settings of the parameters.

In general, smaller pseudocounts tend to yield better val-

ues for both methods. However, even over a broad range

of magnitudes the values are still very high and outper-

form SPOT. Only when the pseudocounts overwhelm the

data (for example, setting q 5 .5, so that each unob-

served interaction is worth half an observed interaction)

Figure 10
ROC curves for table-count (blue, left), perturbation (red, right), and SPOT (green dot-dashed, both). The table-count and perturbation methods

outperform SPOT with either a structural (dotted) or uninformative prior (dashed). [Color figure can be viewed in the online issue, which is
available at www.interscience.wiley.com.]
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do our methods have lower AUC values than SPOT.

Finally, we note that the residue pseudocounts appear to

have relatively little impact as compared to the interac-

tion pseudocounts. This suggests that the predictions are

determined more by the observed interactions than by

the observed amino acids.

High-throughput experimental
interaction data

Recently, a high-throughput experimental study was

published in which 96 human and 72 C. elegans PDZ

domains were tested for binding against over 10 billion

random peptides in a phage-displayed combinatorial

library.25 This resulted in the identification of about

10,000 interactions, between 3100 peptide ligands and 82

PDZs. We used a profile hidden Markov model method

provided in the Matlab bioinformatics toolbox to align

the PDZs against our training set. Of the 82 PDZs in this

testing set, none occur in our training set. Since our

models consider only the four C-terminal residues of the

ligands, we filtered the 3,100 peptide ligands down to

1044 unique tetra-peptide ligands, 34 of which occur in

our training set.

We scored each of the possible 85,608 interactions (82

PDZs * 1044 ligands) under both table-count and pertur-

Figure 12
Robustness of the models under different choices of pseudocounts for table-count (left) and perturbation (right). The x-axis shows the amino acid

pseudocount, a, while the y-axis shows the interaction pseudocount, q. Colors indicate AUC values. [Color figure can be viewed in the online

issue, which is available at www.interscience.wiley.com.]

Figure 11
Precision-recall curves for table-count (blue, left), perturbation (red, right), and SPOT (green dot-dashed, both). The table-count and perturbation

methods outperform SPOT with either a structural (dotted) or uninformative prior (dashed). [Color figure can be viewed in the online issue, which

is available at www.interscience.wiley.com.]
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bation methods with our original model (i.e., learned

from our training data). Of the 85,608 interactions, 1476

were experimentally identified to interact, while 84,132

‘‘unidentified’’ ones were not found in the phage display

library (but are not necessarily non-interacting). We

expect all of the identified interactions to have good

scores overall, but only some of the unidentified ones to

score well (and possibly to interact). Thus when we select

a score threshold and predict that those above the thresh-

old interact and those below the threshold do not inter-

act, we expect the above-threshold set to include more of

the identified interactions. Figure 13 shows the fraction

of sequences from the original testing set (dashed red

line in Fig. 7), along with the experimentally identified

(solid blue) and unidentified (dot-dashed black) interac-

tions from the high-throughput experiment for both the

table-count (left) and perturbation (right) approaches. It

is the case that the identified interactions are better rep-

resented among those above threshold, for most thresh-

old. Note that in the case of perturbation, the threshold

from the earlier training set can be used to achieve a

similar fraction for the identified interactions from the

high-throughput experiment. This is not true for table-

count, where the absence of similar training data causes

the predictive ability to drop significantly.

CONCLUSION

Our overarching goal is to construct formal probabilis-

tic models capturing evolutionary coupling in protein

families, in order to better support protein investigation,

characterization, and design. Such models make explicit

the essential constraints underlying a family, and provide

compact descriptions of joint amino acid distributions.

They generalize traditional motif representations and

enable transparent probabilistic reasoning. We have pre-

viously developed the basic graphical model approach for

a single family and additional techniques that make use

of functional class information.12 The present article

builds upon that work in order to analyze and utilize

information about co-evolving families of proteins. Our

approach proved effective in uncovering, describing, and

predicting coupling in PDZ-ligand interactions, and we

intend to apply it to other such families, as well as to

help others in doing so, by making our software freely

available for academic use.

In addition to applications, there are a number of

interesting directions for future development. In order to

more fully characterize conservation and coupling infor-

mation within protein families, we will integrate within-

and between-family coupling models within a single

framework. We will seek to refine the model by incorpo-

rating quantitative interaction data (e.g., free energies of

association, rather than simple binary indicators). Inte-

gration of quantitative data may also enable us to predict

free energies of association (generalizing the work men-

tioned in the introduction, e.g., Ref. 40). Finally, sam-

pling from a cross-coupling model can guide the design

of new partners for a given protein or even new pairs of

interacting proteins from modeled families, just as cou-

pling information has been demonstrated to enable the

design of new, stably folded1 and functional2 WW

domains. A particularly interesting direction is to design

Figure 13
The fraction of interactions scoring above a given log likelihood threshold according to the table-count (left) and perturbation (right) approaches.

x-axis: log likelihood threshold; y-axis: fraction of interactions scoring above that threshold. The blue lines are for the high-throughput interactions

experimentally found to interact. The dashed red lines are for those in our testing set (see Fig. 7), while the black dot-dashed lines are for the

‘‘unidentified’’ interactions from the high-throughput experiments. [Color figure can be viewed in the online issue, which is available at

www.interscience.wiley.com.]
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for specificity (as has been accomplished by other techni-

ques for a number of systems40–45), leveraging the

demonstrated ability of our model to capture the cross-

coupling information underlying specific recognition.
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