
Optimizing Constraint Solving via Dynamic Programming

Shu Lin1∗ , Na Meng2 and Wenxin Li1
1Department of Computer Science and Technology, Peking University, Beijing, China

2Department of Computer Science, Virginia Tech, Blacksburg, VA, USA
fzlinshu@pku.edu.cn, nm8247@vt.edu, lwx@pku.edu.cn

Abstract

Constraint optimization problems (COP) on finite
domains are typically solved via search. Many
problems (e.g., 0-1 knapsack) involve redundant
search, making a general constraint solver revisit
the same subproblems again and again. Existing
approaches use caching, symmetry breaking, sub-
problem dominance, or search with decomposition
to prune the search space of constraint problems.
In this paper we present a different approach—
DPSolver—which uses dynamic programming
(DP) to efficiently solve certain types of constraint
optimization problems (COPs). Given a COP mod-
eled with MiniZinc, DPSolver first analyzes the
model to decide whether the problem is efficiently
solvable with DP. If so, DPSolver refactors the
constraints and objective functions to model the
problem as a DP problem. Finally, DPSolver
feeds the refactored model to Gecode—a widely
used constraint solver—for the optimal solution.
Our evaluation shows that DPSolver significantly
improves the performance of constraint solving.

1 Introduction
When solving a constraint optimization problem (COP), a
general solver searches for an assignment of variables to (1)
satisfy the constraints on those variables and (2) optimize
an objective function. Such search may require repetitive
computation when different branches on a search tree lead
to the same subproblem. The unnecessary redundant work
can cause the worst case complexity of search to be O(MN ),
where N is the number of variables for assignments and M
is the number of branches at each node.

Existing methods avoid or reduce redundant search via
caching [Smith, 2005], symmetry breaking [Gent et al.,
2006], subproblem dominance [Chu et al., 2012], problem
decomposition [Kitching and Bacchus, 2007], branch-and-
bound pruning [Marinescu and Dechter, 2005], lazy clause
generation [Ohrimenko et al., 2009], or auto-tabling [Dekker
et al., 2017; Zhou et al., 2015].

∗Contact Author

Dynamic programming (DP) is a classical method for solv-
ing complex problems. Given a problem, DP decomposes
it into simpler subproblems, solves each subproblem once,
stores their solutions with a table, and conducts table lookup
when a subproblem reoccurs [Bertsekas, 2000]. Although DP
seems a nice search algorithm for COP solutions, we have
not seen it to be used in solving general constraint models.
Therefore, this paper explores how well DP helps optimize
constraint solving. There are three major research challenges:

• Given a COP, how can we automatically decide whether
the problem is efficiently solvable with DP?

• If a problem can be solved with DP, how can we imple-
ment the DP search?

• When there are multiple ways to conduct DP search for a
problem, how can we automatically choose the best one
with optimal search performance?

To address these challenges, we designed and imple-
mented a novel approach DPSolver, which opportunisti-
cally accelerates constraint solving in a non-intrusive way.
Specifically, given a COP described in MiniZinc—a widely
used constraint modeling language [Nethercote et al., 2007],
DPSolver determines whether the problem has (1) opti-
mal substructures and (2) overlapping subproblems; if so,
the problem is efficiently solvable with DP. Next, for each
solvable problem, DPSolver converts the original model to
a DP-oriented model, such that a general constraint solver
(i.e., Gecode [Schulte et al., 2006]) essentially conducts DP
search when processing the new model. Third, if multiple
DP-oriented models are feasible, DPSolver estimates the
computation complexity of each model to choose the fastest
one.

We applied DPSolver to nine optimization problems,
including seven DP problems and two non-DP ones.
DPSolver significantly speeded up the constraint solving
process for all problems. We also applied two state-of-
the-art optimized constraint solvers—CHUFFEDC (caching)
and CHUFFEDL (LCG)—to the same dataset for compari-
son, and observed that DPSolver significantly outperformed
both techniques. We open sourced DPSolver and our eval-
uation data set at https://github.com/fzlinshu/DPSolver.

Proceedings of the Twenty-Eighth International Joint Conference on Artificial Intelligence (IJCAI-19)

1146



% Input arguments
int: N;
int: C;
array[1..N] of int: V;
array[1..N] of int: W;

% Variables
var set of 1..N: knapsack;

% Constraints
constraint sum (i in knapsack)(W[i]) <= C;

% Objective function
solve maximize sum (i in knapsack)(V[i]);

Figure 1: Model of the 0-1 knapsack problem

2 A Motivating Example
To facilitate discussion, we introduce the 0-1 knapsack prob-
lem as an exemplar problem efficiently solvable with DP.

Problem Description: There are N items. There is
a knapsack of capacity C. The ith item (i ∈ [1, N ])
has value Vi and weight Wi. Put a set of items S ⊆
{1, . . . , N} in the knapsack, such that the sum of
the weights is at most C while the sum of values is
maximal.

The 0-1 knapsack problem is a typical COP and can be mod-
eled with MiniZinc in the following way (see Figure 1):
Given the above model description, a general constraint
solver (e.g., Gecode) typically enumerates all possible sub-
sets of N to find the maximum value summation. Such naı̈ve
search has O(2N ) time complexity. Our research intends to
significantly reduce this complexity.

3 Approach
DPSolver consists of three phases: DP problem recogni-
tion (Section 3.1), DP-oriented model description generation
(Section 3.2), and description selection (Section 3.3). Phase
II is taken only when Phase I identifies one or more solvable
problems in a given MiniZinc model; and Phase III is taken
only when Phase II generates multiple alternative models.

3.1 Phase I: DP Problem Recognition
If a problem can be efficiently solved with dynamic program-
ming, it must have two properties [Cormen et al., 2009]:

P1. Optimal Substructures. An optimal solution can be
constructed from optimal solutions of its subproblems. This
property ensures the usability of DP, because DP saves and
uses only the optimal instead of all solutions to subproblems
for optima calculation.

P2. Overlapping Subproblems. When a problem is de-
composed into subproblems, some subproblems are repeti-
tively solved. This property ensures the usefulness of DP, be-
cause by memoizing solutions to subproblems, DP can elim-
inate repetitive computation.

Essentially, DP is applicable to a COP when optimal so-
lutions to subproblems can be repetitively reused for optima

calculation. If a COP has both properties, we name it a DP
problem.

Given a COP modeled in MiniZinc, DPSolver recognizes
a DP problem by taking three steps: 1) identifying any array
variable and accumulative function applied to those array el-
ements, 2) converting constraints and objective functions to
recursive functions of array elements (i.e., subproblems), and
3) checking recursive functions for the two properties.

Step 1: Candidate Identification
DPSolver checks for any declared variable of the array data
type because DP is usually applied to arrays. Additionally,
if a variable is a set, as shown by the knapsack variable in
Figure 1, DPSolver converts it to a boolean array b such that
“b[i]” indicates whether the ith item in the set is chosen or
not. By doing so, DPSolver can also handle problems with
set variables. We name the identified array or set variables
candidate variables.

Next, DPSolver checks whether any candidate variable
is used in at least one constraint and one objective function;
if so, DPSolver may find optimization opportunities when
enumerating all value assignments to the variable. In Fig-
ure 1, both the constraint and objective can be treated as func-
tions of the newly created array b as below:

N∑
i=1

b[i] ∗W [i] ≤ C, where b[i] ∈ {0, 1} (3.1)

maximize
N∑
i=1

b[i] ∗ V [i], where b[i] ∈ {0, 1} (3.2)

When these functions have any accumulative operator (e.g.,
sum), it is feasible to further break down the problem into
subproblems. Thus, DPSolver treats the variable b together
with related functions as a candidate for DP application.

Step 2: Function Conversion
DPSolver tentatively converts relevant constraint and ob-
jective functions to step-wise recursive functions in order to
identify subproblems and prepare for further property check.
Specifically, DPSolver unfolds all accumulative functions
recursively. For instance, the constraint formula (3.1) can be
converted to

f0(W, b) = 0

f1(W, b) = f0(W, b) + b[1] ∗W [1]

c1(W, b) = C − f1(W, b)

c1(W, b) ≥ 0

. . . (3.3)
fN (W, b) = fN−1(W, b) + b[N ] ∗W [N ]

cN (W, b) = C − fN (W, b)

cN (W, b) ≥ 0

Here, fi(W, b)(i ∈ [1, N ]) computes weight sums for the
first i items given (1) the item weight array W and (2) the
boolean array b. The function ci(W, b) subtracts fi(W, b)
from capacity C, to define the constraint for each subprob-
lem. Here, ci means “the remaining capacity limit for the last

Proceedings of the Twenty-Eighth International Joint Conference on Artificial Intelligence (IJCAI-19)

1147



(N − i) items”. The value of ci helps decide whether an item
should be added to the knapsack. Namely, if the weight of
the (i + 1)th item is greater than ci’s value, the item should
not be added. Actually, the ci’s value is limited by the lower
bound min{0, (N − i) ·min{W [1], . . . ,W [N ]}}. Because
DPSolver scanned the input data and found all weight val-
ues to be greater than 0, the lower bound used in (3.3) was
simplified to 0.

Similarly, the objective function (3.2) can be transferred to

o0(V, b) = 0

o1(V, b) = o0(V, b) + b[1] ∗ V [1]

opt1(V ) = max o1(V, b)

. . . (3.4)
oN (V, b) = oN−1(V, b) + b[N ] ∗ V [N ]

optN (V ) = max oN (V, b)

Here, oN (V, b) calculates the value summation. The func-
tion opti(V ) defines the optimization goal for each subprob-
lem related to the first i items. We use max instead of
maximize to indicate that the maximal value can be calcu-
lated by simply enumerating all possible values of variables
without using any optimization or advanced algorithm such
as search. When all possible value assignments are explored
for b, oN (V, b) and optN (V ) functions can be executed to
obtain the maximal summation.

Step 3: Property Check
With the converted functions, DPSolver checks for two
properties in sequence.

(a) Verifying optimal substructures. We first defined and
proved the following theorem:

Theorem 3.1. Given two sets of functions,
O = {o0(·), o1(·), o2(·), . . . , on(·)} and Opt =
{opt1(·), opt2(·), . . . , optn(·)} (“·” is a placeholder for
arguments), for any i ∈ [1, n], suppose that

• oi(·) = h(oi−1(·), b[i]) where b is a candidate variable
and h is monotonically increasing in oi−1(·),
• opti(·) = max oi(·).

Then opti(·) is monotonically increasing in opti−1(·).
In this theorem, each oi(.) is a function, representing all

possible value sums produced when b[1..i] is assigned with
different vector values, while max oi(.) is a value, represent-
ing the maximum among those value sums.

Proof. For any i ∈ [1, n],

∵ oi−1(·) ≤ max oi−1(·)
∴ h(oi−1(·), b[i]) ≤ h(max oi−1(·), b[i])
∴ oi(·) ≤ h(max oi−1(·), b[i])
∴ max oi(·) = h(max oi−1(·), b[i]), i.e.,
opti(·) = h(opti−1(·), b[i])

Therefore, opti(·) monotonically increases in opti−1(·). The
optimal solution can be composed with the optimal solution
to a subproblem. �

Similarly, we defined and proved a related theorem when
the max function used in Theorem 3.1 is replaced with min.
Furthermore, there are problems whose opti(·) functions are
expressions of max oi (e.g., max oi + 3) instead of max oi
itself. To ensure the generalizability of our approach, we also
consider such problems to have optimal substructures as long
as max oi is a function of max oi−1. This is because when
the extreme value (max or min) related to a problem’s op-
timal solution can be computed with the extreme values de-
rived for subproblems, we can always construct the optimal
solution by reusing extreme values from subproblems.

Based on the above theorems, given converted objective
functions, DPSolver locates the used max or min func-
tion and tentatively matches h. For each matched h function,
DPSolver takes the derivative to check for any monotonicity
property. For our example (function sets (3.4)), we have

h0/1(oi−1(·)) = oi−1(·) + b[i] ∗ V [i].

Assuming h0/1 to be continuous, DPSolver finds the deriva-
tive to be ∂oi(·)/∂oi−1(·) = 1 > 0. Therefore, h0/1 in-
creases monotonically in oi−1. Solutions of the 0-1 knapsack
problem have optimal substructures.
(b) Verifying overlapping subproblems. We defined and

proved another theorem to facilitate property checking.

Theorem 3.2. Given two sets of functions,
F = {f0(·), f1(·), . . . , fn(·)} and Con =
{c0(·), c1(·), . . . , cn(·)} (“·” is a placeholder for argu-
ments), for any i ∈ [1, n], suppose that

• f0(·) = v0 where v0 is a constant,

• fi(·) = p(fi−1(·), b[i]) where b is a variable, and

• ci(·) = q(fi−1(·), b[i]).
Then there exist overlapping subproblems of fn(·) and cn(·)
between different value assignments of b.

Proof. This theorem includes two parts: (1) fn(·) has over-
lapping subproblems; and (2) cn(·) has overlapping subprob-
lems. Here we demonstrate the proof by induction for fn(·).
The proof for cn(·) is similar.

1. n=2: For any two assignments of b: b′A2 and b′′A2, where
b′A2 6= b′′A2 but b′A2[1] = b′′A2[1],

∵ The first elements of both arrays are identical,
∴ The evaluation procedures of f1(·) = p(f0(·), b[1])

remains the same given b′A2 and b′′A2.
∴When f2(·) is computed based on f1(·), the

calculation procedure of f1(·) overlaps between b′A2

and b′′A2. Thus, fn(·) has overlapping subproblems.

2. n=k (k>2): Assume the theorem to hold. Namely, there
exist two assignments b′Ak and b′′Ak (b′Ak 6= b′′Ak), be-
tween which the evaluation procedures of fn(·) have
overlapping subproblems.

3. n=k+1: To prove the theorem, we compose two assign-
ments: b′A(k+1) and b′′A(k+1), such that b′A(k+1)[1 : k] =

Proceedings of the Twenty-Eighth International Joint Conference on Artificial Intelligence (IJCAI-19)

1148



b′Ak and b′′A(k+1)[1 : k] = b′′Ak. Intuitively, these arrays
separately include b′Ak and b′′Ak as the first k elements.

∵ fk+1(·) = p(fk(·), b[k + 1])

∴ The function depends on the evaluation result of fk(·),
a function computed based on the first k elements

∵ The evaluation processes of fk(·) between b′Ak and b′′Ak

have overlapping subproblems
∴ The evaluation processes of fk+1(·) between bA(k+1)′

and b′′A(k+1) also overlap.

Therefore, when different value assignments of b are ex-
plored, there are overlapping subproblems to resolve. �

Based on Theorem 3.2, given converted constraint func-
tions, DPSolver tries to match p and q by using or unfold-
ing the formulas of f and c functions. Thus, for our example
(function sets (3.3)), the matched functions are

p0/1(fi−1(·), b[i]) = fi−1(·) + b[i] ∗W [i],

q0/1(fi−1(·), b[i]) = C − fi−1(·)− b[i] ∗W [i].

Notice that p0/1 is derived from the f formulas, while q0/1 is
obtained when DPSolver replaces the occurrence of f in c
formulas. With such matched functions found, the 0-1 knap-
sack problem passes the property check.

DP trades space for time by storing and reusing optimal
solutions to subproblems. If a problem has the first prop-
erty only, DPSolver does not proceed to Phase II. Because
there is no reuse of intermediate results, the extra space con-
sumption for caching those results will not bring any execu-
tion speedup. However, if a problem has the second property
only, even though DP is not applicable, DPSolver still cre-
ates a table to memoize all intermediate results for data reuse
and runtime overhead reduction.

3.2 Phase II: DP-Oriented Model Generation
The above-mentioned recursive functions (e.g., function sets
(3.3) and (3.4)) are not directly usable by DP for efficient
search because no redundant computation is eliminated. We
need to rewrite those functions such that intermediate results
for subproblems are stored to a table and are used to replace
repetitive computation.

Specifically, given (1) a candidate variable b, (2) a series
of constraint functions c(·), (3) a series of objective functions
o(·), and (4) the extreme value we care about (i.e., max or
min), DPSolver creates a two-dimension array M such that

M [i, ci] = extreme oi(·)
= extreme h(extreme oi−1(·), b[i])
= extreme h(M [i− 1, ci−1], b[i]) (3.5)

In M , i corresponds to the array index range of b, ci repre-
sents the corresponding valid constraint value, while the cell
M [i, ci] saves the extreme value computed for each subprob-
lem, meaning “given the first i elements and the constraint
value ci, what is the extreme value of oi?”. When differ-
ent values of b[i] are enumerated, the corresponding ci−1 can

% Input arguments
... % unchanged N, C, V, W

% Variables
array[0..N, 0..C] of var int: dpvalue;

% Constraints
constraint forall(j in 0..C)
(dpvalue[0,j] = if j==0 then 0 else -1 endif);

function var int: calcValue(int: i,int: j,int: k) =
if j-W[i]*k>=0 then

if dpvalue[i-1,j-W[i]*k] != -1 then
dpvalue[i-1,j-W[i]*k]+V[i]*k

else -1 endif
else -1 endif;

constraint
forall(i in 1..N, j in 0..C) (

dpvalue[i,j] = max(k in 0..1)(calcValue(i,j,k))
);

% Objective function
solve maximize max(j in 0..C)(dpvalue[N,j]);

Figure 2: DP-oriented model of the 0-1 knapsack problem

be different. Thus, multiple cells in the row M [i − 1] may
be reused for computation, and M [i, ci] is usually decided
by the value comparison between these cells. By generating
such table-driven recursive functions to model a DP problem,
DPSolver can produce a DP-oriented MiniZinc description.

Figure 2 shows the newly generated model for our exam-
ple. The space complexity of creating the dpvalue table is
O(NC), while the time complexity is O(NC). This time
complexity refers to the whole resolution process because the
DP-oriented model is resolved by propagation only.

Handling of Side Constraints. Some COP models are de-
fined with side constraints in addition to accumulative func-
tions. DPSolver can still process such models by converting
each side constraint to an if-clause. For instance, a variant of
the 0-1 knapsack problem can have an additional requirement
as “Item 3 must be put in the knapsack”, which can be ex-
pressed as a side constraint “3 in knapsack”. For this side
constraint, DPSolver generates an if-clause “if i==3 /\
k!=1 then -1 else ...” and inserts it to the beginning
of the calcValue(...) function in Figure 2.

3.3 Phase III: DP-Oriented Model Selection
For some COP problems, DPSolver can create multiple al-
ternative optimization strategies. Given the space limit (e.g.,
4GB) specified by users when they run the tool via com-
mands, DPSolver automatically estimates the time/space
complexity of each alternative, chooses the models whose ta-
ble sizes are within the space limit, and then recommends the
model with the maximum speedup.

To better explain this phase, we take the nested 0-1 knap-
sack problem as another exemplar DP problem (see Figure 3).

When analyzing the problem, DPSolver identifies two
candidate variables—b1 and b2—to separately represent sub-
sets K1 and K2. Since both variables are related to con-
straints, DPSolver explores and assesses three potential
ways to create DP-oriented models:

(1) Optimization based on b2: When exhaustive search is

Proceedings of the Twenty-Eighth International Joint Conference on Artificial Intelligence (IJCAI-19)

1149



% Input arguments
int: N1, N2, C1;
array[1..N1] of int: V1, W1;
array[1..N2] of int: V2, W2;

% Variables
var int: C2;
var set of 1..N1: K1;
var set of 1..N2: K2;

% Constraints
constraint sum (i in K1)(W1[i]) <= C1;
constraint C2 = sum (i in K1)(V1[i]);
constraint sum (i in K2)(W2[i]) <= C2;

% Objective function
solve maximize sum (i in K2)(V2[i]);

Figure 3: Model of the nested 0-1 knapsack problem. There are two
sets of items (N1 and N2). Choose items in both sets to separately
fill two knapsacks: K1 and K2. If the value sum in K1 is used as
the capacity of K2, try to maximize the value sum in K2.

leveraged to fill K1 in various ways, for each produced
C2 value, the optimization problem becomes a regu-
lar 0-1 knapsack problem—a DP problem. Therefore,
DPSolver can create a DP-oriented model, with both
time and space complexity as O(N2C2). Since the
exhaustive search handles such 0-1 knapsack problems
with O(2N2) time complexity, the optimization speedup
is estimated as (2N2/N2C2).

(2) Optimization based on b1: When exhaustive search is
used to fill K2 in various ways, for each generated
weight sum sumw in K2, we need the value sum in K1
(i.e., C2) to be no less than sumw while the weight sum
in K1 to be no more than C1. Because these converted
problems do not have any objective function, they are
not considered as DP problems. DPSolver does not
create any model for optimization.

(3) Optimization based on b1 and b2: DPSolver con-
catenates b1 and b2 to create a larger array b3. In
b3, the first N1 elements are involved in the first two
constraints, while the last N2 elements are related
to the third constraint and objective function. Thus,
b3 is still a candidate variable and the given prob-
lem is a DP problem. The exhaustive search ob-
tains O(2N12N2) time complexity. In comparison, DP
search has both time and space complexity as O((N1 +
N2)C1Sum2) time complexity, where Sum is the
upper bound of sumw. Consequently, the estimated
speedup is (2N12N2/

[
(N1 +N2)C1Sum2

]
).

When the two separately generated models described in
(1) and (3) both have their tables smaller than the space
limit, DPSolver suggests the one with more speedup (i.e.,
(3)). Figure 4 shows the DP-oriented model resulted from
(3). Intuitively, the more array variables are involved in op-
timization (e.g., (b1, b2) vs. b2), the more performance gain
DPSolver is likely to obtain.

% Input arguments
... % unchanged N1, N2, C1, V1, W1, V2, W2
int: sum = 20;
% the upper bound of sum_w obtained from the input

% Variables
array[0..N1+N2,0..C1,0..sum,0..sum] of var int:
dpvalue;

% Constraints
constraint
forall(i2 in 0..C1, i3 in 0..sum, i4 in 0..sum) (

dpvalue[0,i2,i3,i4] =
if i2==0/\i3==0/\i4==0 then 0 else -1 endif

);
function var int: calcValue(int:i1,int:i2,int:i3,

int:i4,int:i5) =
if i1 <= N1 then

if i2-W1[i1]*i5>=0 /\ i3-V1[i1]*i5>=0 then
dpvalue[i1-1,i2-W1[i1]*i5,i3-V1[i1]*i5,i4]

else -1 endif
elseif i4<=i3 /\ i4-W2[i1-N1]*i5>=0 then

if dpvalue[i1-1,i2,i3,i4-W2[i1-N1]*i5]!=-1 then
dpvalue[i1-1,i2,i3,i4-W2[i1-N1]*i5]

+V2[i1-N1]*i5
else -1 endif

else -1 endif;
constraint
forall(i1 in 1..N1+N2, i2 in 0..C1,

i3 in 0..sum, i4 in 0..sum) (
dpvalue[i1,i2,i3,i4] =
max(i5 in 0..1)(calcValue(i1,i2,i3,i4,i5))

);

% Objective function
solve maximize
max(i2 in 0..C1, i3 in 0..sum, i4 in 0..sum)

(dpvalue[N1+N2,i2,i3,i4]);

Figure 4: DP-oriented model of the nested 0-1 knapsack problem
when the optimization is based on both b1 and b2

4 Implementation
DPSolver is implemented based on a widely used open-
source constraint solver Gecode [Schulte et al., 2006]. Given
a user-provided MiniZinc model, DPSolver analyzes the
problem, converts the model to a DP-oriented model when
possible, and passes the model to Gecode. If DPSolver
cannot optimize a model, it passes the original model to
Gecode. If multiple alternative DP-oriented models are gen-
erated, DPSolver passes the best one.

For some problems, DPSolver implements extra handling
to optimize constraint solving as much as possible.

Problems with aftereffects. Some problems (e.g., longest
increasing subsequence) have the aftereffect property.
Namely, the value of oi(·) not only depends on oi−i(·)
or b[i], but also on elements in b[1 : i−1] (e.g., b[i−1]).
DPSolver handles such problems by saving more data
for each subproblem. If the computation of oi(·) de-
pends on last T elements in b, i.e., b[i− T : i− 1], then
DPSolver increases the table by T dimensions to save
the involved T elements.

Problems without optimal substructures. Some problems
(e.g., blackhole) have overlapping subproblems but no
optimal substructures. Even though they are not DP
problems, DPSolver still optimizes them by memoiz-
ing solutions to subproblems for data reuse. Instead of

Proceedings of the Twenty-Eighth International Joint Conference on Artificial Intelligence (IJCAI-19)

1150



saving data as “M [i, ci] = extreme oi(·)”, DPSolver
saves “M [i, ci, j] = true/false” to indicate “given i
elements and constraint value ci, whether or not oi is
equal to j.”. All saved data will be enumerated when
DPSolver searches for the best solution.

Problems with two or more candidate variables. Some
problems (see Figure 3) have multiple candidate vari-
ables for DP optimization. DPSolver enumerates and
assesses different optimization strategies by concate-
nating arrays. With more detail, given multiple array
variables B={b1, b2, . . . , bk}, DPSolver enumerates
subsets in B. For instance, if k = 3, DPSolver first
analyzes each array for any optimization opportunity.
Next, DPSolver enumerates all array pairs for con-
catenation (e.g., (b1, b2), (b2, b3), and (b1, b3)), and
analyzes whether any combined array can be used
for optimization. Finally, DPSolver concatenates all
arrays to obtain a larger one (e.g., (b1, b2, b3)), and
decides whether any optimization is applicable. Such
analysis can be time-consuming when k is large. In
such scenarios, DPSolver ranks arrays based on their
lengths and focuses the analysis on longer arrays.

5 Evaluation
This section first introduces our evaluation data set (Sec-
tion 5.1). It then describes the experiment settings (Sec-
tion 5.2), and then finally explains our results (Section 5.3).

5.1 Data Set
To evaluate the effectiveness of DPSolver, we created a data
set of 9 representative COP tasks:
• 0-1 knapsack.
• Complete knapsack: Similar to 0-1 knapsack but each

item can be selected multiple times.
• Nested 0-1 knapsack.
• Shortest path: Given a graph of N nodes and the

weighted edges between them, find a path between S
and T to minimize the weight sum.
• Longest increasing subsequence: Find the longest as-

cending subsequence in a given sequence of length N .
• Longest common subsequence: Find the longest com-

mon subsequence between two given sequences of
length N .
• Radiation therapy [Baatar et al., 2007]: Given an M×N

integer matrix describing the radiation dose to deliver to
each area, decompose the matrix into a set of patterns for
a radiation source to deliver. Minimize the working time
of the radiation source and the number of used patterns.
• Modulus 0-1 knapsack: Similar to 0-1 knapsack but the

objective is to maximize the last digit of the value sum.
• Blackhole: A player starts this solitaire card game by (1)

moving Ace of Spades to the blackhole, and (2) arrang-
ing the other 51 cards as 17 piles of 3 cards each. In
each turn, a card at the top of any pile can be moved to
the blackhole if it is +1/-1 from the previous one. Find a
way to move all cards.

The first seven problems are DP problems, and the last two
problems are non-DP ones because they do not have the P1
property. We chose these problems in our evaluation for three
reasons. First, the DP structures of the problems are distinct.
Second, they are representative and cover most of the com-
mon DP structures from DP exercises. Third, the variants of
knapsack are easy to explain and understand.

5.2 Experiment Settings
We applied DPSolver, Gecode [Schulte et al., 2006], and
CHUFFED [Chu et al., 2012] to the data set. Specifi-
cally, CHUFFED can be executed as a naı̈ve solver (de-
noted as CHUFFED), a solver with automatic caching
(CHUFFEDC) [Smith, 2005], or a solver with Lazy
Clause Generation [Ohrimenko et al., 2009]. Although
both CHUFFEDC and CHUFFEDL reduce redundant search,
CHUFFEDC reuses active and non-satisfied constraints while
CHUFFEDL uses constraints involved in conflicts to generate
new constraints (nogoods).

We conducted the experiment on a personal computer (with
an Intel Core i5-7300HQ 2.5GHz CPU, 8G of RAM). Table 1
shows the measured runtime overhead of different solvers.
For generality, given the size of input for each problem (Col-
umn 4), we randomly generated 10 sets of input parameters,
executed each tool with these inputs, and reported the average
runtime overhead among the 10 runs. We set 10000 seconds
for execution timeout. If a solver does not return any result
within 10000 seconds, we terminated the execution.

5.3 Results
As shown in Table 1, Gecode and CHUFFED ran overtime
for four problems (No. 4 and 6-8), mainly because these
solvers applied almost no optimization or only built-in basic
optimizations. In contrast, DPSolver solved each of these
problems within 100 seconds. For the remaining problems,
DPSolver achieved on average 698x speedup over Gecode
and 790x speedup over CHUFFED.

Finding 1: DPSolver sped up general constraint
solvers by several orders of magnitude.

We compared DPSolver with two optimized solvers:
CHUFFEDC and CHUFFEDL. Unexpectedly, CHUFFEDL ran
overtime for four problems (No. 2, 4, 6, and 8) while
DPSolver solved all of them. For four out of the other prob-
lems, CHUFFEDL executed more slowly than both unopti-
mized solvers. This may be because a lot of nogoods are gen-
erated and propagated based on conflicts, but these nogoods
could not help reduce the search space. For the five problems
solvable by CHUFFEDL, DPSolver obtained 345x speedup
over CHUFFEDL on average. When solving all 9 problems,
DPSolver achieved 23x speedup over CHUFFEDC.

Finding 2: DPSolver outperformed caching and
LCG when solving DP problems and some non-DP
problems with the P2 property.

Proceedings of the Twenty-Eighth International Joint Conference on Artificial Intelligence (IJCAI-19)

1151



No. Problem Extra Handling Size of Input Gecode CHUFFED CHUFFEDC CHUFFEDL DPSolver
Total Analysis

1 0-1 knapsack - N = 103, C = 103 975 1143 47 1598 2 0.05
2 Complete knapsack - N = 103, C = 103 3985 4262 125 >10000 2 0.05
3 Nested 0-1 knapsack With multiple candidates N = 100, C1 =

100, Sum = 20
357 496 78 672 1 0.03

4 Shortest path With aftereffects (T=1) N = 103 >10000 >10000 784 >10000 97 0.15
5 Longest inc. subseq. With aftereffects (T=1) N = 103 1274 1653 34 1751 5 0.03
6 Longest common subseq. With multiple candidates,

with aftereffects (T=1)
N = 103 >10000 >10000 55 >10000 10 0.08

7 Radiation therapy With multiple candidates,
with aftereffects (T=1)

M = 8, N = 10 >10000 >10000 40 4 4 0.18

8 Modulus 0-1 knapsack Without P1 N = 103, C = 103 >10000 >10000 58 >10000 53 0.05
9 Blackhole Without P1, with multiple

candidates
N = 52 168 74 46 267 43 0.16

Table 1: Constraint solving time (in second) of different tools

Actually, the execution time of DPSolver is spent for two
tasks: (1) model analysis (Section 3), and (2) constraint solv-
ing. To compare the benefit and cost of model analysis, we
measured the analysis time cost. As shown by the last col-
umn in Table 1, DPSolver spent 0.03-0.18 second in analyz-
ing each model and generating new models as needed. The
analysis time cost is negligible compared with the constraint
solving time saved by DPSolver over current approaches.

Finding 3: DPSolver significantly accelerated
constraint solving without introducing substantial
analysis overhead.

6 Related Work
This section describes related work on automatic optimiza-
tion of constraint solving (Section 6.1), constraint solving
with DP (Section 6.2), and tabling (Section 6.3).

6.1 Optimizers of Constraint Solving
When constraint solvers are used to search solutions for
COP tasks, a number of methods were proposed to avoid
or reduce redundant search in the process [Smith, 2005;
Gent et al., 2006; Kitching and Bacchus, 2007; Ohrimenko
et al., 2009; Chu et al., 2012]. Specifically, caching memo-
izes search states to prevent the same state from being recom-
puted [Smith, 2005]. Symmetry breaking and subproblem
dominance identify the equivalence or dominance relation-
ship between states to avoid useless state exploration [Gent et
al., 2006; Chu et al., 2012]. Symmetric component caching
decomposes a COP into disjoint subproblems via variable
assignments, such that each subproblem is solved indepen-
dently to compose the optimal solution [Kitching and Bac-
chus, 2007]. Lazy Clause Generation (LCG) identifies con-
straints related to conflicts, and generates new constraints
(nogoods) to reduce search [Ohrimenko et al., 2009].

Compared with prior work, DPSolver reduces unneces-
sary search by (1) identifying optimal substructures and over-
lapping subproblems in given problem descriptions, and (2)
formatting the descriptions as DP-oriented models when pos-
sible. Our evaluation shows that DPSolver worked much
better than the state-of-the-art optimizers.

6.2 Constraint Solving with DP
Researchers created various methods to solve constraints via
DP [Moor, 1994; Sauthoff et al., 2011; Morihata et al., 2014;
Prestwich et al., 2018]. For instance, DPE is a method to
model DP in Constraint Programming (CP) [Prestwich et al.,
2018]. With this method, a modeler can specify a DP problem
by defining a CP model via KOLMOGOROV—a constraint
specification language. GAP is another domain-specific lan-
guage for DP problem specification [Sauthoff et al., 2011].
However, none of these approaches can automatically detect
any DP problem structure in general constraint models.

Moor proved the conditions in which we can check mono-
tonicity to verify the optimal substructures of given prob-
lems [Moor, 1994]. The research inspires our approach of
DP problem recognition. Morihata et al. built a Haskell li-
brary for users to describe a problem in a naı̈ve enumerate-
and-choose style, and provided an approach that automati-
cally derives efficient algorithms to solve the problem [Mori-
hata et al., 2014]. However, the library does not support users
to specify any problem with multiple constraints, neither can
users specify the three classes of problems listed in Section 4.

6.3 Tabling
Approaches were built to save intermediate computation re-
sults in certain data structures, so as to reduce or elimi-
nate repetitive computation [Zhou et al., 2015; Dekker et al.,
2017; de Uña et al., 2019]. For example, auto-tabling pro-
vides MiniZinc annotations for users to define and insert ta-
ble constraints and save calculation results to tables [Dekker
et al., 2017]. Similarly, the Picat tabling requires users to
specify the variables for tabling [Zhou et al., 2015]. Different
from these tools, DPSolver automatically detects memoiza-
tion opportunities and creates tables without any user input.

de Uña et al. detected subproblem equivalence by hashing
results [Chu et al., 2012], and then used MDDs and formu-
las in d-DNNFs instead of tables to compute and store solu-
tions [de Uña et al., 2019]. To build an MDD or d-DNNF, a
modeler has to specify the constraints, and the domain as well
as ordering of related variables. DPSolver is different in two
ways. First, it unfolds and analyzes predicates to detect over-
lapping subproblems and/or optimal substructures. Second, it
does not require extra user input.

Proceedings of the Twenty-Eighth International Joint Conference on Artificial Intelligence (IJCAI-19)

1152



7 Discussion
Theoretically, DPSolver is applicable when a model M
meets two criteria:

(i) M describes a discrete optimization problem that has
overlapping subproblems; and

(ii) M has at least an array or set of same-typed variables.

Essentially, (i) ensures the opportunity to trade space for time.
Namely, if there is redundant computation between subprob-
lems, we can save computed results to remove duplicated cal-
culation. Additionally, (ii) ensures the applicability of the
table-based search. With a fixed linear ordering between vari-
ables, we can index and retrieve solutions to subproblems.

In practice, DPSolver ’s capability is also limited by an-
other two conditions:

(iii) All constraints in M are defined with the built-in op-
erations, global constraints, and non-recursive functions
provided by MiniZinc. This is imposed by our current
tool implementation.

(iv) The available memory space allocated by users should
be sufficient to hold a table. Suppose that

a) there are N elements in a candidate array;
b) the size of each element’s value range is M ;
c) there are L (L ≥ 1) accumulative functions related

to the array;
d) for the ith accumulative function, the size of the

constraint value’s range is Ri; and
e) the aftereffect value is T .

Then the space complexity is O(NMT
L∏

i=1

Ri). With

this formula, DPSolver decides whether the complex-
ity value is larger than the allocated space; if not,
DPSolver optimizes the model.

DPSolver is not limited to solving “pure” DP problems; it
can handle some non-DP problems as long as the memoiza-
tion of intermediate results can reduce duplicated calculation.
For instance, the graph coloring problem is about coloring
the N nodes in a graph with C different colors such that no
two adjacent nodes have the same color. This non-DP prob-
lem can be described as a DP-oriented model with T = N .
DPSolver optimizes the solving process when N is small
(e.g., N = 10), but does not do so when N is large (e.g., 50)
because the space cost is too high.

Furthermore, we manually checked the 130 models in the
MiniZinc Benchmark Suite1, to estimate the applicability of
our approach. Based on our observation, DPSolver can
fully optimize 9 models, and partially optimize 44 models
by working for smaller sizes of inputs. The other problems
have complicated constraints, and can be potentially handled
by DPSolver if we simplify the constraints.

1https://github.com/MiniZinc/minizinc-benchmarks

8 Conclusion
DPSolver opportunistically optimizes constraint solving if
a problem (1) uses any array variable and (2) can be reformu-
lated as a DP-oriented problem. We focused on dynamic pro-
gramming because although it is a popularly used problem-
solving paradigm for large problems, it has not been fully
exploited to optimize constraint solving.

Our research has made three contributions. First,
DPSolver analyzes a given problem modeled with MiniZ-
inc to automatically check for two DP-related properties.
Second, DPSolver converts problem descriptions to DP-
oriented models in novel ways such that DP problems and
some non-DP problems can be efficiently resolved by generic
constraint solvers. Third, we applied DPSolver and re-
lated techniques to nine representative COP problems (in-
cluding DP and non-DP problems). Impressively, our evalua-
tion demonstrates that DPSolver outperforms current tools
with a speedup of several dozens or even hundreds.

Our investigation demonstrates the effectiveness of ac-
celerating constraint solving via dynamic programming.
DPSolver currently handles problems containing array vari-
ables. In the future, we will improve DPSolver to also han-
dle problems having variables of other data structures, such
as trees. Given a problem description written in natural lan-
guages, we also plan to automatically create a DP-oriented
model by extracting arguments, variables, constraints, and
objective functions directly from the description. In this way,
users will learn about which problem is efficiently solvable
and what is the corresponding MiniZinc model.

Acknowledgments
We thank anonymous reviewers for their valuable feedback.
This work is partially supported by the National Natural Sci-
ence Foundation of China NSFC under Grant No. 91646202
as well as Beijing Municipal Commission of Science and
Technology under Grant No. Z181100008918005.

References
[Baatar et al., 2007] Davaatseren Baatar, Natashia Boland,

Sebastian Brand, and Peter J. Stuckey. Minimum cardi-
nality matrix decomposition into consecutive-ones matri-
ces: CP and IP approaches. In International Conference
on Integration of Artificial Intelligence (AI) and Opera-
tions Research (OR) Techniques in Constraint Program-
ming, pages 1–15. Springer, 2007.

[Bertsekas, 2000] Dimitri P. Bertsekas. Dynamic Program-
ming and Optimal Control. Athena Scientific, 2nd edition,
2000.

[Chu et al., 2012] Geoffrey Chu, Maria Garcia de la Banda,
and Peter J. Stuckey. Exploiting subproblem dominance in
constraint programming. Constraints, 17(1):1–38, 2012.

[Cormen et al., 2009] Thomas H. Cormen, Charles E. Leis-
erson, Ronald L. Rivest, and Clifford Stein. Introduction
to Algorithms, third edition. MIT Press, 2009.

[de Uña et al., 2019] Diego de Uña, Graeme Gange, Peter
Schachte, and Peter J. Stuckey. Compiling CP subprob-

Proceedings of the Twenty-Eighth International Joint Conference on Artificial Intelligence (IJCAI-19)

1153



lems to MDDs and d-DNNFs. Constraints, 24(1):56–93,
2019.

[Dekker et al., 2017] Jip J. Dekker, Gustav Björdal, Mats
Carlsson, Pierre Flener, and Jean-Noël Monette. Auto-
tabling for subproblem presolving in MiniZinc. Con-
straints, 22(4):512–529, 2017.

[Gent et al., 2006] Ian P. Gent, Karen E. Petrie, and Jean-
François Puget. Chapter 10 - Symmetry in Constraint
Programming. In Francesca Rossi, Peter van Beek, and
Toby Walsh, editors, Handbook of Constraint Program-
ming, volume 2 of Foundations of Artificial Intelligence,
pages 329 – 376. Elsevier, 2006.

[Kitching and Bacchus, 2007] Matthew Kitching and
Fahiem Bacchus. Symmetric component caching. In
IJCAI, pages 118–124, 2007.

[Marinescu and Dechter, 2005] Radu Marinescu and Rina
Dechter. AND/OR branch-and-bound for graphical mod-
els. In IJCAI, pages 224–229, 2005.

[Moor, 1994] Oege De Moor. Categories, relations and dy-
namic programming. Mathematical Structures in Com-
puter Science, 4(1):33–69, 1994.

[Morihata et al., 2014] Akimasa Morihata, Masato Koishi,
and Atsushi Ohori. Dynamic Programming via Thinning
and Incrementalization. Springer International Publishing,
2014.

[Nethercote et al., 2007] Nicholas Nethercote, Peter J.
Stuckey, Ralph Becket, Sebastian Brand, Gregory J.
Duck, and Guido Tack. MiniZinc: Towards a standard
CP modelling language. Principles and Practice of
Constraint Programming–CP 2007, pages 529–543, 2007.

[Ohrimenko et al., 2009] Olga Ohrimenko, Peter J. Stuckey,
and Michael Codish. Propagation via lazy clause genera-
tion. Constraints, 14(3):357–391, 2009.

[Prestwich et al., 2018] Steven Prestwich, Roberto Rossi,
S. Armagan Tarim, and Andrea Visentin. Towards a closer
integration of dynamic programming and constraint pro-
gramming. EPiC Series in Computing, 55:202–214, 2018.

[Sauthoff et al., 2011] Georg Sauthoff, Stefan Janssen, and
Robert Giegerich. Bellman’s GAP: a declarative language
for dynamic programming. In International ACM Sig-
plan Symposium on Principles and Practices of Declar-
ative Programming, pages 29–40, 2011.

[Schulte et al., 2006] Christian Schulte, Mikael Lagerkvist,
and Guido Tack. Gecode. Software download and online
material at the website: http://www.gecode.org, pages 11–
13, 2006.

[Smith, 2005] Barbara M. Smith. Caching search states
in permutation problems. In International Conference
on Principles and Practice of Constraint Programming,
pages 637–651. Springer, 2005.

[Zhou et al., 2015] Neng-Fa Zhou, Håkan Kjellerstrand, and
Jonathan Fruhman. Constraint solving and planning with
Picat. Springer, 2015.

Proceedings of the Twenty-Eighth International Joint Conference on Artificial Intelligence (IJCAI-19)

1154


