
Meditor: Inference and Application of API
Migration Edits

Shengzhe Xu
Computer Science

Virginia Tech
Blacksburg, United States

shengzx@vt.edu

Ziqi Dong
Software Engineering

Northeastern University
Shenyang, China

alanziqidong@gmail.com

Na Meng
Computer Science

Virginia Tech
Blacksburg, United States

nm8247@vt.edu

Abstract—Developers build programs based on software li-
braries. When a library evolves, programmers need to migrate
their client code from the library’s old release(s) to new release(s).
Due to the API backwards incompatibility issues, such code
migration may require developers to replace API usage and apply
extra edits (e.g., statement insertions or deletions) to ensure the
syntactic or semantic correctness of migrated code. Existing tools
extract API replacement rules without handling the additional
edits necessary to fulfill a migration task. This paper presents
our novel approach, Meditor, which extracts and applies the
necessary edits together with API replacement changes.

Meditor has two phases: inference and application of mi-
gration edits. For edit inference, Meditor mines open source
repositories for migration-related (MR) commits, and conducts
program dependency analysis on changed Java files to locate and
cluster MR code changes. From these changes, Meditor further
generalizes API migration edits by abstracting away unimportant
details (e.g., concrete variable identifiers). For edit application,
Meditor matches a given program with inferred edits to decide
which edit is applicable, customizes each applicable edit, and
produces a migrated version for developers to review.

We applied Meditor to four popular libraries: Lucene, Craft-
Bukkit, Android SDK, and Commons IO. By searching among
602,249 open source projects on GitHub, Meditor identified
1,368 unique migration edits. Among these edits, 885 edits were
extracted from single updated statements, while the other 483
more complex edits were from multiple co-changed statements.
We sampled 937 inferred edits for manual inspection and found
all of them to be correct. Our evaluation shows that Meditor
correctly applied code migrations in 218 out of 225 cases. This
research will help developers automatically adapt client code to
different library versions.

Index Terms—API migration edits, program dependency anal-
ysis, automatic program transformation

I. INTRODUCTION

As software libraries evolve, migrating client code between
library releases can be difficult and time-consuming. A recent
article reported that Google developers spent about 9 years mi-
grating all their codebases from proto-1 to proto-2 APIs [2].
Such difficulty of code migration is mainly due to API back-
wards incompatibility issues: when library developers evolve
software, they sometimes introduce API breaking changes that
make client code fail to compile or run [24], [33], [49], [53].
To handle the compilation or execution errors, developers of

This work was supported by ONR Grant N00014-17-1- 2498.

client code have to manually locate the usage of breaking APIs
and explore alternative code for replacement.

Manually migrating code between library releases is tedious
and error-prone. Even though some libraries provide change
logs or release notes [14] to document how a new release (e.g.,
Ln) is different from the prior release (e.g., Ln−1), such doc-
umentation is insufficient. This is because while release notes
focus on differences between adjacent library versions, we
observed client code to be often migrated between nonadjacent
versions. When there is no sufficient documentation providing
the needed guidelines, developers have to extensively search
for solutions or discuss issues on technical websites [3], [4],
[10]–[12]. Even though developers went though such painful
process, they could still make mistakes when migrating code
and introduce bugs to previously mature code [47].

Existing tools provide limited support for automatic API mi-
gration [23], [25], [40], [45], [52], [56]. They compare versions
of a library or client code to infer API mappings without han-
dling any surrounding edit required by the API replacement.
Cossette et al. studied the nature of API incompatibilities and
identified some API migration patterns not supported by any
existing tool [24]. For instance, when a method API evolves
to take an additional parameter, e.g., “foo() → foo(int v)”,
current tools only capture the API correspondence but do not
care about how to prepare a value for v before the function
call [24]. Additionally, existing techniques only suggest API
mapping rules without automatically migrating code.

Mining Migration-
Related (MR)

Commits

MR Code
Change

Recognition

Edit
Generalization

Edit
Database

Software
Library (L)

Phase I: Edit Inference

Client
Code (P)

Edit-Context
Matching

Edit
Customization

Suggested
Migrated
Code (P’)

Phase II: Edit Application
Fig. 1: Meditor consists of two phases: Phase I infers API
migration edits given versions of a library (L), and Phase II
applies the inferred edits to a given client application (P).

This paper presents a new approach, Meditor, to generate
and apply API migration edits (i.e., API replacements +
related edits) based on developers’ migration changes in open
source projects. As shown in Fig. 1, Meditor contains two
phases. Given versions of a library L, Phase I identifies open
source projects that use the library, and locates any migration-
related (MR) commit in projects’ version history. For each MR
commit, Meditor identifies and groups MR code changes via
syntactic program differencing [30] and program dependency
analysis. After generalizing each group of MR changes by
abstracting concrete identifier usage, Meditor derives API
migration edits and saves them to a database.

Phase II takes in a client program (P) that uses L. It
enumerates all edits in the database to decide which edit is
applicable to P . If the tentative context matching between
any edit and P succeeds, Meditor applies those edits and
produces a migrated version (P ′) accordingly. In this way,
Meditor can help inexperienced developers find the API
migration edits applied by other developers, and apply similar
edits to transform client code.

We applied Meditor to four widely used libraries:
Lucene [13], CraftBukkit [9], Android SDK [5], and Commons
IO [7]. Meditor generated 153, 931, 268, and 16 unique
edits for individual libraries. Among these edits, (1) 885 edits
require for single statement updates, (2) 189 edits involve
multi-statement changes that modify program data flows but
preserve the control flows, and (3) 294 edits modify both
control and data flows. We sampled 937 inferred edits for
manual checking and found all of them to be correct, which
indicates Meditor’s great capability of edit inference.

To evaluate the edit application capability of Meditor, we
created a data set of 87 examples. Each example includes
multiple code snippets showing the same migration pattern.
Within each example, we used Meditor to generate an edit
from one snippet and applied the edit to the other snippets.
Meditor correctly migrated code in 218 out of 225 cases.

In summary, this paper makes the following contributions:
• We developed Meditor, a novel approach to infer and

apply API migration edits. Different from prior work,
Meditor infers API replacement rules together with co-
applied edits and automates edit application.

• We developed a novel algorithm that flexibly locates and
groups MR code changes in commits where migration-
related changes are co-applied with unrelated changes.

• We conducted a large-scale study with Meditor and
observed interesting phenomena, including (1) Meditor
revealed undocumented rules and (2) many programs
were migrated between nonadjacent library releases.

• Meditor correctly inferred and applied edits in most
scenarios. By inferring domain knowledge from human-
written changes in migrated code, Meditor can mimic
the coding practices to suggest similar code migration.

II. A MOTIVATING EXAMPLE

This section overviews our approach with exemplar changes
drawn from open source projects [6], [8]. Suppose that a

developer Alex wants to migrate code between releases of
Lucene. To obtain migration suggestions from Meditor, Alex
needs to first provide versions of the library such that Meditor
can retrieve any related migration edit stored in the database.
If there is no edit extracted so far, Meditor crawls GitHub
projects to search for any project that (1) uses Lucene and (2)
has any commit updating the release information of Lucene.

1. - boolean recreate = !IndexReader.indexExists(indexPath);
2. - indexWriter = new IndexWriter(indexPath, getAnalyzer(analyzer), recreate);
3. + Directory dir = FSDirectory.open(new File(indexPath));
4. + Analyzer an = getAnalyzer(analyzer);
5. + IndexWriterConfig iwc = new IndexWriterConfig(LUCENE_VERSION, an);
6. + iwc.setOpenMode(OpenMode.CREATE_OR_APPEND);
7. + indexWriter = new IndexWriter(dir, iwc);

Fig. 2: Migrating H2Fulltext.java from lucene-2.3.2 to
lucene-4.7.0 [16]

Fig. 2 presents the code changes applied in one identified
commit drawn from revisions to nexeo [8]. In this example,
multiple statements were changed together because nexeo was
migrated from Lucene 2.3.2 to Lucene 4.7.0. We highlight the
deleted code with red and mark it with “-”. Similarly, the
added code is highlighted with green and marked with “+”.
According to the figure, the old version invokes:
• two Lucene APIs (i.e., IndexReader.indexExists(...)

and IndexWriter constructor), and
• one user-defined method getAnalyzer(...).

However, the new version invokes:
• four Lucene APIs (i.e., FSDirectory.open(...),

IndexWriterConfig constructor, IndexWriterConfig.

setOpenMode(...), and IndexWriter constructor),
• one user-defined method getAnalyzer(...), and
• one JDK API File constructor.

Compared with the old IndexWriter constructor (see line 2),
the new constructor (see line 7) takes two instead of three
parameters. Consequently, when updating the usage of this
API, developers also modified the parameter preparation logic
(line 1 and lines 3-6).

Edit Inference. To infer the migration edit or pattern
demonstrated by Fig. 2, Meditor first extracts any replaced
API whose signature belongs to the old release but not to
the new one (e.g., the IndexWriter constructor), and then
exploits control and data dependencies to correlate the API
replacements with surrounding co-applied edit operations (e.g.,
statement insertions and deletions). In this way, Meditor ob-
tains a cluster of MR edited statements Ch. Next, to generalize
an MR edit that is applicable to programs using different
variables, Meditor replaces concrete identifiers used in Ch
with symbolic names. As shown in Fig. 3, the created symbolic
names (e.g., v_7 and v_7_boolean) not only preserve the data
flows of original identifiers, but also record type information
to facilitate later edit application. Meditor stores all inferred
edits in a database to enable edit query and comprehension.

Edit Application. Given a program P to migrate between
versions Li and Lj of Lucene, Meditor queries the database

boolean v_7 = !IndexReader.indexExists(v_0_String);
v_6 = new IndexWriter(v_0_String, m_0(v_2_String), v_7_boolean);
==========Replaced by==========
Directory v_1 = FSDirectory.open(new File(v_0_String));
Analyzer v_3 = m_0(v_2_String);
IndexWriterConfig v_5 = new IndexWriterConfig(c_0_Version,
 v_3_Analyzer);
v_5_IndexWriterConfig.setOpenMode(OpenMode.CREATE_OR_APPEND);
v_6=new IndexWriter(v_1_Directory, v_5_IndexWriterConfig);

to	

tn	

Fig. 3: A migration edit generated by Meditor. Notice that
v_7 and v_7_boolean actually correspond to the same concrete
variable. We attached type information to the latter one to
facilitate template comprehension.

1. - boolean create = !IndexReader.indexExists(_directory);
… // unchanged edit-irrelevant code

2. - idxWriter = new IndexWriter(_directory, analyzer, create);
3. + Directory v_1 = FSDirectory.open(new File(_directory));
4. + Analyzer v_3 = analyzer;
5. + IndexWriterConfig v_5 = new IndexWriterConfig(c_0_Version, v_3);
6. + v_5.setOpenMode(OpenMode.CREATE_OR_APPEND);
7. + idxWriter = new IndexWriter(v_1,v_5);

Fig. 4: Code migration changes suggested by Meditor

for any edit matching the version numbers. For each found
edit, Meditor establishes context matching between P and
the edit; if the matching succeeds, Meditor concretizes the
edit for migration suggestion. Fig. 4 presents an exemplar set
of migration changes suggested by Meditor for a program that
Alex intends to migrate from Lucene 2.3.2 to Lucene 4.7.0.
According to Fig. 4, P is different from the original inference
example in Fig. 2 in two ways. First, the used variables
are different (e.g., _directory vs. indexPath). Second, no
user-defined method is invoked by P . Dispite the differences,
Meditor managed to suggest code changes for Alex to review.

Although existing migration tools at most infer and suggest
many-to-many API mappings between Lo and Ln, they are
insufficient for two reasons. First, the mappings do not indicate
how the data and control dependencies among old APIs are
replaced by those among new APIs. Second, current tools do
not automate edit application to further reduce developers’
workload. Meditor overcomes both limitations.

III. APPROACH

As shown in Fig. 1, there are two phases in Meditor. In
this section, we first summarize the steps in each phase and
then describe each step in detail (Section III-A-Section III-E).

Phase I: Edit Inference
• Given versions of a library L, Meditor mines open

source projects on GitHub for any commit that updates
the version number of L in a build file (e.g., pom.xml),
obtaining commits C = {c1, c2, . . . , cl}.

• Meditor processes each commit to identify and cluster
MR code changes. Each cluster of MR edited statements
demonstrate one migration pattern, denoted as Ch =
{Go, Gn}, where Go and Gn are edited statement groups
separately from the old and new versions.

• From Ch, Meditor abstracts away project-specific de-
tails (e.g., concrete variable identifiers) and derives a
general API migration edit E =< to, tn >, where to
and tn are code templates in the old and new versions.

Phase II: Edit Application
• Given P to migrate from Li to Lj , Meditor queries its

database for edits between the versions. For each found
edit E = {to, tn}, Meditor tentatively matches P with
to; if a matching is found, Meditor records the mappings
of constants, variables, methods, and expressions.

• With those mappings, Meditor concretizes tn to create
updated code, suggesting a revised version P ′ for review.

A. Mining Migration-Related (MR) Commits

Given the jar files of multiple releases for L, Meditor
searches the software repositories of a list of 602,249 Java
projects on GitHub [38]. In each project repository, Meditor
scans the latest version of software for any usage of L in
the build file. Different build systems (e.g., Ant, Maven, and
Gradle) require developers to use distinct build files to specify
library dependencies. Our research focuses on the pom.xml
files in Maven projects and build.grade files in Gradle projects
because of the popularity of Maven and Gradle [1], [54].

Fig. 5: A pom.xml file with a library version updated [17]

In particular, if the build file of a project refers to L,
Meditor explores the repository to find any commit updating
the version number of L. Intuitively, when developers update
library version information, they may also apply API migration
changes in the same commit. We gathered such commits as
candidate MR commits, denoting them as C = {c1, . . . , cn}.
Fig. 5 shows an exemplar updated pom.xml file, which
replaces Lucene 3.0.2 with Lucene 4.0-SNAPSHOT.

B. MR Code Change Recognition

Suppose that the before- and after- versions of each MR
commit are (Vo, Vn), and they are separately based on two
library releases (Lo, Ln). To precisely locate MR code changes
in one commit, we need to solve two technical challenges:
• Tangled Changes are unrelated changes applied in one

commit for multiple tasks, such as bug fixing, library
migration, and feature addition [20], [34]. Untangling MR
code changes and irrelevant changes is challenging but
crucially important for precise edit inference.

• Change Intent explains why developers change code in
certain ways. When developers use new APIs to replace

…	

recreate
_decl	

indexWriter
_asgn	

…	

dir_decl	 an_decl	 iwc_decl	 iwc_mi	 indexWriter
_asgn	

O2	 O3	 N2	 N3	 N4	 N5	 N6	

V_o	 V_n	

decl:	declaration	

mi:	method	invocation	

asgn:	assignment	

updated	node	

data	or	control	
dependence	

Legend:	
	

deleted	node	

inserted	node	

O1	 N1	

Fig. 6: Syntactic program differencing between Vo and Vn

old API usage, the code changes may be applied for tasks
other than library migration. Inferring the change intent
of API replacement is also challenging but vital.

To tackle the challenges, Meditor first uses syntactic pro-
gram differencing to extract Java code changes from each com-
mit (Section III-B1). Among the changes, Meditor locates
any statement update caused by the library version change
and considers them to be MR (Section III-B2). Next, Meditor
uses the MR updated statements as centers to cluster relevant
statement insertions or deletions via control or data depen-
dencies, separating MR changes from dependency-irrelevant
changes (Section III-B3). Finally, for each cluster of MR code
changes, Meditor checks whether the changes were applied
in a semantic-preserving way; if not, Meditor does not further
infer any MR edit because those changes might be applied to
fulfill other tasks instead of library migration (Section III-B4).

1) Syntactic Program Differencing: To detect and repre-
sent Java code changes, Meditor uses ChangeDistiller [30]—
a tree differencing algorithm—to compare the old and new
versions of each changed Java source file. In particular,
ChangeDistiller creates an AST for each version, i.e., (treeo,
treen), and compares the trees; it generates an AST edit script
that may contain four kinds of statement-level changes.
• delete (Node u): Delete node u.
• insert (Node u, Node v, int k): Insert node u and position

it as the (k + 1)th child of node v.
• move (Node u, Node v, int k): Delete u from its current

position and insert u as the (k + 1)th child of v. This
operation changes u’s position.

• update (Node u, Node v): Replace u with v. This
operation changes u’s content.

The scripts produced by ChangeDistiller serve two purposes.
First, if a script is empty, we can remove the corresponding
Java file from further processing because no syntactic change
was applied. Second, when a script is non-empty, we focus our
analysis on the identified edited statements. For the motivating
example in Fig. 2, ChangeDistiller compares ASTs (as shown
in Fig. 6) and outputs the following edit operations:

1. update (O3, N6)
2. insert (N2, N1, 0)
3. insert (N3, N1, 1)
4. insert (N4, N1, 2)

5. insert (N5, N1, 3)
6. delete (O2)

2) Identification of Obvious MR Edit Operations: Some
edit operations are obviously related to migration because they
use obsolete APIs. To recognize outdated APIs used in Vo,
Meditor scans the APIs invoked by each updated statement
and resolves the type bindings. If a statement in Vo calls an
API that belongs to Lo but not Ln, the related statement update
is MR. To resolve bindings, Meditor uses Eclipse ASTParser
to generate an AST for each Java source file, and queries the
generated AST for binding information. For our example in
Fig. 2, one updated statement invokes the old IndexWriter

constructor in Vo (line 2) and calls the new constructor in Vn

(line 7). As the invoked APIs are separately defined by Lo and
Ln, we consider this statement update to be MR.

1. - aboutBody.append(Html.fromHtml(getString(R.string.about_text,
app_name, versionName, YAPI.GetAPIVersion())));

2. + String text = getString(R.string.about_text, app_name,
versionName, YAPI.GetAPIVersion());

3. + Spanned html;
4. + if (android.os.Build.VERSION.SDK_INT >=

android.os.Build.VERSION_CODES.N) {
5. + html = Html.fromHtml(text, Html.FROM_HTML_MODE_LEGACY);
6. + } else {
7. + html = Html.fromHtml(text);
8. + }
9. + aboutBody.append(html);

Fig. 7: Migrating AboutDialog.java from Android Level 23 to
Level 25 [15]

Additionally, we found some releases of the Android library,
which deprecate APIs without removing them but still require
for MR changes. To successfully detect such MR changes,
we implemented another heuristic in Meditor. As illustrated
by Fig. 7, when an if-statement is added to check whether
a version number field (e.g., VERSION.SDK_INT) satisfies a
condition, Meditor scans both branches to decide whether
(1) one branch purely invokes APIs declared in both Vo and
Vn, and (2) the other branch invokes any API uniquely defined
by Vn. If so, the if-statement insertion is also MR.

3) Edit Operation Correlation: To reveal any additional
statement insertion or deletion required by API replacements

or obvious MR edit operations, Meditor correlates identified
MR edit operations with co-applied edit operations leveraging
the program dependencies (i.e., data and control dependencies)
between edited statements in Vo and Vn:
• Data Dependence: Statement x is data dependent on

statement y if x uses a variable defined by y. In Fig. 2,
line 2 is data dependent on line 1 because line 2 uses the
variable recreate declared in line 1.

• Control Dependence: Statement x is control dependent
on y if x may or may not execute depending on a decision
made by y. In Fig. 7, line 5 is control dependent on line
4, because whether the then-branch executes depends on
the evaluation of the if-condition.

If an edited statement stmt has direct data or control
dependence relation with an MR edited statement, Meditor
considers stmt to be MR as well. For the example in Fig. 2,
because line 3 was inserted to prepare the value of dir—
a variable used for migration-related API replacement, the
inserted statement is also MR. In this way, Meditor reveals
MR edited statements iteratively until (1) all edited statements
are labeled as MR, or (2) no more edited statement depends on
or is depended on by any revealed MR edited statement. We
denote the correlated edited statements with Ch = {Go, Gn},
where Go and Gn are groups of edited statements separately
from Vo and Vn. This step intends to filter out migration-
irrelevant changes before Meditor infers MR edits. In our
implementation, we exploited a widely used static analysis
framework—WALA [18]—to identify the control and data
dependencies between statements.

4) Semantic Checking: We believe that MR edits usually
refactor code to solve API backwards incompatibility issues.
Given Ch = {Go, Gn}, this step checks whether Go and
Gn are semantically equivalent in order to infer developers’
change intent. If the program semantics are different, devel-
opers might have replaced API usage not purely for library
migration. For such cases, Meditor does not infer any MR
edit from the given recognized MR changes.

It is almost impossible to accurately reason about the
semantic equivalence between two arbitrary code snippets.
Therefore, we developed an intuitive approach to approximate
semantic equivalence checking by comparing the input and
output variables of code snippets. Given a snippet s, the input
variable set (I) includes the variables defined elsewhere but
used by s, while the output variable set (O) contains variables
defined by s but used elsewhere. Intuitively, if code changes
preserve semantics, both the input and output variable sets
should match between Go and Gn.

Meditor uses data flow analysis to create the input and
output sets of Go and Gn: (Io, Oo) and (In, On). If both
the input and output sets match, Meditor concludes that the
applied MR changes preserve semantics. For our example
in Fig. 2, since Io = In = {indexPath, analyzer} and
Oo = On = {indexWriter}, Meditor considers the two
versions equivalent. Although our semantic checking approach
is not sound or complete, based on our experience, Meditor
usually infers MR edits without errors.

C. Edit Generalization

This step generalizes an API migration edit E =< to, tn >
from each cluster of edited statements Ch = (Go, Gn). Notice
that the clustered edited statements contain concrete identifiers
for API-irrelevant methods, variables, literals, and expressions.
To ensure the generality of any inferred edit, Meditor ab-
stracts away such unimportant program-specific editing details.
Specifically, Meditor first checks the binding information of
each identifier. If an identifier refers to a library API, Meditor
keeps the identifier as is because the reference demonstrates
API usage; otherwise, a symbolic name is generated to replace
all occurrences of the concrete identifier. For instance, as
shown in Fig. 2 and Fig. 3, the statement
indexWriter = new IndexWriter(indexPath, getAnalyzer(

analyzer), recreate);

is generalized to:

v_6 = new IndexWriter(v_0_String, m_0(v_2_String),

v_7_boolean);

In the generalization, variables (e.g., indexWriter) are consis-
tently replaced by symbolic names starting with “v” (e.g., v_6).
The library API IndexWriter(...) is kept as is. The user-
defined method getAnalyzer(...) is replaced by a symbolic
name starting with “m” (i.e., m_0), such that this project-specific
method information is not propagated to the template.
Meditor saves all generalized edits in a database for edit

search and improvement. When novice developers are curious
about the migration edits between certain library releases, they
can query the database with release numbers. When experi-
enced developers find some migration edits to be improperly
represented or missing in the database, they can also manually
modify the inferred edits or insert new ones to the database
based on their domain knowledge.

D. Context Matching

Given P to migrate from Lo to Ln, Meditor queries the
database for any mined edit from Lo to Ln. For each obtained
edit E =< to, tn >, Meditor matches P with to in two steps.

1) Statement Matching: Meditor compares to with P at
the statement level. For any statement template st ∈ to,
Meditor identifies all library APIs used by st and searches for
any statement sp ∈ P invoking the same set of APIs. For each
statement sp identified in this way, if the concrete identifiers
and expressions in sp can also match the symbolic names in
st, Meditor records the pair (st, sp) as a candidate match.
Correspondingly, the matches between abstract identifiers in
st and concrete identifiers/expressions in sp are also recorded.
For instance, the first statement in Fig. 3 matches line 1
in Fig. 4. Thus, the corresponding identifier mappings are
recorded as (v_7, create) and (v_0_String, _directory).

2) Dependency Matching: When to contains multiple state-
ments and each statement st has one or more matches in
P , Meditor further leverages the dependency edges in to
to query for any correspondence in P . In particular, after
matching individual statements between Fig. 3 and Fig. 4,

TABLE I: Client project data extracted for four subject libraries

Lucene CraftBukkit Android SDK Commons IO Total
of commits with MR code changes 49 556 136 10 751
of client projects holding the refined commits 36 299 120 10 465
of snippets with MR code changes 247 1,864 328 19 2,458

Meditor retrieves the control and data dependencies between
statements in to, which information is illustrated by the dashed
lines in Fig. 6. Then Meditor applies program dependency
analysis to the code snippet in Fig. 4 to check whether the
concrete statements have the same dependency relationship as
template statements; if so, to and P also have their program
dependencies matched.

Once all statements and dependencies in to are consistently
matched by at least one code snippet in P , Meditor considers
E to be applicable to P . This step serves two purposes. First, it
determines whether an edit is applicable to a program. Second,
if an edit is applicable, the created mappings between con-
crete and abstract statements will enable edit customization.
Notice that since Meditor uses program dependencies to link
individually matched statements, it can flexibly match to with
noncontinuous statements in P if the unmatched statements
standing between matched statements have no dependency
relation with any edited code. As shown in Fig. 4, even if there
is edit-irrelevant code between the edited code in P , Meditor
matches code with to to enable further edit application.

E. Edit Customization

To suggest a program P ′ after migration, Meditor replaces
all symbolic names in tn with concrete identifiers to customize
the edit; it then replaces the matching code of to in P with
the customized code. For instance, if a statement st ∈ to is
replaced by multiple statements in tn, then the concrete code
matching st is also replaced by the related customized code.

IV. EVALUATION

This section describes our data set (Section IV-A), and
presents our evaluation on Meditor’s effectiveness of edit
inference (Section IV-B) and edit application (Section IV-C).

A. Data Set

To create the data set, we conducted a preliminary study.
We blindly crawled program commits in GitHub projects for
any library version update in pom.xml files. If (1) the version
numbers of a library are frequently updated in such commits,
and (2) there are code changes co-applied in these commits
to replace API usage, then we included the library into our
data set. In this way, we found four libraries: Lucene [13],
CraftBukkit [9], Android SDK [5], and Commons IO [7].

Table I presents the extracted client project data for these
libraries. In total, we identified 49, 556, 136, and 10 commits
for individual libraries, which contain MR code changes.
The extracted commits distribute among 36 Lucene-based
projects, 299 CraftBukkit-based projects, 120 Android SDK-
based projects, and 10 Commons IO-based projects. These
numbers indicate that MR code changes popularly exist in

open source projects. Because each commit can have multiple
groups of MR code changes co-applied, we located 247, 1,864,
328, and 19 snippets with MR changes applied.

B. Effectiveness of Edit Inference

From the extracted code snippets with MR code changes
(see Section IV-A), Meditor infers 153, 931, 268, and 16
unique MR edits for different libraries.

To ensure the quality of extracted edits, the first two authors
checked 153 edits for Lucene, 500 edits for CraftBukkit, 268
edits for Android SDK, and 16 edits for Commons IO. They
manually compared the inferred edits with corresponding MR
code changes to decide whether each edit is correctly gener-
ated. When unsure about certain edits, we had discussions to
achieve consensus. We found all these 937 edits to be correctly
inferred. It means that the automatic approach aligns well with
our manual practice of generalizing edits from MR changes.

Finding 1: We sampled 937 unique MR edits inferred
by Meditor and found all of them to be correct.

To further characterize the inferred edits, we (i) classified
them into three categories based on the extraction complexity,
(ii) identified the most frequent release pairs for migration,
and (iii) compared the documented edits with inferred edits
between a pair of library releases.

1) Edit Categorization: To facilitate discussion of the ex-
tracted edits, we classified them into three categories based on
how complex it was to extract the edits.

Single (Sin): Only one single statement or expression is
updated, such as modifying an API name. Existing approaches
can detect such changes.

Block (Blo): A block of statements (e.g., one or more
contiguous statements) are replaced by another block of state-
ments. The extraction of such multi-statement edits involves
data dependency analysis, but no control dependency anal-
ysis. Existing tools cannot fully handle such edits, because
they focus on API invocation replacements but ignore any
surrounding MR change (e.g., line 4 in Fig. 2).

Multi-Blocks (MB): One block of statements are re-
placed by multiple blocks of statements or vice versa, with the
control flow changed. The extraction of such multi-statement
edits involves both control and data dependency analysis. No
existing tool handles such edits because they do not track how
MR changes influence control or data dependencies.

Table III presents the numbers of edits extracted for dif-
ferent libraries. Among the three categories, Sin contains the
largest number of edits. This is understandable, because library
developers usually try to simplify migration tasks for client
code when API breaking changes have to be introduced. On

TABLE II: The 10 most frequent library release pairs of migration

Lucene CraftBukkit Android SDK Commons IO

Release pair # of
snippets Release pair # of

snippets Release pair # of
snippets Release pair # of

snippets
1 3.0.2-4.0 24 1.5.1-1.5.2 129 19-21 63 2.1-2.4 7
2 3.6.2-4.8.1 16 1.6.4-1.7.2 122 21-22 41 2.0-2.5 3
3 3.6.0-4.1.0 15 1.6.2-1.6.4 109 22-23 25 1.1-1.2 2
4 3.6.2-4.9.0 15 1.6.1-1.6.2 102 21-23 19 1.3.2-2.4 2
5 4.1.0-4.2.0 14 1.5.2-1.6.1 100 17-23 18 2.0.1-2.4 2
6 3.0.2-3.1.0 12 1.7.2-1.7.5 96 18-19 18 1.0-2.4 1
7 2.9.2-3.2.0 11 1.7.9-1.7.10 60 19-20 14 1.3-1.4 1
8 4.0-3.6.0 11 1.4.6-1.4.7 57 19-23 12 2.2-2.4 1
9 3.6.1-4.0 10 1.7.5-1.7.8 56 23-24 10
10 2.3.1-2.9.3 8 1.4.5-1.4.6 53 24-25 10

TABLE III: Edits extracted for different libraries

Lucene Craft-
Bukkit

Android
SDK

Commons
IO Total

Sin 92 621 159 13 885
Blo 29 129 31 0 189
MB 32 181 78 3 294
Total 153 931 268 16 1,368

the other hand, there are still many Blo and MB edits that
are challenging for previous tools to handle. Developers are
quite likely to need more support to apply Blo and MB edits
than Sin, because these edits involve complicated interactions
between multiple APIs and surrounding context.

Finding 2: 35% of the extracted edits belong to either
Blo or MB. Different from prior work, Meditor can
extract all these types of nontrivial edits, demonstrat-
ing great capability of edit inference.

2) Most Frequent Release Pairs with Migration Edits:
When projects were migrated between library releases, some
of the releases required for more MR changes than the others.
In the scenario where a project is migrated from one release
to another, we name the original release migration source,
and the new release migration target. Such source and target
releases delimit the edits required to fulfill migration tasks.

Table II presents the 10 most frequent release pairs in differ-
ent libraries that require for migration edits. We observed three
interesting phenomena. First, not every library provides official
release notes to describe migration changes. For instance,
CraftBukkit has no release note. Developers of client code
are on their own to explore migration edits. This observation
implies the necessity of Meditor, which infers the domain
knowledge of migration edits from some developers’ code and
applies the knowledge to help other developers.

Second, migrations seldom occurred between consecutive
releases. We compared Lucene’s top 10 release pairs with the
software official release list [14], and found only one pair
to contain consecutive releases: lucene4.1.0-lucene4.2.0.
The other nine pairs consist of nonconsecutive releases. This
phenomenon indicates the importance of our research. While
library release notes document migration edits between adja-
cent releases, the edits revealed by Meditor can help with

migrations between nonadjacent releases.
Third, migrations sometimes downgraded the library usage.

Although most migration tasks began with libraries’ lower
releases (more dated) and ended up with higher releases (more
recent), there are tasks that updated API usage in the opposite
direction. For instance, the 8th most frequent pair of Lucene
has the source lucene-4.0 and the target lucene-3.6.0. While
existing release notes focus on library upgrading changes,
Meditor can also help developers downgrade library usage.

Finding 3: Meditor can help developers migrate
code when (1) there is no library release note, (2) de-
velopers migrate code between nonadjacent releases,
or (3) they downgrade library usage.

3) Case Study: With a pair of adjacent library releases, we
are curious how the edits inferred by Meditor compare with
rules documented in the release note. Thus, we conducted a
case study for a frequent release pair mentioned in Table II. We
compared the extracted edits for lucene4.1.0-lucene4.2.0

with the release note of Lucene 4.2.0 [14]. This version
pair was chosen because (i) the two releases are consecutive;
(ii) there are a good number of edits (i.e., 14) inferred by
Meditor; and (iii) a comparative number of edits (i.e., 16)
are mentioned in the note.

Table IV presents the edit distribution among different
change categories. The 16 edits (12 changes in backwards
compatibility policy + 4 API changes) in the release note
belong to 6 categories of changes: 2 categories of type API
changes, 2 categories of method API changes, and 2 categories
of field API changes. In comparison, the 14 edits extracted by
Meditor correspond to 3 categories of changes: 2 categories
of method API changes and 1 category of field API change.
Interestingly, there is no content overlap between the
edits from different sources. The edits inferred by Meditor
complement those edits mentioned in the release note.

For each documented edit in the release note, there is
always a corresponding patch (i.e., textual diff file) attached
to illustrate how library implementation is modified. Such
edit descriptions and related patch files focus on how library
developers edited code, instead of how application developers
should edit their client code for migration. With such docu-
mentation, application developers need to decide (1) which li-

TABLE IV: Comparison between the documented edits and automatically extracted edits

Source API Category Change Type # of Edits Exemplar Edit

Release Note

Type Change API definition 10 Ex1. FacetsCollector is changed from a concrete class to an abstract class.
Remove API definition 1 Ex2. Remove FacetRequest.SortBy (an enum)

Method Change return value 1 Ex3. A FacetRequest on a non-existent field now returns an empty FacetResult
instead of skipping it

Add parameter 2 Ex4. DrillDown.query now takes Occur

Field Change default value 1 Ex5. The default category delimiter character was changed from U+F749 to
U+001F

Remove field API 1 Ex6. FacetResultNode no longer has a residue field

Method

Change return type 12
Ex7. public BytesRef fill(BytesRef, long)
==========Replaced by==========
public void fill(BytesRef, long)

Inferred Edits

Remove method API 1

Ex8. v 0 long += RamUsage.NUM BYTES ARRAY HEADER +
v 1 Reader inst.getBlocks().length;

by Meditor for (byte[] v 2 : v 1 Reader inst.getBlocks() {v 0 long += v 2.length;}
==========Replaced by==========
v 0 long += c 0 long;

Field Change field API 1
Ex9. Version.LUCENE 41
==========Replaced by==========
Version.LUCENE 42

TABLE V: Effectiveness of Meditor’s Edit Application

Lucene CraftBukkit Android SDK Commons IO
Sin Blo MB Sin Blo MB Sin Blo MB Sin Blo MB

of snippets for edit generation 22 1 0 27 0 10 26 0 0 1 0 0

of snippets for edit application 91 1 0 58 0 15 57 0 0 3 0 0
of code snippets modified by the tool 91 1 0 58 0 15 57 0 0 3 0 0
of code snippets transformed partially correctly 0 1 0 0 0 6 0 0 0 0 0 0
of code snippets transformed fully correctly 91 0 0 58 0 9 57 0 0 3 0 0

brary modification influences their code, and (2) how to adjust
client code to solve any API backwards compatibility issue.
In comparison, the extracted edits by Meditor demonstrate
how developers migrated code between library releases with
program transformation templates. Instead of focusing on the
edits within libraries, the inferred edits focus on the migration
practices conducted by application developers.

Finding 4: The extracted edits are very different from
documented edits in terms of their categories and
content. It means that the edits inferred by Meditor
can well complement the information in release notes.

C. Effectiveness of Edit Application

To evaluate how well Meditor applies inferred edits, we
constructed a data set of 87 edits from the 2,458 snippets
with MR code changes. Specifically, we created the set based
on recurring migration patterns—edits repetitively applied to
multiple snippets. When multiple code change examples (e.g.,
Ch1 and Ch2) illustrate the same migration edit (e.g., E), we
used one example (e.g., Ch1) for Meditor to infer the pattern,
and used the remaining examples (e.g., Ch2) to evaluate
how Meditor applies the pattern. By manually comparing
the tool-generated versions with human-crafted versions, we
determined whether Meditor transformed code correctly.

Table V presents our evaluation results. In total, Meditor
inferred edits from 87 examples to acquire 87 unique edits,
and then applied the edits to 225 given code snippets. Ideally,

if Meditor can perfectly apply all inferred edits, all these
snippets should be transformed fully correctly. Specifically,
209 of the 225 snippets require Sin edits, 1 snippet requires
for Blo edit, and 15 snippets require for MB edits. Although
it would be better if we have a balanced data set with equal
numbers of different categorized edits, we could not control
the distribution of snippets among the categories. As the
current data set contains edits of all three categories, it is
still helpful for us to evaluate Meditor’s capability of edit
application in a variety of scenarios.

According to Table V, Meditor applied all Sin edits fully
correctly. It applied the single Blo edit partially correctly,
because the edit uses an undeclared variable or unknown
constant into the migrated code. As shown in Fig. 4, a constant
identifier c_0_Version was introduced by Meditor because
the original example uses a project-specific constant (i.e.,
LUCENE_VERSION). Similarly, for the 15 snippets requiring MB
edits, Meditor transformed 9 snippets fully correctly and
6 snippets partially correctly. The main reason for partial
correctness is still the usage of undeclared variables/constants.
By reviewing the suggested code migration, developers can (1)
learn what APIs to use to replace outdated APIs, and (2) apply
extra edits as needed to efficiently complete migration.

Finding 5: Meditor fully correctly applies edits
for 218 out of 225 cases and applies edits partially
correctly for the remaining 7 cases, manifesting great
capability of migrating code between library releases.

D. Discussion

We open sourced our project at https://bitbucket.org/
shengzhex research/meditor. Our research will shed light on
related areas, such as automatic detection and fixing of API
misuses. Recent work shows that software practitioners some-
times misuse security APIs and produce vulnerable code [22],
[29]. As the next step, we will extend Meditor to infer
any fixing pattern for security API misuses, and apply those
patterns to automatically patch vulnerable code.

Currently, we inspected code changes together with the
inferred patterns to decide the correctness of migration edits.
Such edit validation process is time-consuming and subject to
human bias. To improve the process, we plan to use regression
testing and automatic test generation techniques to check
whether the migrated code compile and execute successfully.

V. RELATED WORK

This section describes related work on API usage mining
and suggestion, inference and application of migration rules,
and empirical studies on library-related software evolution.

A. API Usage Mining and Suggestion

Although library APIs are widely used in software devel-
opment, API usage is often poorly documented. Researchers
built a variety of approaches to mine specifications from source
code or documentation, and to provide coding suggestion
accordingly [19], [28], [31], [32], [36], [41], [46], [48], [51],
[55], [60]. For instance, Engler et al. mined API usage
invariants like method lock() must be invoked together with
unlock(), and then checked code for any violation of the
invariants [28]. Khairunnesa extended the research to mine
for any precondition of using certain APIs, such as the valid
value range of a passed-in parameter [36]. Gu et al. extracted
API usage sequences and the first sentence of corresponding
document comments to train a deep learning model with RNN,
and suggested API usage given a natural language query [32].

Raghothaman et al. mapped natural language queries to rele-
vant APIs by learning a statistical model from the clickthrough
data of Bing search [51]. Then they mined API usage patterns
from open-source code repositories. When a user searches
for the implementation of a certain task, their tool SWIM
can automatically synthesize an exemplar implementation with
proper API usage. Nguyen et al. mined frequent co-applied
API usage changes in software repositories with statistical
learning, and recommended API code completion based on
the given program context [41]. These approaches focus on
how to use APIs appropriately instead of how to adapt the
API usage between library releases.

B. Inferring and Applying API Migration Rules

Prior research proposed several tools to infer or apply API
migration rules [23], [25], [33], [40], [45], [52], [56], [59].
Specifically, Chow and Notkin proposed a semi-automated
mechanism to update client applications in response to library
changes [23]. When library maintainers modify function in-
terfaces of a library, they are required to annotate the changed

functions with specifications. Such specifications are then used
to generate tools that can update client code. However, the
proposed method only works for simple changes like updating
API signatures. Catchup! records API refactoring actions as
a library maintainer evolves an API, and then replays the
refactorings to update client applications accordingly [33].
Nevertheless, this approach only fully supports three types
of refactorings: renaming types, moving Java elements, and
changing method signatures.

SemDiff compares different versions of a library to analyze
how the library applies adaptive changes to its API evolu-
tion [25]. If a method call is frequently replaced by another
method call, SemDiff recommends such API method replace-
ment to client code. LibSync compares different versions of
a library to locate the changed APIs, and then compares
versions of migrated client code to extract the associated API
usage adaptation patterns like renaming a method or changing
parameters [45]. All these tools focus on API mappings.

Some researchers mined API translation rules between Java
and C# [42]–[44], [61]. For instance, Zhong et al. aligned the
client code of different libraries based on textual similarity,
constructed API usage graphs for each pair of aligned code,
and inferred API usage mappings accordingly [61]. Never-
theless, this approach only infers API mappings. Nguyen et
al. tokenized source code, and leveraged statistical machine
translation to infer the correspondence between Java code
and the equivalent C# implementation. With the established
correspondence, the researchers then translated a given Java
program to C# [42]–[44]. Although these approaches map both
API usage and the surrounding code, they do not handle code
migrations between releases of the same library.

Different from prior work, Meditor applies static program
analysis to changed Java source files. This analysis allows
Meditor to align many-to-many statements between versions
based on the data and control dependencies among statements.
It also allows Meditor to infer API replacement operations
together with other related editing operations, and to safely
ignore migration-irrelevant details for edit generalization pur-
pose. By extracting API replacements together with related
statement insertions or deletions, Meditor can help develop-
ers migrate code with fewer syntactic and semantic errors,
improving programmer productivity and software quality.

C. Empirical Studies on API Evolution

Several studies examined how library APIs evolve [27],
[37], [50], [58]. For example, Dig and Johnson manually
inspected API changes based on change logs and release notes,
and found that 80% of API breaking changes were introduced
by code refactorings. Xing and Stroulia used UMLDiff [57] to
compare the program structures of library versions, and con-
cluded that about 70% of structural changes were refactorings.
Kim et al. investigated function signature-change patterns, and
observed correlations between signature changes and other
types of changes like LOC and function body changes [37].
Raemaekers et al. analyzed seven years of library release
history, and found that one third of all releases introduce at

least one breaking change [50]. None of these studies explores
how client code should co-evolve with API changes.

Some researchers investigated the impact of API evolution
on client software evolution [21], [26], [35], [39], [47]. Specif-
ically, Padioleau et al. studied how Linux device driver code
collaterally evolved with kernel library APIs [47]. They found
that an API evolution and dependent collateral evolutions
might take several years to complete and could introduce bugs
into previously mature code. Bavota et al. used the build files
of Apache projects to analyze (1) how library dependencies
change over time; (2) whether a dependency upgrade is due
to different kinds of factors, and (3) how an upgrade impacts
on a related project [21]. Dietrich et al. identified problems in
client code caused by library upgrades [26]. Hora et al. [35]
and McDonnell et al. [39] separately investigated the Pharo
and Android Ecosystem, to understand how client code reacted
to API changes in an ecosystem.

Our characterization study on inferred edits is different from
all prior studies, because we examined low-level details of
migration patterns. Our evaluation results also complement
prior research by exposing a variety of nontrivial migration
edits already applied by developers. Cossette et al. conducted
an empirical study to manually distill the API migration
edits applied in libraries’ version history [24]. They classified
the edits into three categories: fully automatable (e.g., API
renaming), partially automatable (e.g., implementing a newly
declared class), and hard to automate (e.g., inserting data
preparation logic for an added method parameter). This piece
of work by Cossette et al. motivated our research. By corre-
lating API replacement changes with surrounding co-applied
statement insertions or deletions, Meditor is able to handle
some hard-to-automate cases (e.g., adding a method parameter
and removing a method API) mentioned in that paper.

VI. THREATS TO VALIDITY

Meditor currently generates and applies migration edits for
only Java-based libraries. Its methodology can be similarly
implemented to handle programs written in other object-
oriented languages, when we exploit tools to conduct syntactic
differencing and static analysis for other languaged programs.
Meditor detects MR commits by checking for any version
change in two types of build files: pom.xml and build.gradle.
There are still other formatted build files used in Java projects
like build.xml. By expanding the types of build files to process,
we will be able to detect more MR changes.

Currently, Meditor processes the code changes co-applied
with build-file changes to reveal MR code changes. It can
miss relevant changes when developers intentionally submitted
build-file changes in one commit and submitted migration
code changes in follow-up commits. In the future, we plan
to overcome this limitation by defining a sliding window to
scan any N commits (N ≥ 1) checked in after the commit
with build-file changes.

Meditor focuses on edits relevant to method and field APIs,
and simple edits related to type APIs (e.g., class rename or
move). It cannot handle complicated type API changes such as

replacing an interface with an enum, or replacing a concrete
class with an abstract one. The main challenge is that such
changes may require for extra project-specific implementations
to define new methods. Meditor can infer project-agnostic
migration changes, but does not handle project-specific edits
because such edits usually vary with projects. Meditor cur-
rently ensures the quality of inferred edits by comparing the
input and output variable sets of edited regions. We used such
comparison to approximate semantic equivalence checking,
although this approximation is neither sound nor complete.
We will explore more ways to compare the program semantics
between code revisions.

VII. CONCLUSION

This paper presents the design and implementation of
Meditor, a novel approach to infer and apply migration
edits leveraging program dependency analysis and semantic
equivalence checking. Compared with existing approaches,
Meditor is unique in several aspects. First, Meditor extracts
edits purely from client code instead of from the evolution
history of libraries themselves. While the library evolution
only demonstrates how libraries use their own APIs, multiple
client projects can use APIs in a more diverse way and thus
embody various migration patterns. Second, Meditor gener-
alizes program transformations instead of solely inferring API
mapping rules. When statement insertions or deletions are co-
applied with API replacements, Meditor is especially helpful
because it keeps track of the data or control dependencies
between program co-changes, and clusters statement insertions
or deletions together with API usage updates. Third, Meditor
applies edits automatically.

Our evaluation reveals several interesting insights about
migration edits. First, a considerable number of the gener-
alized edits (483 out of 1,368) apply correlated changes to
multiple statements, indicating the necessity of using program
dependence analysis to identify and cluster MR changes. Sec-
ond, the source and target library releases of most migration
tasks are nonconsecutive, with several releases standing in
between. This means that existing library release notes are
usually not helpful. Third, according to our case study, the
edits Meditor inferred well complement the documented
knowledge in library release notes. Fourth, Meditor applied
edits fully correctly to 218 of 225 snippets, and transformed
the remaining 7 snippets partially correctly. Our future work
includes building techniques to (1) extract more edits from
repositories, (2) generate more complicated migration edits
involving project-specific logic, and (3) conduct more rigorous
semantic equivalence checking.

ACKNOWLEDGEMENT

We thank reviewers for their insightful comments. We also
thank Prof. André van der Hoek for his valuable feedback.

REFERENCES

[1] The Ultimate Java Build Tool Comparison: Gradle,
Maven, Ant + Ivy. https://zeroturnaround.com/rebellabs/
java-build-tools-part-2-a-decision-makers-comparison-of-maven-gradle\
-and-ant-ivy/, 2014.

[2] API Evolution and Migration at Google. http://academicscode.
com/posts/2017/05/wapi-api-evolution-and-migration-at-google//, May
2017.

[3] A definitive guide to API-breaking changes in
.NET. https://stackoverflow.com/questions/1456785/
a-definitive-guide-to-api-breaking-changes-in-net, 2018.

[4] Always broken, inconsistent and non versioned,
welcome to API hell. https://thoughts.t37.net/
always-broken-inconsistent-and-non-versioned-welcome-to-api-hell\
-a26103b31081, 2018.

[5] Android SDK. https://stuff.mit.edu/afs/sipb/project/android/docs/sdk/
index.html, 2018.

[6] BGCX261/zoie-svn-to-git. https://github.com/BGCX261/
zoie-svn-to-git, 2018.

[7] Commons IO. https://commons.apache.org/proper/commons-io/, 2018.
[8] Content management platform to build modern business applications.

https://github.com/nuxeo/nuxeo, 2018.
[9] CraftBukkit. https://getbukkit.org/download/craftbukkit, 2018.

[10] How do you get Incompatible API’s to work? https://forums.pmmp.io/
threads/how-do-you-get-incompatible-apis-to-work.2283/, 2018.

[11] Incompatible change to sessions.restore API in Fire-
fox 54. https://blog.mozilla.org/addons/2017/05/10/
incompatible-change-sessions-restore-api-firefox-54/, 2018.

[12] [jgit-dev] [VOTE] Making API incompatible changes. https://www.
eclipse.org/lists/jgit-dev/msg02191.html, 2018.

[13] Lucene. https://lucene.apache.org, 2018.
[14] Lucene Change Log. http://lucene.apache.org/core/4 2 0/changes/

Changes.html, 2018.
[15] ”New build based on revison 27127”. https:

//github.com/yoctopuce/yoctolib android/commit/
f73f800087a198fa7764210bc148835a45ee5b9d, 2018.

[16] NXP-14091: update to lucene 4.7.0. https://github.com/nuxeo/nuxeo/
commit/9cbf49dc3799ddc3683706080cc52eacd39f3567, 2018.

[17] Starting a port to Lucene 4.x. https://github.com/behas/lucene-skos/
commit/821ef75dcca4124d284c44e8f99e5369bf187fcf, 2018.

[18] WALA. http://wala.sourceforge.net/wiki/index.php/Main Page, 2018.
[19] G. Ammons, R. Bodı́k, and J. R. Larus. Mining specifications. In Pro-

ceedings of the 29th ACM SIGPLAN-SIGACT Symposium on Principles
of Programming Languages, POPL ’02, pages 4–16, New York, NY,
USA, 2002. ACM.

[20] M. Barnett, C. Bird, J. a. Brunet, and S. K. Lahiri. Helping developers
help themselves: Automatic decomposition of code review changesets.
In Proceedings of the 37th International Conference on Software Engi-
neering - Volume 1, ICSE ’15, pages 134–144, Piscataway, NJ, USA,
2015. IEEE Press.

[21] G. Bavota, G. Canfora, M. D. Penta, R. Oliveto, and S. Panichella. The
evolution of project inter-dependencies in a software ecosystem: The
case of apache. In 2013 IEEE International Conference on Software
Maintenance, pages 280–289, Sept 2013.

[22] M. Chen, F. Fischer, N. Meng, X. Wang, and J. Grossklags. How reliable
is the crowdsourced knowledge of security implementation? In ICSE,
2019.

[23] K. Chow and D. Notkin. Semi-automatic update of applications in
response to library changes. In Proceedings of the 1996 International
Conference on Software Maintenance, ICSM ’96, pages 359–, Washing-
ton, DC, USA, 1996. IEEE Computer Society.

[24] B. E. Cossette and R. J. Walker. Seeking the ground truth: A retroactive
study on the evolution and migration of software libraries. In Pro-
ceedings of the ACM SIGSOFT 20th International Symposium on the
Foundations of Software Engineering, FSE ’12, pages 55:1–55:11, New
York, NY, USA, 2012. ACM.

[25] B. Dagenais and M. P. Robillard. Recommending adaptive changes
for framework evolution. In Proceedings of the 30th International
Conference on Software Engineering, ICSE ’08, pages 481–490, New
York, NY, USA, 2008. ACM.

[26] J. Dietrich, K. Jezek, and P. Brada. Broken promises: An empirical study
into evolution problems in java programs caused by library upgrades.
In 2014 Software Evolution Week - IEEE Conference on Software
Maintenance, Reengineering, and Reverse Engineering (CSMR-WCRE),
pages 64–73, Feb 2014.

[27] D. Dig and R. Johnson. The role of refactorings in api evolution. In 21st
IEEE International Conference on Software Maintenance (ICSM’05),
pages 389–398, Sept 2005.

[28] D. Engler, D. Y. Chen, S. Hallem, A. Chou, and B. Chelf. Bugs as
deviant behavior: A general approach to inferring errors in systems code.
In Proceedings of the Eighteenth ACM Symposium on Operating Systems
Principles, SOSP ’01, pages 57–72, New York, NY, USA, 2001. ACM.

[29] F. Fischer, K. Böttinger, H. Xiao, C. Stransky, Y. Acar, M. Backes, and
S. Fahl. Stack Overflow considered harmful? The impact of copy&paste
on Android application security. In 38th IEEE Symposium on Security
and Privacy, 2017.

[30] B. Fluri, M. Würsch, M. Pinzger, and H. C. Gall. Change distilling—
tree differencing for fine-grained source code change extraction. IEEE
Transactions on Software Engineering, 33(11):18, November 2007.

[31] M. Gabel and Z. Su. Javert: Fully automatic mining of general
temporal properties from dynamic traces. In Proceedings of the 16th
ACM SIGSOFT International Symposium on Foundations of Software
Engineering, SIGSOFT ’08/FSE-16, pages 339–349, New York, NY,
USA, 2008. ACM.

[32] X. Gu, H. Zhang, D. Zhang, and S. Kim. Deep api learning. In
Proceedings of the 2016 24th ACM SIGSOFT International Symposium
on Foundations of Software Engineering, FSE 2016, pages 631–642,
New York, NY, USA, 2016. ACM.

[33] J. Henkel and A. Diwan. Catchup!: Capturing and replaying refactorings
to support api evolution. In Proceedings of the 27th International
Conference on Software Engineering, ICSE ’05, pages 274–283, New
York, NY, USA, 2005. ACM.

[34] K. Herzig, S. Just, and A. Zeller. The impact of tangled code changes on
defect prediction models. Empirical Software Engineering, 21(2):303–
336, Apr 2016.

[35] A. Hora, R. Robbes, N. Anquetil, A. Etien, S. Ducasse, and M. T.
Valente. How do developers react to api evolution? the pharo ecosystem
case. In 2015 IEEE International Conference on Software Maintenance
and Evolution (ICSME), pages 251–260, Sept 2015.

[36] S. S. Khairunnesa, H. A. Nguyen, T. N. Nguyen, and H. Rajan. Ex-
ploiting implicit beliefs to resolve sparse usage problem in usage-based
specification mining. Proc. ACM Program. Lang., 1(OOPSLA):83:1–
83:29, Oct. 2017.

[37] S. Kim, E. J. Whitehead, and J. J. Bevan. Properties of signature change
patterns. In 2006 22nd IEEE International Conference on Software
Maintenance, pages 4–13, Sept 2006.

[38] L. Martie, T. D. LaToza, and A. v. d. Hoek. Codeexchange: Supporting
reformulation of internet-scale code queries in context (t). In 2015 30th
IEEE/ACM International Conference on Automated Software Engineer-
ing (ASE), pages 24–35, Nov 2015.

[39] T. McDonnell, B. Ray, and M. Kim. An empirical study of api stability
and adoption in the android ecosystem. In Proceedings of the 2013
IEEE International Conference on Software Maintenance, ICSM ’13,
pages 70–79, Washington, DC, USA, 2013. IEEE Computer Society.

[40] S. Meng, X. Wang, L. Zhang, and H. Mei. A history-based matching
approach to identification of framework evolution. In 2012 34th
International Conference on Software Engineering (ICSE), pages 353–
363, June 2012.

[41] A. T. Nguyen, M. Hilton, M. Codoban, H. A. Nguyen, L. Mast,
E. Rademacher, T. N. Nguyen, and D. Dig. Api code recommendation
using statistical learning from fine-grained changes. In Proceedings of
the 2016 24th ACM SIGSOFT International Symposium on Foundations
of Software Engineering, FSE 2016, pages 511–522, New York, NY,
USA, 2016. ACM.

[42] A. T. Nguyen, H. A. Nguyen, T. T. Nguyen, and T. N. Nguyen. Statistical
learning approach for mining API usage mappings for code migration.
In Proceedings of the 29th ACM/IEEE international conference on
Automated software engineering, pages 457–468. ACM, 2014.

[43] A. T. Nguyen, T. T. Nguyen, and T. N. Nguyen. Lexical statistical
machine translation for language migration. In Proceedings of the 2013
9th Joint Meeting on Foundations of Software Engineering, ESEC/FSE
2013, pages 651–654, New York, NY, USA, 2013. ACM.

[44] A. T. Nguyen, T. T. Nguyen, and T. N. Nguyen. Divide-and-conquer
approach for multi-phase statistical migration for source code (t). In
2015 30th IEEE/ACM International Conference on Automated Software
Engineering (ASE), pages 585–596, Nov 2015.

[45] H. A. Nguyen, T. T. Nguyen, G. Wilson, Jr., A. T. Nguyen, M. Kim,
and T. N. Nguyen. A graph-based approach to api usage adaptation.
SIGPLAN Not., 45(10):302–321, Oct. 2010.

[46] T. T. Nguyen, H. A. Nguyen, N. H. Pham, J. M. Al-Kofahi, and T. N.
Nguyen. Graph-based mining of multiple object usage patterns. In
Proceedings of the the 7th Joint Meeting of the European Software
Engineering Conference and the ACM SIGSOFT Symposium on The

Foundations of Software Engineering, ESEC/FSE ’09, pages 383–392,
New York, NY, USA, 2009. ACM.

[47] Y. Padioleau, J. L. Lawall, and G. Muller. Understanding collateral
evolution in linux device drivers. In Proceedings of the 1st ACM
SIGOPS/EuroSys European Conference on Computer Systems 2006,
EuroSys ’06, pages 59–71, New York, NY, USA, 2006. ACM.

[48] R. Pandita, X. Xiao, H. Zhong, T. Xie, S. Oney, and A. Paradkar.
Inferring method specifications from natural language api descriptions.
In Proceedings of the 34th International Conference on Software Engi-
neering, ICSE ’12, pages 815–825, Piscataway, NJ, USA, 2012. IEEE
Press.

[49] J. H. Perkins. Automatically generating refactorings to support api
evolution. SIGSOFT Softw. Eng. Notes, 31(1):111–114, Sept. 2005.

[50] S. Raemaekers, A. van Deursen, and J. Visser. Semantic versioning
versus breaking changes: A study of the maven repository. In Pro-
ceedings of the 2014 IEEE 14th International Working Conference on
Source Code Analysis and Manipulation, SCAM ’14, pages 215–224,
Washington, DC, USA, 2014. IEEE Computer Society.

[51] M. Raghothaman, Y. Wei, and Y. Hamadi. Swim: Synthesizing what i
mean: Code search and idiomatic snippet synthesis. In Proceedings of
the 38th International Conference on Software Engineering, ICSE ’16,
pages 357–367, New York, NY, USA, 2016. ACM.

[52] T. Schäfer, J. Jonas, and M. Mezini. Mining framework usage changes
from instantiation code. In Proceedings of the 30th International
Conference on Software Engineering, ICSE ’08, pages 471–480, New
York, NY, USA, 2008. ACM.

[53] L. Shi, H. Zhong, T. Xie, and M. Li. An empirical study on evolu-
tion of api documentation. In Proceedings of the 14th International
Conference on Fundamental Approaches to Software Engineering: Part

of the Joint European Conferences on Theory and Practice of Soft-
ware, FASE’11/ETAPS’11, pages 416–431, Berlin, Heidelberg, 2011.
Springer-Verlag.

[54] M. Sulı́r and J. Porubän. A quantitative study of java software
buildability. CoRR, abs/1712.01024, 2017.

[55] A. Wasylkowski and A. Zeller. Mining temporal specifications from
object usage. In ASE 2009: Proceedings of the 2009 IEEE/ACM
International Conference on Automated Software Engineering, pages
295–306, Los Alamitos, CA, Nov. 2009. IEEE Computer Society.

[56] W. Wu, Y.-G. Guéhéneuc, G. Antoniol, and M. Kim. Aura: A hybrid
approach to identify framework evolution. In Proceedings of the 32Nd
ACM/IEEE International Conference on Software Engineering - Volume
1, ICSE ’10, pages 325–334, New York, NY, USA, 2010. ACM.

[57] Z. Xing and E. Stroulia. Umldiff: An algorithm for object-oriented
design differencing. In Proceedings of the 20th IEEE/ACM International
Conference on Automated Software Engineering, ASE ’05, pages 54–65,
New York, NY, USA, 2005. ACM.

[58] Z. Xing and E. Stroulia. Refactoring practice: How it is and how
it should be supported - an eclipse case study. In 2006 22nd IEEE
International Conference on Software Maintenance, pages 458–468,
Sept 2006.

[59] Z. Xing and E. Stroulia. Api-evolution support with diff-catchup. IEEE
Trans. Softw. Eng., 33(12):818–836, Dec. 2007.

[60] H. Zhong and H. Mei. An empirical study on api usages. IEEE
Transactions on Software Engineering, PP(99):1–1, 2017.

[61] H. Zhong, S. Thummalapenta, T. Xie, L. Zhang, and Q. Wang. Mining
API mapping for language migration. In Proceedings of the 32nd
ACM/IEEE International Conference on Software Engineering-Volume
1, pages 195–204. ACM, 2010.

