
Software Evolution

Miryung Kim, Na Meng, and Tianyi Zhang

Abstract Software evolution plays an ever-increasing role in software develop-
ment. Programmers rarely build software from scratch but often spend more time
in modifying existing software to provide new features to customers and fix defects
in existing software. Evolving software systems are often a time-consuming and
error-prone process. This chapter overviews key concepts and principles in the area
of software evolution and presents the fundamentals of state-of-the art methods,
tools, and techniques for evolving software. The chapter first classifies the types of
software changes into four types: perfective changes to expand the existing require-
ments of a system, corrective changes for resolving defects, adaptive changes to
accommodate any modifications to the environments, and finally preventive changes
to improve the maintainability of software. For each type of changes, the chapter
overviews software evolution techniques from the perspective of three kinds of
activities: (1) applying changes, (2) inspecting changes, and (3) validating changes.
The chapter concludes with the discussion of open problems and research challenges
for the future.

1 Introduction

Software evolution plays an ever-increasing role in software development. Program-
mers rarely build software from scratch but often spend more time in modifying
existing software to provide new features to customers and fix defects in existing

All authors have contributed equally to this chapter.

M. Kim · T. Zhang
University of California, Los Angeles, CA, USA
e-mail: miryung@cs.ucla.edu; tianyi.zhang@cs.ucla.edu

N. Meng
Virginia Tech, Blacksburg, VA, USA
e-mail: nm8247@cs.vt.edu

© Springer Nature Switzerland AG 2019
S. Cha et al. (eds.), Handbook of Software Engineering,
https://doi.org/10.1007/978-3-030-00262-6_6

223

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-00262-6_6&domain=pdf
mailto:miryung@cs.ucla.edu
mailto:tianyi.zhang@cs.ucla.edu
mailto:nm8247@cs.vt.edu
https://doi.org/10.1007/978-3-030-00262-6_6

224 M. Kim et al.

software. Evolving software systems are often a time-consuming and error-prone
process. In fact, it is reported that 90% of the cost of a typical software system
is incurred during the maintenance phase [114] and a primary focus in software
engineering involves issues relating to upgrading, migrating, and evolving existing
software systems.

The term software evolution dates back to 1976 when Belady and Lehman first
coined this term. Software evolution refers to the dynamic behavior of software
systems, as they are maintained and enhanced over their lifetimes [13]. Software
evolution is particularly important as systems in organizations become longer-lived.
A key notion behind this seminal work by Belady and Lehman is the concept of
software system entropy. The term entropy, with a formal definition in physics
relating to the amount of energy in a closed thermodynamic system, is used to
broadly represent a measure of the cost required to change a system or correct
its natural disorder. As such, this term has had significant appeal to software
engineering researchers, since it suggests a set of reasons for software maintenance.
Their original work in the 1970s involved studying 20 user-oriented releases of the
IBM OS/360 operating systems software, and it was the first empirical research to
focus on the dynamic behavior of a relatively large and mature system (12 years
old) at the time. Starting with the available data, they attempted to deduce the
nature of consecutive releases of OS/360 and to postulate five laws of software
evolution: (1) continuing change, (2) increasing complexity, (3) fundamental law of
program evolution, (4) conservation of organizational stability, and (5) conservation
of familiarity.

Later, many researchers have systematically studied software evolution by
measuring concrete metrics about software over time. Notably, Eick et al. [41]
quantified the symptoms of code decay—software is harder to change than it should
be by measuring the extent to which each risk factor matters using a rich data set of
5ESS telephone switching system. For example, they measured the number of files
changed in eachmodification request to monitor code decay progress over time. This
empirical study has influenced a variety of research projects on mining software
repositories.

Now that we accept the fact that software systems go through a continuing life
cycle of evolution after the initial phase of requirement engineering, design, analysis,
testing, and validation, we describe an important aspect of software evolution—
software changes—in this chapter. To that end, we first introduce the categorization
of software changes into four types in Sect. 2. We then discuss the techniques of
evolving software from the perspectives of three kinds of activities: (1) change
application, (2) change inspection, and (3) change validation. In the following
three sections, we provide an organized tour of seminal papers focusing on the
abovementioned topics.

In Sect. 3, we first discuss empirical studies to summarize the characteristics of
each change type and then overview tool support for applying software changes.
For example, for the type of corrective changes, we present several studies on the
nature and extent of bug fixes. We then discuss automated techniques for fixing bugs
such as automated repair. Similarly, for the type of preventative changes, we present

Software Evolution 225

empirical studies on refactoring practices and then discuss automated techniques
for applying refactorings. Regardless of change types, various approaches could
reduce the manual effort of updating software through automation, including
source-to-source program transformation, programming by demonstration (PbD),
simultaneous editing, and systematic editing.

In Sect. 4, we overview research topics for inspecting software changes. Software
engineers other than the change author often perform peer reviews by inspecting
program changes and provide feedback if they discover any suspicious software
modifications. Therefore, we summarize modern code review processes and discuss
techniques for comprehending code changes. This section also overviews a variety
of program differencing techniques, refactoring reconstruction techniques, and code
change search techniques that developers can use to investigate code changes.

In Sect. 5, we overview research techniques for validating software changes.
After software modification is made, developers and testers may create new tests
or reuse existing tests, run the modified software against the tests, and check
whether the software executes as expected. Therefore, the activity of checking
the correctness of software changes involves failure-inducing change isolation,
regression testing, and change impact analysis.

2 Concepts and Principles

Swanson initially identified three categories of software changes: corrective, adap-
tive, and perfective [176]. These categories were updated later, and ISO/IEC
14764 instead presents four types of changes: corrective, adaptive, perfective, and
preventive [70].

2.1 Corrective Change

Corrective change refers software modifications initiated by software defects. A
defect can result from design errors, logic errors, and coding errors [172].

– Design errors: software design does not fully align with the requirement specifi-
cation. The faulty design leads to a software system that either incompletely or
incorrectly implements the requested computational functionality.

– Logic errors: a program behaves abnormally by terminating unexpectedly or
producing wrong outputs. The abnormal behaviors are mainly due to flaws in
software functionality implementations.

– Coding errors: although a program can function well, it takes excessively
high runtime or memory overhead before responding to user requests. Such
failures may be caused by loose coding or the absence of reasonable checks on
computations performed.

226 M. Kim et al.

2.2 Adaptive Change

Adaptive change is a change introduced to accommodate any modifications in the
environment of a software product. The term environment here refers to the totality
of all conditions that influence the software product, including business rules,
government policies, and software and hardware operating systems. For example,
when a library or platform developer may evolve its APIs, the corresponding
adaptation may be required for client applications to handle such environment
change. As another example, when porting a mobile application from Android to
iOS, mobile developers need to apply adaptive changes to translate the code from
Java to Swift, so that the software is still compilable and executable on the new
platform.

2.3 Perfective Change

Perfective change is the change undertaken to expand the existing requirements
of a system [55]. When a software product becomes useful, users always expect
to use it in new scenarios beyond the scope for which it was initially developed.
Such requirement expansion causes changes to either enhance existing system
functionality or to add new features. For instance, an image processing system
is originally developed to process JPEG files and later goes through a series of
perfective changes to handle other formats, such as PNG and SVG. The nature and
characteristics of new feature additions are not necessarily easy to define and in
fact understudied for that reason. In Sect. 3.3, we discuss a rather well-understood
type of perfective changes, called crosscutting concerns, and then present tool and
language support for adding crosscutting concerns. Crosscutting concerns refer
to the secondary design decisions such as logging, performance, error handling,
and synchronization. Adding these secondary concerns often involves nonlocalized
changes throughout the system, due to the tyranny of dominant design decisions
already implemented in the system. Concerns that are added later may end up being
scattered across many modules and thus tangled with one another.

2.4 Preventive Change

Preventive change is the change applied to prevent malfunctions or to improve
the maintainability of software. According to Lehman’s laws of software evolu-
tion [108], the long-term effect of corrective, adaptive, and perfective changes is
deteriorating the software structure, while increasing entropy. Preventive changes
are usually applied to address the problems. For instance, after developers fix some
bugs and implement new features in an existing software product, the complexity of

Software Evolution 227

Fig. 1 Potential relation
between software
changes [55]. Note: Reprinted
from “Software Maintenance:
Concepts and Practice” by
Penny Grubb and Armstrong
A. Takang, Copyright 2003
by World Scientific
Publishing Co. Pte. Ltd.
Reprinted with permission

source code can increase to an unmanageable level. Through code refactoring—a
series of behavior-preserving changes—developers can reduce code complexity and
increase the readability, reusability, and maintainability of software.

Figure 1 presents the potential relationships between different types of
changes [55]. Specifically, both adaptive changes and perfective changes may lead
to the other two types of changes, because developers may introduce bugs or worsen
code structures when adapting software to new environments or implementing new
features.

3 An Organized Tour of Seminal Papers: Applying Changes

We discuss the characteristics of corrective, adaptive, perfective, and preventative
changes using empirical studies and the process and techniques for updating soft-
ware, respectively, in Sects. 3.1–3.4. Next, regardless of change types, automation
could reduce the manual effort of updating software. Therefore, we discuss the
topic of automated program transformation and interactive editing techniques for
reducing repetitive edits in Sect. 3.5 (Fig. 2).

3.1 Corrective Change

Corrective changes such as bug fixes are frequently applied by developers to
eliminate defects in software. There are mainly two lines of research conducted:
(1) empirical studies to characterize bugs and corresponding fixes and (2) automatic
approaches to detect and fix such bugs. There is no clear boundary between the
two lines of research, because some prior projects first make observations about
particular kinds of bug fixes empirically and then subsequently leverage their
observed characteristics to find more bugs and fix them. Below, we discuss a few

228 M. Kim et al.

Fig. 2 Applying changes categorized by change type and related research topics

representative examples of empirical studies with such flavor of characterizing and
fixing bugs.

3.1.1 Empirical Studies of Bug Fixes

In this section, we discuss two representative studies on bug fixes. These studies
are not the earliest, seminal works in this domain. Rather, the flavor and style of
their studies are representative. Li et al. conducted a large-scale characterization of
bugs by digging through bug reports in the wild and by quantifying the extent of
each bug type [111]. Kim et al.’s memory of bug fixes [90] uses fine-grained bug
fix histories to measure the extent of recurring, similar bug fixes and to assess the
potential benefit of automating similar fixes based on change history.

Li et al. conducted an empirical study of bugs from two popular open-source
projects: Mozilla and Apache HTTP Server [111]. By manually examining 264
bug reports from the Mozilla Bugzilla database, and 209 bug reports from the
Apache Bugzilla database, they investigated the root cause, impact, and software
components of each software error that exhibited abnormal runtime behaviors.
They observed three major root causes: memory, concurrency, and semantics. The
memory bugs accounted for 16.3% in Mozilla and 12.2% in Apache. Among mem-
ory bugs, NULL pointer dereference was observed as a major cause, accounting
for 37.2% in Mozilla and 41.7% in Apache. More importantly, semantic bugs

Software Evolution 229

were observed to be dominant, accounting for 81.1% in Mozilla and 86.7% in
Apache. One possible reason is that most semantic bugs are specific to applications.
A developer could easily introduce semantic bugs while coding, due to a lack
of thorough understanding of software and its requirements. It is challenging to
automatically detect or fix such semantic bugs, because diagnosing and resolving
them may require a lot of domain-specific knowledge and such knowledge is
inherently not generalizable across different systems and applications.

To understand the characteristics and frequency of project-specific bug fixes,
Kim et al. conducted an empirical study on the bug fix history of five open-source
projects: ArgoUML, Columba, Eclipse, jEdit, and Scarab [90]. With keywords like
“Fixed” or “Bugs,” they retrieved code commits in software version history that are
relevant to bug fixes, chopped each commit into contiguous code change blocks
(i.e., hunks), and then clustered similar code changes. They observed that 19.3–
40.3% bugs appeared repeatedly in version history, while 7.9–15.5% of bug-and-fix
pairs appeared more than once. The results demonstrated that project-specific bug
fix patterns occur frequently enough, and for each bug-and-fix pair, it is possible
to both detect similar bugs and provide fix suggestions. Their study also showed
history-based bug detection could be complementary to static analysis-based bug
detection—the bugs that can be detected by past bug fix histories do not overlap
with the bugs that can be detected by a static bug finding tool, PMD [146].

3.1.2 Rule-Based Bug Detection and Fixing Approaches

Rule-based bug detection approaches detect and fix bugs based on the assumption
that bugs are deviant program behaviors that violate implicit programming rules.
Then one may ask, where are those implicit rules coming from? Such rules can be
written by the developers of bug-finding tools or can be refined based on empirical
observation in the wild. For example, Engler et al. define a meta-language for
users to easily specify temporal system rules such as “release locks after acquiring
them” [44]. They also extend a compiler to interpret the rules and dynamically
generate additional checks in the compiler. If any code snippet violates the specified
rule(s), the approach reports the snippet as a software bug. Table 1 presents some
exemplar system rule templates and instances. With this approach, developers can
flexibly define their own rules to avoid some project-specific bugs, without worrying
about how to implement checkers to enforce the rules. Engler et al.’s later work
enables tool developers to tailor rule templates to a specific system and to check for
contradictions and violations [45].

Table 1 Sample system rule templates and examples from [44]

Rule template Example

“Never/always do X” “Do not use floating point in the kernel”

“Do X rather than Y” “Use memory mapped I/O rather than copying”

“Always do X before/after Y” “Check user pointers before using them in the kernel”

230 M. Kim et al.

Another example of rule-based bug detection is CP-Miner, an automatic
approach to find copy-paste bugs in large-scale software [110]. CP-Miner is
motivated by Chou et al.’s finding that, under the Linux drivers/i2o directory,
34 out of 35 errors were caused by copy-paste [24], and based on the insight that
when developers copy and paste, they may forget to consistently rename identifiers.
CP-Miner first identifies copy-paste code in a scalable way and then detects bugs
by checking for a specific rule, e.g., consistent renaming of identifiers.

3.1.3 Automated Repair

Automatic program repair generates candidate patches and checks correctness using
compilation, testing, and/or specification.

One set of techniques uses search-based repair [59] or predefined repair
templates to generate many candidate repairs for a bug and then validates them
using indicative workloads or test suites. For example, GenProg generates candidate
patches by replicating, mutating, or deleting code randomly from the existing
program [107, 198]. GenProg uses genetic programming (GP) to search for a
program variant that retains required functionality but is not vulnerable to the defect
in question. GP is a stochastic search method inspired by biological evolution that
discovers computer programs tailored to a particular task. GP uses computational
analogs of biological mutation and crossover to generate new program variations, in
other words program variants. A user-defined fitness function evaluates each variant.
GenProg uses the input test cases to evaluate the fitness, and individuals with high
fitness are selected for continued evolution. This GP process is successful, when it
produces a variant that passes all tests encoding the required behavior and does not
fail those encoding the bug.

Another class of strategies in automatic software repair relies on specifications
or contracts to guide sound patch generation. This provides confidence that the
output is correct. For example, AutoFix-E generates simple bug fixes frommanually
prescribed contracts [195]. The key insights behind this approach are to rely on
contracts present in the software to ensure that the proposed fixes are semantically
sound. AutoFix-E takes an Eiffel class and generates test cases with some automated
testing engine first. From the test runs, it extracts object states using Boolean
queries. By comparing the states of passing and failing runs, it then generates a fault
profile—an indication of what went wrong in terms of an abstract object state. From
the state transitions in passing runs, it generates a finite-state behavioral model,
capturing the normal behavior in terms of control. Both control and state guide the
generation of fix candidates, and only those fixes passing the regression test suite
remain.

Some approaches are specialized for particular types of bugs only. For example,
FixMeUp inserts missing security checks using inter-procedural analysis, but
these additions are very specific and stylized for access-control-related security
bugs [173]. As another example, PAR [95] encodes ten common bug fix patterns
from Eclipse JDT’s version history to improve GenProg. However, the patterns are
created manually.

Software Evolution 231

3.2 Adaptive Change

Adaptive changes are applied to software, when its environment changes. In this
section, we focus on three scenarios of adaptive changes: cross-system software
porting, cross-language software migration, and software library upgrade (i.e., API
evolution).

Consider an example of cross-system porting. When a software system is
installed on a computer, the installation can depend on the configurations of the
hardware, the software, and the device drivers for particular devices. To make the
software to run on a different processor or an operating system, and to make it
compatible with different drivers, we may need adaptive changes to adjust the
software to the new environment. Consider another example of cross-language
migration where you have software in Java that must be translated to C. Developers
need to rewrite software and must also update language-specific libraries. Finally
consider the example of API evolution. When the APIs of a library and a platform
evolve, corresponding adaptations are often required for client applications to
handle such API update. In extreme cases, e.g., when porting a Java desktop
application to the iOS platform, developers need to rewrite everything from scratch,
because both the programming language (i.e., Swift) and software libraries are
different.

3.2.1 Cross-System Porting

Software forking—creating a variant product by copying and modifying an existing
product—is often considered an ad hoc, low-cost alternative to principled product
line development. To maintain such forked products, developers often need to port
an existing feature or bug-fix from one product variant to another.

Empirical Studies on Cross-System Porting OpenBSD, NetBSD, and FreeBSD
have evolved from the same origin but have been maintained independently from
one another. Many have studied the BSD family to investigate the extent and nature
of cross-system porting. The studies found that (1) the information flow among
the forked BSD family is decreasing according to change commit messages [47];
(2) 40% of lines of code were shared among the BSD family [205]; (3) in some
modules such as device driver modules, there is a significant amount of adopted
code [27]; and (4) contributors who port changes from other projects are highly
active contributors according to textual analysis of change commit logs and mailing
list communication logs [21].

More recently, Ray et al. comprehensively characterized the temporal, spatial,
and developer dimensions of cross-system porting in the BSD family [152]. Their
work computed the amount of edits that are ported from other projects as opposed to
the amount of code duplication across projects, because not all code clones across
different projects undergo similar changes during evolution, and similar changes
are not confined to code clones. To identify ported edits, they first built a tool

232 M. Kim et al.

named as Repertoire that takes diff patches as input and compares the content
and edit operations of the program patches. Repertoire was applied to total 18
years of NetBSD, OpenBSD, and FreeBSD version history. Their study found that
maintaining forked projects involves significant effort of porting patches from other
projects—10–15% of patch content was ported from another project’s patches.
Cross-system porting is periodic, and its rate does not necessarily decrease over
time. A significant portion of active developers participate in porting changes from
peer projects. Ported changes are less defect-prone than non-ported changes. A
significant portion (26–59%) of active committers port changes, but some do more
porting work than others. While most ported changes migrate to peer projects in a
relatively short amount of time, some changes take a very long time to propagate to
other projects. Ported changes are localized within less than 20% of the modified
files per release on average in all three BSD projects, indicating that porting is
concentrated on a few subsystems.

3.2.2 Cross-Language Migration

When maintaining a legacy system that was written in an old programming language
(e.g., Fortran) decades ago, programmers may migrate the system to a mainstream
general-purpose language, such as Java, to facilitate the maintenance of existing
codebase and to leverage new programming language features.

Cross-Language Program Translation To translate code implementation from one
language to another, researchers have built tools by hard coding the translation
rules and implementing any missing functionality between languages. Yasumatsu
et al. map compiled methods and contexts in Smalltalk to machine code and stack
frames, respectively, and implement runtime replacement classes in correspondence
with the Smalltalk execution model and runtime system [208]. Mossienko [127]
and Sneed [170] automate COBOL-to-Java code migration by defining and imple-
menting rules to generate Java classes, methods, and packages from COBOL
programs. mppSMT automatically infers and applies Java-to-C# migration rules
using a phrase-based statistical machine translation approach [136]. It encodes both
Java and C# source files into sequences of syntactic symbols, called syntaxemes,
and then relies on the syntaxemes to align code and to train sequence-to-sequence
translation.

Mining Cross-Language API Rules When migrating software to a different target
language, API conversion poses a challenge for developers, because the diverse
usage of API libraries induces an endless process of specifying API translation
rules or identifying API mappings across different languages. Zhong et al. [215] and
Nguyen et al. [135, 137] automatically mine API usage mappings between Java and
C#. Zhong et al. align code based on similar names and then construct the API trans-
formation graphs for each pair of aligned statements [215]. StaMiner [135] mines
API usage sequence mappings by conducting program dependency analysis [128]
and representing API usage as a graph-based model [133].

Software Evolution 233

3.2.3 Library Upgrade and API Evolution

Instead of building software from scratch, developers often use existing frameworks
or third-party libraries to reuse well-implemented and tested functionality. Ideally,
the APIs of libraries must remain stable such that library upgrades do not incur
corresponding changes in client applications. In reality, however, APIs change their
input and output signatures, change semantics, or are even deprecated, forcing
client application developers to make corresponding adaptive changes in their
applications.

Empirical Studies of API Evolution Dig and Johnson manually investigated API
changes using the change logs and release notes to study the types of library-
side updates that break compatibility with existing client code and discovered that
80% of such changes are refactorings [36]. Xing and Stroulia used UMLDiff to
study API evolution and found that about 70% of structural changes are refactor-
ings [203]. Yokomori et al. investigated the impact of library evolution on client
code applications using component ranking measurements [210]. Padioleau et al.
found that API changes in the Linux kernel led to subsequent changes on dependent
drivers, and such collateral evolution could introduce bugs into previously mature
code [143]. McDonelle et al. examined the relationship between API stability and
the degree of adoption measured in propagation and lagging time in the Android
Ecosystem [117]. Hou and Yao studied the Java API documentation and found that
a stable architecture played an important role in supporting the smooth evolution
of the AWT/Swing API [68]. In a large-scale study of the Smalltalk development
communities, Robbes et al. found that only 14% of deprecated methods produce
nontrivial API change effects in at least one client-side project; however, these
effects vary greatly in magnitude. On average, a single API deprecation resulted
in 5 broken projects, while the largest caused 79 projects and 132 packages to
break [158].

Tool Support for API Evolution and Client Adaptation Several existing approaches
semiautomate or automate client adaptations to cope with evolving libraries. Chow
and Notkin [25] propose a method for changing client applications in response
to library changes—a library maintainer annotates changed functions with rules
that are used to generate tools that update client applications. Henkel and Diwan’s
CatchUp records and stores refactorings in an XML file that can be replayed to
update client code [62]. However, its update support is limited to three refactorings:
renaming operations (e.g., types, methods, fields), moving operations (e.g., classes
to different packages, static members), or change operations (e.g., types, signatures).
The key idea of CatchUp, record and replay, assumes that the adaptation changes
in client code are exact or similar to the changes in the library side. Thus, it
works well for replaying rename or move refactorings or supporting API usage
adaptations via inheritance. However, CatchUp cannot suggest programmers how to
manipulate the context of API usages in client code such as the surrounding control
structure or the ordering between method calls. Furthermore, CatchUp requires that
library and client application developers use the same development environment to

234 M. Kim et al.

record API-level refactorings, limiting its adoption in practice. Xing and Stroulia’s
Diff-CatchU automatically recognizes API changes of the reused framework and
suggests plausible replacements to the obsolete APIs based on the working examples
of the framework codebase [204]. Dig et al.’s MolhadoRef uses recorded API-level
refactorings to resolve merge conflicts that stem from refactorings; this technique
can be used for adapting client applications in case of simple rename and move
refactorings occurred in a library [37].

SemDiff [32] mines API usage changes from other client applications or the
library itself. It defines an adaptation pattern as a frequent replacement of a
method invocation. That is, if a method call to A.m is changed to B.n in several
adaptations, B.n is likely to be a correct replacement for the calls to A.m. As
SemDiff models API usages in terms of method calls, it cannot support complex
adaptations involving multiple objects and method calls that require the knowledge
of the surrounding context of those calls. LibSync helps client applications migrate
library API usages by learning migration patterns [134] with respect to a partial
AST with containment and data dependences. Though it suggests what code
locations to examine and shows example API updates, it is unable to transform
code automatically. Cossette and Walker found that, while most broken code may
be mended using one or more of these techniques, each is ineffective when used in
isolation [29].

3.3 Perfective Change

Perfective change is the change undertaken to expand the existing requirements of a
system. Not much research is done to characterize feature enhancement or addition.
One possible reason is that the implementation logic is always domain and project-
specific and that it is challenging for any automatic tool to predict what new feature
to add and how that new feature must be implemented. Therefore, the nature and
characteristics of feature additions are understudied.

In this section, we discuss a rather well-understood type of perfective changes,
called crosscutting concerns and techniques for implementing and managing cross-
cutting concerns. As programs evolve over time, they may suffer from the the
tyranny of dominant decomposition [180]. They can be modularized in only one
way at a time. Concerns that are added later may end up being scattered across
many modules and tangled with one another. Logging, performance, error handling,
and synchronization are canonical examples of such secondary design decisions that
lead to nonlocalized changes.

Aspect-oriented programming languages provide language constructs to allow
concerns to be updated in a modular fashion [86]. Other approaches instead leave the
crosscutting concerns in a program, while providing mechanisms to document and
manage related but dispersed code fragments. For example, Griswold’s information
transparency technique uses naming conventions, formatting styles, and ordering of
code in a file to provide indications about crosscutting concern code that should
change together [53].

Software Evolution 235

3.3.1 Techniques for Locating Crosscutting Concerns

Several tools allow programmers to automatically or semiautomatically locate
crosscutting concerns. Robillard et al. allow programmers to manually document
crosscutting concerns using structural dependencies in code [160]. Similarly, the
Concern Manipulation Environment allows programmers to locate and document
different types of concerns [60]. van Engelen et al. use clone detectors to locate
crosscutting concerns [192]. Shepherd et al. locate concerns using natural language
program analysis [166]. Breu et al. mine aspects from version history by grouping
method calls that are added together [18]. Dagenais et al. automatically infer and
represent structural patterns among the participants of the same concern as rules in
order to trace the concerns over program versions [33].

3.3.2 Language Support for Crosscutting Concerns

Aspect-oriented programming (AOP) is a programming paradigm that aims to
increase modularity by allowing the separation of crosscutting concerns [181].
Suppose developers want to add a new feature such as logging to log all executed
functions. The logging logic is straightforward: printing the function’s name at each
function’s entry. However, manually inserting the same implementation to each
function body is tedious and error-prone. With AOP, developers only need to first
define the logging logic as an advice and then specify the place where to insert the
advice (i.e., pointcut), such as the entry point of each function. An aspect weaver
will read the aspect-oriented code and generate appropriate object-oriented code
with the aspects integrated. In this way, AOP facilitates developers to efficiently
introduce new program behaviors without cluttering the core implementation in
the existing codebase. Many Java bytecode manipulation frameworks implement
the AOP paradigm, like ASM [6], Javassist [75], and AspectJ [181], so that
developers can easily modify program runtime behaviors without touching source
code. The benefit of AOP during software evolution is that crosscutting concerns
can be contained as a separate module such as an aspect with its pointcut
and advice description and thus reduces the developer effort in locating and
updating all code fragments relevant to a particular secondary design decision such
as logging, synchronization, database transaction, etc.

Feature-oriented programming (FOP) is another paradigm for program genera-
tion in software product lines and for incremental development of programs [12].
FOP is closely related to AOP. Both deal with modules that encapsulate crosscuts of
classes, and both express program extensions. In FOP, every software is considered
as a composition of multiple features or layers. Each feature implements a certain
program functionality, while features may interact with each other to collaboratively
provide a larger functionality. A software product line (SPL) is a family of programs
where each program is defined by a unique composition of features. Formally, FOP
considers programs as values and program extensions as functions [103]. The benefit
of FOP is similar to AOP in that secondary design decisions can be encapsulated as

236 M. Kim et al.

a separate feature and can be composed later with other features using program
synthesis, making it easier to add a new feature at a later time during software
evolution. Further discussion of program generation techniques for software product
lines is described in chapter “Software Reuse and Product Line Engineering.”

3.4 Preventive Change

As a software system is enhanced, modified, and adapted to new requirements,
the code becomes more complex and drifts away from its original design, thereby
lowering the quality of the software. Refactoring [159, 52, 140, 122] copes with
increasing software complexity by transforming a program from one representation
to another while preserving the program’s external behavior (functionality and
semantics). Mens et al. present a survey of refactoring research and describe a
refactoring process, consisting of the following activities [122]:

1. Identifying where to apply what refactoring(s).
2. Checking that the refactoring to apply preserves program behaviors.
3. Refactoring the code.
4. Assessing the effect of applied refactoring on software quality (e.g., complexity

and readability).
5. Maintaining the consistency between refactored code and other related software

artifacts, like documentation, tests, and issue tracking records.

Section 3.4.1 describes the definition of refactoring and example transformations.
Section 3.4.2 describes empirical studies on refactoring. Section 3.4.3 describes tool
support for automated refactoring. Section 3.4.4 describes several studies of modern
refactoring practices and the limitations of current refactoring support. Section 3.4.5
describes techniques for assessing the impact of refactoring. Section 3.4.6 describes
techniques for identifying opportunities for refactoring.

3.4.1 Definition of Refactoring Operations

Griswold’s dissertation [52] discusses one of the first refactoring operations that
automate repetitive, error-prone, nonlocal transformations. Griswold supports a
number of restructuring operations: replacing an expression with a variable that
has its value, swapping the formal parameters in a procedure’s interface and
the respective arguments in its calls, etc. It is important to note that many of
these refactoring operations are systematic in the sense that they involve repetitive
nonlocal transformations.

Opdyke’s dissertation [140] distinguishes the notion of low-level refactorings
from high-level refactorings. High-level refactorings (i.e., composite refactorings)
reflect more complex behavior-preserving transformations while low-level refactor-
ings are primitive operations such as creating, deleting, or changing a program entity

Software Evolution 237

or moving a member variable. Opdyke describes three kinds of complex refactorings
in detail: (1) creating an abstract superclass, (2) subclassing and simplifying
conditionals, and (3) capturing aggregations and components. All three refactorings
are systematic in the sense that they contain multiple similar transformations at a
code level. For example, creating an abstract superclass involves moving multiple
variables and functions common to more than one sibling classes to their common
superclass. Subclassing and simplifying conditionals consist of creating several
classes, each of which is in charge of evaluating a different conditional. Capturing
aggregations and components usually involves moving multiple members from a
component to an aggregate object.

While refactoring is defined as behavior-preserving code transformations in the
academic literature [122], the de facto definition of refactoring in practice seems
to be very different from such rigorous definition. Fowler catalogs 72 types of
structural changes in object-oriented programs, but these transformations do not
necessarily guarantee behavior preservation [159]. In fact, Fowler recommends
developers to write test code first, since these refactorings may change a program’s
behavior. Murphy-Hill et al. analyzed refactoring logs and found that developers
often interleave refactorings with other behavior-modifying transformations [130],
indicating that pure refactoring revisions are rare. Johnson’s refactoring definition
is aligned with these findings—refactoring improves behavior in some aspects but
does not necessarily preserve behavior in all aspects [79].

3.4.2 Empirical Studies of Refactoring

There are contradicting beliefs on refactoring benefits. On one hand, some believe
that refactoring improves software quality and maintainability and a lack of
refactoring incurs technical debt to be repaid in the future in terms of increased
maintenance cost [19]. On the other hand, some believe that refactoring does not
provide immediate benefits unlike bug fixes and new features during software
evolution.

Supporting the view that refactoring provides benefits during software evolution,
researchers found empirical evidence that bug fix time decreases after refactor-
ing and defect density decreases after refactoring. More specifically, Carriere et
al. found that the productivity measure manifested by the average time taken to
resolve tickets decreases after re-architecting the system [22]. Ratzinger et al. devel-
oped defect prediction models based on software evolution attributes and found that
refactoring-related features and defects have an inverse correlation [151]—if the
number of refactorings increases in the preceding time period, the number of defects
decreases.

Supporting the opposite view that refactoring may even incur additional bugs,
researchers found that code churns are correlated with defect density and that
refactorings are correlated with bugs. More specifically, Purushothaman and Perry
found that nearly 10% of changes involved only a single line of code, which has less
than a 4% chance to result in error, while a change of 500 lines or more has nearly

238 M. Kim et al.

a 50% chance of causing at least one defect [148]. This result may indicate that
large commits, which tend to include refactorings, have a higher chance of inducing
bugs. Weißgerber and Diehl found that refactorings often occur together with other
types of changes and that refactorings are followed by an increasing number of
bugs [196]. Kim et al. investigated the spatial and temporal relationship between
API refactorings and bug fixes using a K-revision sliding window and by reasoning
about the method-level location of refactorings and bug fixes. They found that the
number of bug fixes increases after API refactorings [93].

One reason why refactoring could be potentially error-prone is that refactoring
often requires coordinated edits across different parts of a system, which could be
difficult for programmers to locate all relevant locations and apply coordinated edits
consistently. Several researchers found such evidence from open-source project
histories—Kim et al. found the exceptions to systematic change patterns, which
often arise from the failure to complete coordinated refactorings [91, 87], cause
bugs. Görg and Weißgerber detect errors caused by incomplete refactorings by
relating API-level refactorings to the corresponding class hierarchy [51]. Nagappan
and Ball found that code churn—the number of added, deleted, and modified lines
of code—is correlated with defect density [131]; since refactoring often introduces
a large amount of structural changes to the system, some question the benefit of
refactoring.

3.4.3 Automated Refactoring

The Eclipse IDE provides automatic support for a variety of refactorings, including
rename, move, and extract method. With such support, developers do not need to
worry about how to check for preconditions or postconditions before manually
applying a certain refactoring. Instead, they can simply select the refactoring
command from a menu (e.g., extract method) and provide necessary information
to accomplish the refactoring (e.g., the name of a new method). The Eclipse
refactoring engine takes care of the precondition check, program transformation,
and postcondition check.

During refactoring automation, Opdyke suggests to ensure behavior preservation
by specifying refactoring preconditions [140]. For instance, when conducting a
create_method_function refactoring, before inserting a member functionF to a class
C, developers should specify and check for five preconditions: (1) the function is not
already defined locally. (2) The signature matches that of any inherited functionwith
the same name. (3) The signature of corresponding functions in subclasses matches
it. (4) If there is an inherited function with the same name, either the inherited
function is not referenced on instances ofC and its subclasses, or the new function is
semantically equivalent to the function it replaces. (5) F will compile as a member
of C. If any precondition is not satisfied, the refactoring should not be applied to
the program. These five conditions in Opdyke’s dissertation are represented using
first-order logic.

Software Evolution 239

Clone removal refactorings factorize the common parts of similar code by
parameterizing their differences using a strategy design pattern or a form template
method refactoring [8, 178, 82, 67, 101]. These tools insert customized calls in each
original location to use newly created methods. Juillerat et al. automate introduce
exit label and introduce return object refactorings [82]. However, for variable and
expression variations, they define extra methods to mask the differences [8]. Hotta
et al. use program dependence analysis to handle gapped clones—trivial differences
inside code clones that are safe to factor out such that they can apply the form
template method refactoring to the code [67]. Krishnan et al. use PDGs of two
programs to identify a maximum common subgraph so that the differences between
the two programs are minimized and fewer parameters are introduced [101]. RASE
is an advanced clone removal refactoring technique that (1) extracts common code;
(2) creates new types and methods as needed; (3) parameterizes differences in
types, methods, variables, and expressions; and (4) inserts return objects and exit
labels based on control and data flow by combining multiple kinds of clone removal
transformations [120]. Such clone removal refactoring could lead to an increase in
the total size of code because it creates numerous simple methods.

Komondoor et al. extract methods based on the user-selected or tool-selected
statements in one method [98, 99]. The extract method refactoring in the Eclipse
IDE requires contiguous statements, whereas their approach handles noncontiguous
statements. Program dependence analysis identifies the relation between selected
and unselected statements and determines whether the noncontiguous code can
be moved together to form extractable contiguous code. Komondoor et al. apply
introduce exit label refactoring to handle exiting jumps in selected statements [99].
Tsantalis et al. extend the techniques by requiring developers to specify a variable
of interest at a specific point only [188]. They use a block-based slicing technique
to suggest a program slice to isolate the computation of the given variable. These
automated procedure extraction approaches are focused on extracting code from a
single method only. Therefore, they do not handle extracting common code from
multiple methods and resolving the differences between them.

3.4.4 Real-World Refactoring Practices

Several studies investigated refactoring practices in industry and also examined the
current challenges and risks associated with refactoring. Kim et al. conducted a
survey with professional developers at Microsoft [94, 96]. They sent a survey invi-
tation to 1290 engineers whose commit messages include a keyword “refactoring”
in the version histories of five MS products. Three hundred and twenty-eight of
them responded to the survey. More than half of the participants said they carry out
refactorings in the context of bug fixes or feature additions, and these changes are
generally not semantics-preserving. When they asked about their own definition
of refactoring, 46% of participants did not mention preservation of semantics,
behavior, or functionality at all. 53% reported that refactorings that they perform
do not match the types and capability of transformations supported by existing
refactoring engines.

240 M. Kim et al.

Fig. 3 The percentage of survey participants who know individual refactoring types but do those
refactorings manually [96]

In the same study, when developers are asked “what percentage of your
refactoring is done manually as opposed to using automated refactoring tools?”,
developers answered they do 86% of refactoring manually on average. Figure 3
shows the percentages of developers who usually apply individual refactoring types
manually despite the awareness of automated refactoring tool support. Vakilian et
al. [191] and Murphy et al. [129] also find that programmers do not use automated
refactoring despite their awareness of the availability of automated refactorings.
Murphy-Hill manually inspected source code produced by 12 developers and found
that developers only used refactoring tools for 10% of refactorings for which tools
were available [130]. For the question, “based on your experience, what are the
risks involved in refactorings?”, developers reported regression bugs, code churn,
merge conflicts, time taken from other tasks, the difficulty of doing code reviews
after refactoring, and the risk of overengineering. 77% think that refactoring comes
with a risk of introducing subtle bugs and functionality regression [94].

In a separate study of refactoring tool use, Murphy-Hill et al. gave developers
specific examples of when they did not use refactoring tools but could have [130]
and asked why. One reason was that developers started a refactoring manually
but only partway through realized that the change was a refactoring that the IDE
offered—by then, it was too late. Another complaint was that refactoring tools
disrupted their workflow, forcing them to use a tool when they wanted to focus
on code.

3.4.5 Quantitative Assessment of Refactoring Impact

While several prior research efforts have conceptually advanced the benefit of
refactoring through metaphors, few empirical studies assessed refactoring impact
quantitatively. Sullivan et al. first linked software modularity with option the-

Software Evolution 241

ories [175]. A module provides an option to substitute it with a better one
without symmetric obligations, and investing in refactoring activities can be seen
as purchasing options for future adaptability, which will produce benefits when
changes happen and the module can be replaced easily. Baldwin and Clark argued
that the modularization of a system can generate tremendous value in an industry,
given that this strategy creates valuable options for module improvement [10]. Ward
Cunningham drew the comparison between debt and a lack of refactoring: a quick
and dirty implementation leaves technical debt that incur penalties in terms of
increased maintenance costs [31]. While these projects advanced conceptual under-
standing of refactoring impact, they did not quantify the benefits of refactoring.

Kim et al. studied how refactoring impacts inter-module dependencies and
defects using the quantitative analysis of Windows 7 version history [96]. Their
study finds the top 5% of preferentially refactored modules experience higher
reduction in the number of inter-module dependencies and several complexity
measures but increase size more than the bottom 95%. Based on the hypothesis
that measuring the impact of refactoring requires multidimensional assessment,
they investigated the impact of refactoring on various metrics: churn, complexity,
organization and people, cohesiveness of ownership, test coverage, and defects.

MacCormack et al. defined modularity metrics and used these metrics to study
evolution of Mozilla and Linux. They found that the redesign of Mozilla resulted in
an architecture that was significantly more modular than that of its predecessor.
Their study monitored design structure changes in terms of modularity metrics
without identifying the modules where refactoring changes are made [113]. Kataoka
et al. proposed a refactoring evaluation method that compares software before
and after refactoring in terms of coupling metrics [84]. Kolb et al. performed a
case study on the design and implementation of existing software and found that
refactoring improves software with respect to maintainability and reusability [97].
Moser et al. conducted a case study in an industrial, agile environment and found
that refactoring enhances quality- and reusability-related metrics [126]. Tahvildari
et al. suggested using a catalogue of object-oriented metrics to estimate refactoring
impact, including complexitymetrics, coupling metrics, and cohesion metrics [177].

3.4.6 Code Smells Detection

Fowler describes the concept of bad smell as a heuristic for identifying redesign
and refactoring opportunities [159]. Example of bad smells include code clone
and feature envy. Several techniques automatically identify bad smells that indicate
needs of refactorings [186, 187, 190].

Garcia et al. propose several architecture-level bad smells [49]. Moha et
al. present the Decor tool and domain specific language (DSL) to automate the
construction of design defect detection algorithms [125].

Tsantalis and Chatzigeorgiou’s technique identifies extract method refactoring
opportunities using static slicing [186]. Detection of some specific bad smells
such as code duplication has also been extensively researched. Higo et al. propose

242 M. Kim et al.

the Aries tool to identify possible refactoring candidates based on the number of
assigned variables, the number of referred variables, and dispersion in the class
hierarchy [64]. A refactoring can be suggested if the metrics for the clones satisfy
certain predefined values. Koni-N’Sapu provides refactoring suggestions based
on the location of clones with respect to a class hierarchy [100]. Balazinska et
al. suggest clone refactoring opportunities based on the differences between the
cloned methods and the context of attributes, methods, and classes containing
clones [9]. Kataoka et al. use Daikon to infer program invariants at runtime and
suggest candidate refactorings using inferred invariants [83]. If Daikon observes that
one parameter of a method is always constant, it then suggests a remove parameter
refactoring. Breakaway automatically identifies detailed structural correspondences
between two abstract syntax trees to help programmers generalize two pieces of
similar code [30].

Gueheneuc et al. detect inter-class design defects [56], and Marinescu identifies
design flaws using software metrics [116]. Izurieta and Bieman detect accumulation
of non-design-pattern-related code [71]. Guo et al. define domain-specific code
smells [57] and investigate the consequence of technical debt [58]. Tsantalis et
al. rank clones that have been repetitively or simultaneously changed in the past to
suggest refactorings [189]. Wang et al. extract features from code to reflect program
context, code smell, and evolution history and then use a machine learning technique
to rank clones for refactorings [194].

Among the above tools, we briefly present a few concrete examples of four design
smells from Decor [125]. In XERCES, method handleIncludeElement
(XMLAttributes) of the org.apache.xerces.xinclude.XInclude
Handler class is a typical example of Spaghetti Code—classes without
structure that declare long methods without parameters. A good example of
Blob (a large controller class that depends on data stored in surrounding data
classes) is class com.aelitis.azureus.core.dht.control.impl.
DHTControlImpl in AZUREUS. This class declares 54 fields and 80
methods for 2965 lines of code. Functional decomposition may occur if
developers with little knowledge of object orientation implement an object-
oriented system. An interesting example of Functional Decomposition is
class org.argouml.uml.cognitive.critics.Init in ARGOUML,
in particular because the name of the class includes a suspicious term, init,
that suggests a functional programming. The Swiss Army Knife code smell is
a complex class that offers a high number of services (i.e., interfaces). Class
org.apache.xerces.impl.dtd.DTDGrammar is a striking example of
Swiss Army Knife in XERCES, implementing 4 different sets of services with 71
fields and 93 methods for 1146 lines of code.

Clio detects modularity violations based on the assumptions that multiple
types of bad smells are instances of modularity violations that can be uniformly
detected by reasoning about modularity hierarchy in conjunction with change loca-
tions [200]. They define modularity violations as recurring discrepancies between
which modules should change together and which modules actually change together
according to version histories. For example, when code clones change frequently

Software Evolution 243

together, Clio will detect this problem because the co-change pattern deviates from
the designed modular structure. Second, by taking version histories as input, Clio
detects violations that happened most recently and frequently, instead of bad smells
detected in a single version without regard to the program’s evolution context.
Ratzinger et al. also detect bad smells by examining change couplings, but their
approach leaves it to developers to identify design violations from visualization of
change coupling [150].

3.5 Automatic Change Application

Regardless of change types, various approaches are proposed to automatically
suggest program changes or reduce the manual effort of updating software. In this
section, we discuss automated change application techniques including source-to-
source program transformation, programming by demonstration (PbD), simultane-
ous editing, and systematic editing (Fig. 4).

3.5.1 Source Transformation and Languages and Tools

Source transformation tools allow programmers to author their change intent in a
formal syntax and automatically update a program using the change script. Most
source transformation tools automate repetitive and error-prone program updates.
The most ubiquitous and the least sophisticated approach to program transformation
is text substitution. More sophisticated systems use program structure information.
For example, A* [102] and TAWK [54] expose syntax trees and primitive data
structures. Stratego/XT is based on algebraic data types and term pattern matching
[193]. These tools are difficult to use as they require programmers to understand
low-level program representations. TXL attempts to hide these low-level details by
using an extended syntax of the underlying programming language [26]. Bosher-
nitsan et al.’s iXJ enables programmers to perform systematic code transformations
easily by providing a visual language and a tool for describing and prototyping
source transformations. Their user study shows that iXj’s visual language is aligned

Fig. 4 Automated change application and related research topics

244 M. Kim et al.

with programmers’ mental model of code-changing tasks [16]. Coccinelle [144]
allows programmers to safely apply crosscutting updates to Linux device drivers.
We describe two seminal approaches with more details.

Example: TXL TXL is a programming language and rapid prototyping system
specifically designed to support structural source transformation. TXL’s source
transformation paradigm consists of parsing the input text into a structure tree,
transforming the tree to create a new structure tree, and unparsing the new tree
to a new output text. Source text structures to be transformed are described using
an unrestricted ambiguous context-free grammar in extended Backus-Nauer (BNF)
form. Source transformations are described by example, using a set of context-
sensitive structural transformation rules from which an application strategy is
automatically inferred.

Each transformation rule specifies a target type to be transformed, a pattern (an
example of the particular instance of the type that we are interested in replacing), and
a replacement (an example of the result we want when we find such an instance). In
particular, the pattern is an actual source text example expressed in terms of tokens
(terminal symbols) and variables (nonterminal types). When the pattern is matched,
variable names are bound to the corresponding instances of their types in the match.
Transformation rules can be composed like function compositions.

TXL programs normally consist of three parts, a context-free “base” grammar
for the language to be manipulated, a set of context-free grammatical “overrides”
(extensions or changes) to the base grammar, and a rooted set of source transfor-
mation rules to implement transformation of the extensions to the base language, as
shown in Fig. 5. This TXL program overrides the grammar of statements to allow
a new statement form. The transformation rule main transforms the new form of
a statement V+=E to an old statement V:= V+(E). In other words, if there are
two statements foo+=bar and baz+=boo, they will be transformed to foo:=
foo+(bar) and baz:=baz+(boo) at the source code level.

Fig. 5 A simple exemplar
TXL file based on [182]

Software Evolution 245

Selection pattern:
* expression instance of java.util.Vector (:obj).removeElement(:method)(*

expressions(:args))

Match calls to the removeElement() method where the obj expression is a
subtype of java.util.Vector.
Transformation action:
obj.remove(obj.indexOf($args$))

Replace these calls with with calls to the remove() method whose argument is
the index of an element to remove.

Fig. 6 Example iXj transformation

Example: iXj iXj’s pattern language consists of a selection pattern and a trans-
formation action. iXj’s transformation language allows grouping of code elements
using a wild-card symbol *. Figure 6 shows an example selection pattern and a
transformation pattern.

To reduce the burden of learning the iXj pattern language syntax, iXj’s visual
editor scaffolds this process through from-example construction and iterative
refinement; when a programmer selects an example code fragment to change, iXj
automatically generates an initial pattern from the code selection and visualizes
all code fragments matched by the initial pattern. The initial pattern is presented
in a pattern editor, and a programmer can modify it interactively and see the
corresponding matches in the editor. A programmer may edit the transformation
action and see the preview of program updates interactively.

3.5.2 Programming by Demonstration

Programming by demonstration is also called programming by example (PbE).
It is an end-user development technique for teaching a computer or a robot
new behaviors by demonstrating the task to transfer directly instead of manually
programming the task. Approaches were built to generate programs based on the
text-editing actions demonstrated or text change examples provided by users [138,
199, 104, 106]. For instance, TELS records editing actions, such as search and
replace, and generalizes them into a program that transforms input to output [199].
It leverages heuristics to match actions against each other to detect any loop in the
user-demonstrated program.

SMARTedit is a representative early effort of applying PbD to text editing.
It automates repetitive text-editing tasks by learning programs to perform them
using techniques drawn from machine learning [106]. SMARTedit represents a
text-editing program as a series of functions that alter the state of the text editor
(i.e., the contents of the file or the cursor position). Like macro-recording systems,
SMARTedit learns the program by observing a user performing her task. However,
unlike macro-recorders, SMARTedit examines the context in which the user’s
actions are performed and learns programs that work correctly in new contexts.

246 M. Kim et al.

Below, we describe two seminal PBD approaches applied to software engineering
to automate repetitive program changes.

Simultaneous Editing Simultaneous editing repetitively applies source code
changes that are interactively demonstrated by users [124]. When users apply their
edits in one program context, the tool replicates the exact lexical edits to other code
fragments or transforms code accordingly. Linked Editing requires users to first
specify the similar code snippets which they want to modify in the same way [184].
As users interactively edit one of these snippets, Linked Editing simultaneously
applies the identical edits to other snippets.

Systematic Editing Systematic editing is the process of applying similar, but
not necessarily identical, program changes to multiple code locations. High-level
changes are often systematic—consisting of related transformations at a code
level. In particular, crosscutting concerns, refactoring, and API update mentioned
in Sects. 3.3, 3.2, and 3.4 are common kinds of systematic changes, because
making these changes during software evolution involves tedious effort of locating
individual change locations and applying similar but not identical changes. Several
approaches have been proposed to infer the general program transformation from
one or more code change examples provided by developers [118, 119, 161] and
apply the transformation to other program contexts in need of similar changes.
Specifically, LASE requires developers to provide multiple similarly changed code
examples in Java (at least two) [119]. By extracting the commonality between
demonstrated changes and abstracting the changes in terms of identifier usage and
control or data dependency constraints in edit contexts, LASE creates a general
program transformation, which can both detect code locations that should be
changed similarly and suggest customized code changes for each candidate location.
For example, in Fig. 7, LASE can take the change example from Aold to Anew as
input and apply to the code on Bold to generate Bnew. Such change is similar but
customized to the code on the right.

Aold to Anew
public IActionBars getActionBars(){

+ IActionBars actionBars =
fContainer.getActionBars();

- if (fContainer == null) {
+ if (actionBars == null && !
fContainerProvided){

return
Utilities.findActionBars(fComposite
);

}
- return fContainer.getActionBars();
+ return actionBars;

Bold to Bnew
public IServiceLocator
getServiceLocator(){

+ IServiceLocator serviceLocator =
fContainer.getServiceLocator();

- if (fContainer == null) {
+ if (serviceLocator == null && !
fContainerProvided){

return
Utilities.findSite(fComposite);
}

- return fContainer.getServiceLocator();
+ return serviceLocator;

Fig. 7 An example of noncontiguous, abstract edits that can be applied using LASE [119]

Software Evolution 247

4 An Organized Tour of Seminal Papers: Inspecting Changes

Section 4.1 presents the brief history of software inspection and discusses emerging
themes from modern code review practices. Sections 4.1.1–4.1.5 discuss various
methods that help developers better comprehend software changes, including
change decomposition, refactoring reconstruction, conflict and interference detec-
tion, related change search, and inconsistent change detection. Section 4.2 describes
various program differencing techniques that serve as a basis for analyzing software
changes. Section 4.3 describes complementary techniques that record software
changes during programming sessions (Fig. 8).

4.1 Software Inspection and Modern Code Review Practices

To improve software quality during software evolution, developers often perform
code reviews to manually examine software changes. Michael Fagan from IBM first
introduced “code inspections,” in a seminal paper in 1976 [46]. Code inspections are
performed at the end of major software development phases, with the aim of finding
overlooked defects before moving to the next phase. Software artifacts are circulated
a few days in advance and then reviewed and discussed in a series of meetings. The
review meetings include the author of an artifact, other developers to assess the

Fig. 8 Change inspection and related research topics

248 M. Kim et al.

Fig. 9 Modern code review process [14]

artifact, a meeting chair to moderate the discussion, and a secretary to record the
discussion. Over the years, code inspections have been proved a valuable method to
improve software quality. However, the cumbersome and time-consuming nature of
this process hinders its universal adoption in practice [78].

To avoid the inefficiencies in code inspections, most open-source and industrial
projects adopt a lightweight, flexible code review process, which we refer to as
modern code reviews. Figure 9 shows the workflow of modern code reviews. The
author first submits the original source code for review. The reviewers then decide
whether the submitted code meets the quality acceptance criteria. If not, reviewers
can annotate the source code with review comments and send back the reviewed
source code. The author then revises the code to address reviewers’ comments and
send it back for further reviews. This process continues till all reviewers accept the
revised code.

In contrast to formal code inspections (Fagan style), modern code reviews occur
more regularly and informally on program changes. Rigby et al. conducted the first
case study about modern code review practices in an open-source software (OSS),
Apache HTTP server, using archived code review records in email discussions
and version control histories [156]. They described modern code reviews as
“early, frequent reviews of small, independent, complete contributions conducted
asynchronously by a potentially large, but actually small, group of self-selected
experts.” As code reviews are practiced in software projects with different settings,
cultures, and policies, Rigby and Bird further investigated code review practices
using a diverse set of open-source and industrial projects [155]. Despite differences
among projects, they found that many characteristics of modern code reviews have
converged to similar values, indicating general principles of modern code review
practices. We summarize these convergent code review practices as the following.

Software Evolution 249

– Modern code reviews occur early, quickly, and frequently. Traditional code
inspections happen after finishing a major software component and often last
for several weeks. In contrast, modern code reviews happen more frequently and
quickly when software changes are committed. For example, the Apache project
has review intervals between a few hours to a day. Most reviews are picked up
within a few hours among all projects, indicating that reviewers are regularly
watching and performing code reviews [155].

– Modern code reviews often examine small program changes. During code
reviews, the median size of software change varies from 11 to 32 changed lines.
The change size is larger in industrial projects, e.g., 44 lines in Android and 78
lines in Chrome, but still much smaller than code inspections, e.g., 263 lines in
Lucent. Such small changes facilitate developers to constantly review changes
and thus keep up-to-date with the activities of their peers.

– Modern code reviews are conducted by a small group of self-selected reviewers.
In OSS projects, no reviews are assigned, and developers can select the changes
of interest to review. Program changes and review discussions are broadcast to a
large group of stakeholders, but only a small number of developers periodically
participate in code reviews. In industrial projects, reviews are assigned in a mixed
manner—the author adds a group of reviewer candidates and individuals from the
group then select changes based on their interest and expertise. On average, two
reviewers find an optimal number of defects [155].

– Modern code reviews are often tool-based. There is a clear trend toward
utilizing review tools to support review tasks and communication. Back in 2008,
code reviews in OSS projects were often email-based due to a lack of tool
support [156]. In 2013 study, some OSS projects and all industrial projects
that they studied used a review tool [155]. More recently, popular OSS hosting
services such as GitHub and BitBucket have integrated lightweight review tools
to assign reviewers, enter comments, and record discussions. Compared with
email-based reviews and traditional software inspections, tool-based reviews
provide the benefits of traceability.

– Although the initial purpose of code review is to find defects, recent studies
find that the practices and actual outcomes are less about finding defects than
expected. A study of code reviews at Microsoft found that only a small portion
of review comments were related to defects, which were mainly about small,
low-level logical issues [7]. Rather, code review provides a spectrum of benefits
to software teams, such as knowledge transfer, team awareness, and improved
solutions with better practices and readability.

250 M. Kim et al.

Fig. 10 Example of code review using CodeFlow [17]

4.1.1 Commercial Code Review Tools

There is a proliferation of review tools, e.g., Phabricator,1 Gerrit,2 CodeFlow,3

Crucible,4 and Review Board.5 We illustrate CodeFlow, a collaborative code review
tool at Microsoft. Other review tools share similar functionality as CodeFlow.

To create a review task, a developer uploads changed files with a short description
to CodeFlow. Reviewers are then notified via email, and they can examine the
software change in CodeFlow. Figure 10 shows the desktop window of CodeFlow. It
includes a list of changed files under review (A), the reviewers and their status (B),
the highlighted diff in a changed file (C), a summary of all review comments and
their status (D), and the iterations of a review (E). If a reviewer would like to provide
feedback, she can select a change and enter a comment which is overlayed with the
selected change (F). The author and other reviewers can follow up the discussion

1http://phabricator.org.
2http://code.google.com/p/gerrit/.
3http://visualstudioextensions.vlasovstudio.com/2012/01/06/codeflow-code-review-tool-for-
visual-studio/.
4https://www.atlassian.com/software/crucible.
5https://www.reviewboard.org/.

http://phabricator.org
http://code.google.com/p/gerrit/
http://visualstudioextensions.vlasovstudio.com/2012/01/06/codeflow-code-review-tool-for-visual-studio/
http://visualstudioextensions.vlasovstudio.com/2012/01/06/codeflow-code-review-tool-for-visual-studio/
https://www.atlassian.com/software/crucible
https://www.reviewboard.org/

Software Evolution 251

by entering comments in the same thread. Typically, after receiving feedback,
the author may revise the change accordingly and submit the updated change for
additional feedback, which constitutes another review cycle and is termed as an
iteration. In Fig. 10-E, there are five iterations. CodeFlow assigns a status label to
each review comment to keep track of the progress. The initial status is “Active” and
can be changed to “Pending,” “Resolved,” “Won’t Fix,” and “Closed” by anyone.
Once a reviewer is satisfied with the updated changes, she can indicate this by
setting their status to “Signed Off.” After enough reviewers signed off—sign-off
policies vary by team—the author can commit the changes to the source repository.

Commercial code review tools facilitate management of code reviews but do
not provide deep support for change comprehension. According to Bachhelli et
al. [7], understanding program changes and their contexts remains a key challenge
in modern code review. Many interviewees acknowledged that it is difficult to
understand the rationale behind specific changes. All commercial review tools show
the highlighted textual, line-level diff of a changed file. However, when the code
changes are distributed across multiple files, developers find it difficult to inspect
code changes [39]. This obliges reviewers to read changed lines file by file, even
when those cross-file changes are done systematically to address the same issue.

4.1.2 Change Decomposition

Prior studies also observe that developers often package program changes of
multiple tasks to a single code review [85, 130, 63]. Such large, unrelated changes
often lead to difficulty in inspection, since reviewers have to mentally “untangle”
them to figure out which subset addresses which issue. Reviewers indicated that
they can better understand small, cohesive changes rather than large, tangled
ones [156]. For example, a code reviewer commented on Gson revision 1154
saying “I would have preferred to have two different commits: one for adding
the new getFieldNamingPolicy method and another for allowing overriding of
primitives.”6 Among change decomposition techniques [179, 11], we discuss a
representative technique called CLUSTERCHANGES.

CLUSTERCHANGES is a lightweight static analysis technique for decomposing large
changes [11]. The insight is that program changes that address the same issue can
be related via implicit dependency such as def-use relationship. For example, if
a method definition is changed in one location and its call sites are changed in
two other locations, these three changes are likely to be related and should be
reviewed together. Given a code review task, CLUSTERCHANGES first collects the set
of definitions for types, fields, methods, and local variables in the corresponding
project under review. Then CLUSTERCHANGES scans the project for all uses (i.e.,
references to a definition) of the defined code elements. For instance, any occurrence
of a type, field, or method either inside a method or a field initialization is considered

6https://code.google.com/p/google-gson/source/detail?r=1154.

https://code.google.com/p/google-gson/source/detail?r=1154

252 M. Kim et al.

to be a use. Based on the extracted def-use information, CLUSTERCHANGES identifies
three relationships between program changes.

– Def-use relation. If the definition of a method or a field is changed, all the
uses should also be updated. The change in the definition and the corresponding
changes in its references are considered related.

– Use-use relation. If two or more uses of a method or a field defined within the
change set are changed, these changes are considered related.

– Enclosing relation. Program changes in the same method are considered related,
under the assumption that (1) program changes to the same method are often
related and (2) reviewers often inspect methods atomically rather than reviewing
different changed regions in the same method separately.

Given these relations, CLUSTERCHANGES creates a partition over the set of
program changes by computing a transitive closure of related changes. On the other
hand, if a change is not related to any other changes, it will be put into a specific
partition of miscellaneous changes.

4.1.3 Refactoring Aware Code Review

Identifying which refactorings happened between two program versions is an
important research problem, because inferred refactorings can help developers
understand software modifications made by other developers during peer code
reviews. Reconstructed refactorings can be used to update client applications that
are broken due to refactorings in library components. Furthermore, they can be
used to study the effect of refactorings on software quality empirically when the
documentation about past refactorings is unavailable in software project histories.

Refactoring reconstruction techniques compare the old and new program
versions and identify corresponding entities based on their name similarity and
structure similarity [34, 216, 115, 35, 197]. Then based on how basic entities and
relations changed from one version to the next, concrete refactoring type and loca-
tions are inferred. For example, Xing et al.’s approach [201] UMLDiff extracts class
models from two versions of a program, traverses the two models, and identifies
corresponding entities based on their name similarity and structure similarity (i.e.,
similarity in type declaration and uses, field accesses, and method calls). Xing et
al. later presented an extended approach to refactoring reconstruction based on
change-fact queries [202]. They first extract facts regarding design-level entities
and relations from each individual source code version. These facts are then pairwise
compared to determine how the basic entities and relations have changed from
one version to the next. Finally, queries corresponding to well-known refactoring
types are applied to the change-fact database to find concrete refactoring instances.
Among these refactoring reconstruction techniques, we introduce a representative
example of refactoring reconstruction, called RefFinder, in details [147, 92].

Software Evolution 253

Example: RefFinder RefFinder is a logic-query-based approach for inferring vari-
ous types of refactorings in Fowler’s catalog [147]. It first encodes each refactoring
type as a structural constraint on the program before and after the refactoring in a
template logic rule. It then compares the syntax tree of each version to compute
change facts such as added_subtype, at the level of code elements (packages,
types, methods, and fields), structural dependencies (subtyping, overriding, method
calls, and field accesses), and control constructs (while, if statements, and try-
catch blocks). It determines a refactoring inference order to find atomic refactorings
before composite refactorings (Fig. 11).

For example, consider an extract superclass refactoring that extracts common
functionality in different classes into a superclass. It finds each pull-up-method
refactoring and then tests if they combine to an extract superclass refactor-
ing. For each refactoring rule, it converts the antecedent of the rule to a logic
query and invokes the query on the change-fact database. If the query returns
the constant bindings for logic variables, it creates a new logic fact for the
found refactoring instance and writes it to the fact base. For example, by invok-
ing a query pull_up_method(?method, ?class, ?superclass) ∧
added_type(?superclass), it finds a concrete instance of extract superclass
refactoring. Figure 12 illustrates an example refactoring reconstruction process.

This approach has two advantages over other approaches. First, it analyzes the
body of methods including changes to the control structure within method bodies.
Thus, it can handle the detection of refactorings such as replacing conditional code
with polymorphism. Second, it handles composite refactorings, since the approach
reasons about which constituent refactoringsmust be detected first and reason about

Fig. 11 RefFinder infers a replace conditionals with polymorphism refactoring from change facts
deleted_conditional, after_subtype, before_method, added_method and similar_body [92]

254 M. Kim et al.

pull up method You have methods with identical results on subclasses; move them to the superclass.
template deleted method(m1, n, t1) ∧ after subtype(t2, t1) ∧ added method(m1, n, t2) ⇒

pull up method(n, t1, t2)
logic rules pull up method(m1, t1, t2) ∧ added type(t2) ⇒ extract superclass(t1,t2)
code example +public class Customer{

+ chargeFor(start:Date, end:Date) { ... } ...}
-public class RegularCustomer{
+public class RegularCustomer extends Customer{
- chargeFor(start:Date, end:Date){ ... } ...}
+public class PreferredCustomer extends Customer{
- chargeFor(start:Date, end:Date){ ... } // deleted ... }

found pull up method(”chargeFor”, ”RegularCustomer”, ”Customer”)
refactorings pull up method(”chargeFor”, ”PreferredCustomer”, ”Customer”)

extract superclass(”RegularCustomer”, ”Customer”)
extract superclass(”PreferredCustomer”, ”Customer”)

Fig. 12 Reconstruction of Extract Superclass refactoring

how those constituent refactorigs are knit together to detect higher-level, composite
refactorings. It supports 63 out of 72 refactoring types in Fowler’s catalog. As shown
in Fig. 11, RefFinder visualizes the reconstructed refactorings as a list. The panel
on the right summarizes the key details of the selected refactoring and allows the
developer quickly navigate to the associated code fragments.

4.1.4 Change Conflicts, Interference, and Relevance

As development teams become distributed, and the size of the system is often too
large to be handled by a few developers, multiple developers often work on the
same module at the same time. In addition, the market pressure to develop new
features or products makes parallel development no longer an option. A study on a
subsystem of Lucent 5ESS telephone found that 12.5% of all changes are made
by different developers to the same files within 24 h, showing a high degree of
parallel updates [145]. A subsequent study found that even though only 3% of
the changes made within 24 h by different developers physically overlapped each
other’s changes at a textual level, there was a high degree of semantic interference
among parallel changes at a data flow analysis level (about 43% of revisions made
within 1 week). They also discovered a significant correlation between files with a
high degree of parallel development and the number of defects [165].

Most version control systems are only able to detect most simple types of
conflicting changes—changes made on top of other changes [121]. To detect
changes that indirectly conflict with each other, some define the notion of semantic
interference using program slicing on program dependence graphs and integrate
non-interfering versions only if there is no overlap between program slices [66].
As another example, some define semantic interference as the overlap between the
data-dependence-based impact sets of parallel updates [165].

Software Evolution 255

4.1.5 Detecting and Preventing Inconsistent Changes to Clones

Code cloning often requires similar but not identical changes to multiple parts
of the system [88], and cloning is an important source of bugs. In 65% of
the ported code, at least one identifier is renamed, and in 27% cases, at least
one statement is inserted, modified, or deleted [109]. An incorrect adaptation
of ported code often leads to porting errors [77]. Interviews with developers
confirm that inconsistencies in clones are indeed bugs and report that “nearly
every second, unintentional inconsistent changes to clones lead to a fault” [81].
Several techniques find inconsistent changes to similar code fragments by tracking
copy-paste code and by comparing the corresponding code and its surrounding
contexts [109, 72, 153, 77, 76]. Below, we present a representative technique, called
CRITICS.

Example: CRITICS CRITICS allows reviewers to interactively detect inconsistent
changes through template-based code search and anomaly detection [214]. Given
a specified change that a reviewer would like to inspect, CRITICS creates a change
template from the selected change, which serves as the pattern for searching
similar changes. CRITICS includes change context in the template—unchanged,
surrounding program statements that are relevant to the selected change. CRITICS

models the template as Abstract Syntax Tree (AST) edits and allows reviewers to
iteratively customize the template by parameterizing its content and by excluding
certain statements. CRITICS then matches the customized template against the rest
of the codebase to summarize similar changes and locate potential inconsistent or
missing changes. Reviewers can incrementally refine the template and progressively
search for similar changes until they are satisfied with the inspection results. This
interactive feature allows reviewers with little knowledge of a codebase to flexibly
explore the program changes with a desired pattern.

Figure 13 shows a screenshot of CRITICS plugin. CRITICS is integrated with the
Compare View in Eclipse, which displays line-level differences per file (see ① in
Fig. 13). A user can specify a program change she wants to inspect by selecting the
corresponding code region in the Eclipse Compare View. The Diff Template View
(see ② in Fig. 13) visualizes the change template of the selected change in a side-
by-side view. Reviewers can parameterize concrete identifiers and exclude certain
program statements by clicking on the corresponding node in the Diff Template
View. Textual Diff Template View (see ⑥ in Fig. 13) shows the change template
in a unified format. The Matching Result View summarizes the consistent changes
as similar changes (see ③ in Fig. 13) and inconsistent ones as anomalies (see ④ in
Fig. 13).

256 M. Kim et al.

Fig. 13 A screen snapshot of CRITICS’s Eclipse plugin and its features

4.2 Program Differencing

Program differencing serves as a basis for analyzing software changes between
program versions. The program differencing problem is a dual problem of code
matching and is defined as follows:

Suppose that a program P ′ is created by modifying P . Determine the difference
� between P and P ′. For a code fragment c′ ∈ P ′, determine whether c′ ∈ �. If
not, find c′’s corresponding origin c in P.

A code fragment in the new version either contributes to the difference or comes
from the old version. If the code fragment has a corresponding origin in the old
version, it means that it does not contribute to the difference. Thus, finding the delta
between two versions is the same problem as finding corresponding code fragments
between two versions.

Suppose that a programmer inserts if-else statements in the beginning of the
method m_Aand reorders several statements in the method m_Bwithout changing
semantics (see Fig. 14). An intuitively correct matching technique should produce
[(p0–c0), (p1–c2), (p2–c3), (p4–c4), (p4–c6), (p5–c7), (p6–c9), (p7–c8), (p8–c10),
(p9–c11)] and identify that c1 and c5 are added.

Matching code across program versions poses several challenges. First, previous
studies indicate that programmers often disagree about the origin of code elements;
low inter-rater agreement suggests that there may be no ground truth in code
matching [89]. Second, renaming, merging, and splitting of code elements that
are discussed in the context of refactoring reconstruction in Sect. 4.1.3 make
the matching problem nontrivial. Suppose that a file PElmtMatch changed
its name to PMatching; a procedure matchBlck is split into two procedures
matchDBlck and matchCBlck; and a procedure matchAST changed its name to
matchAbstractSyntaxTree. The intuitively correct matching technique should

Software Evolution 257

Fig. 14 Example code
change

Past Current

p0 mA (){ c0 mA (){

p1 if (pred_a) { c1 if (pred_a0) {

p2 foo() c2 if (pred_a) {

p3 } c3 foo()

p4 } c4 }

p5 mB (b) { c5 }

p6 a := 1 c6 }

p7 b := b+1 c7 mB (b) {

p8 fun (a,b) c8 b := b+1

p9 } c9 a := 1

c10 fun (a,b)

c11 }

produce [(PElmtMatch, PMatching), (matchBlck, matchDBlck), (matchBlck,
matchCBlck), and (matchAST, matchAbstractSyntaxTree)], while simple
name-based matching will consider PMatching, matchDBlck, matchCBlck, and
matchAbstract SyntaxTree added and consider PElmtMatch, matchBlck, and
matchAST deleted.

Existing code-matching techniques usually employ syntactic and textual sim-
ilarity measures to match code. They can be characterized by the choices of
(1) an underlying program representation, (2) matching granularity, (3) matching
multiplicity, and (4) matching heuristics. Below, we categorize programdifferencing
techniques with respect to internal program representations, and we discuss seminal
papers for each representation.

4.2.1 String and Lexical Matching

When a program is represented as a string, the best match between two strings
is computed by finding the longest common subsequence (LCS) [5]. The LCS
problem is built on the assumption that (1) available operations are addition and
deletion and (2) matched pairs cannot cross one another. Thus, the longest common
subsequence does not necessarily include all possible matches when available edit
operations include copy, paste, and move. Tichy’s bdiff [183] extended the LCS
problem by relaxing the two assumptions above: permitting crossing block moves
and not requiring one-to-one correspondence.

The line-level LCS implementation, diff [69], is fast, reliable, and readily
available. Thus, it has served as a basis for popular version control systems such

258 M. Kim et al.

as CVS. Many evolution analyses are based on diff because they use version control
system data as input. For example, identification of fix-inducing code snippets is
based on line tracking (file name:: function name:: line number) backward from the
moment that a bug is fixed [169].

The longest common subsequence algorithm is a dynamic programming algo-
rithm with O(mn) in time and space, when m is the line size of the past program
and the n is the line size of the current program. The goal of LCS-based diff is to
report the minimum number of line changes necessary to convert one file to another.
It consists of two phases: (1) computing the length of LCS and (2) reading out the
longest common subsequence using a backtrace algorithm. Applying LCS to the
example in Fig. 14 will produce the line matching of [(p0–c0), (p1–c1), (p2–c3),
(p3–c5), (p4–c6), (p5–c7), (p6–c9), (p8–c10), (p9–c11)]. Due to the assumption of
no crossing matches, LCS does not find (p7–c8). In addition, because the matching
is done at the line level and LCS does not consider the syntactic structure of code, it
produces a line-level match such as (p3–c5) that do not observe the matching block
parentheses rule.

4.2.2 Syntax Tree Matching

For software version merging, Yang [206] developed an AST differencing algo-
rithm. Given a pair of functions (fT , fR), the algorithm creates two abstract syntax
trees T and R and attempts to match the two tree roots. Once the two roots
match, the algorithm aligns T ’s subtrees t1, t2, . . . , ti and R’s subtrees r1, r2, . . . rj
using the LCS algorithm and maps subtrees recursively. This type of tree matching
respects the parent-child relationship as well as the order between sibling nodes
but is very sensitive to changes in nested blocks and control structures because
tree roots must be matched for every level. Because the algorithm respects parent-
child relationships when matching code, all matches observe the syntactic boundary
of code and the matching block parentheses rule. Similar to LCS, because Yang’s
algorithm aligns subtrees at the current level by LCS, it cannot find crossing matches
caused by code reordering. Furthermore, the algorithm is very sensitive to tree
level changes or insertion of new control structures in the middle, because Yang’s
algorithm performs top-down AST matching.

As another example, Change Distiller [48] uses an improved version of Chawathe
et al.’s hierarchically structured data comparison algorithm [23]. Change Distiller
takes two abstract syntax trees as input and computes basic tree edit operations such
as insert, delete, move, or update of tree nodes. It uses bi-gram string similarity
to match source code statements such as method invocations and uses subtree
similarity to match source code structures such as if statements. After identifying
tree edit operations, Change Distiller maps each tree edit to an atomic AST-level
change type.

Software Evolution 259

4.2.3 Control Flow Graph Matching

Laski and Szermer [105] first developed an algorithm that computes one-to-one
correspondences between CFG nodes in two programs. This algorithm reduces
a CFG to a series of single-entry, single-exit subgraphs called hammocks and
matches a sequence of hammock nodes using a depth first search (DFS). Once a
pair of corresponding hammock nodes is found, the hammock nodes are recursively
expanded in order to find correspondences within the matched hammocks.

Jdiff [3] extends Laski and Szermer’s (LS) algorithm to compare Java programs
based on an enhanced control flow graph (ECFG). Jdiff is similar to the LS
algorithm in the sense that hammocks are recursively expanded and compared but is
different in three ways: First, while the LS algorithm compares hammock nodes
by the name of a start node in the hammock, Jdiff checks whether the ratio of
unchanged-matched pairs in the hammock is greater than a chosen threshold in
order to allow for flexible matches. Second, while the LS algorithm uses DFS to
match hammock nodes, Jdiff only uses DFS up to a certain look-ahead depth to
improve its performance. Third, while the LS algorithm requires hammock node
matches at the same nested level, Jdiff can match hammock nodes at a different
nested level; thus, Jdiff is more robust to addition of while loops or if statements at
the beginning of a code segment. Jdiff has been used for regression test selection
[141] and dynamic change impact analysis [4]. Figure 15 shows the code example
and corresponding extended control flow graph representations in Java. Because
their representation and matching algorithm is designed to account for dynamic
dispatching and exception handling, it can detect changes in the method body of m3
(A a), even though it did not have any textual edits: (1) a.m1()calls the method
definition B.m()for the receiver object of type B and (2) when the exception type
E3is thrown, it is caught by the catch block E1instead of the catch block E2.

CFG-like representations are commonly used in regression test selection
research. Rothermel and Harrold [162] traverse two CFGs in parallel and identify a
node with unmatched edges, which indicates changes in code. In other words, their
algorithm s parallel traversal as soon as it detects changes in a graph structure; thus,
this algorithm does not produce deep structural matches between CFGs. However,
traversing graphs in parallel is still sufficient for the regression testing problem
because it conservatively identifies affected test cases. In practice, regression
test selection algorithms [61, 141] require that syntactically changed classes and
interfaces are given as input to the CFG matching algorithm.

4.2.4 Program Dependence Graph Matching

There are several program differencing algorithms based on a program dependence
graph [65, 15, 73].

Horwitz [65] presents a semantic differencing algorithm that operates on a pro-
gram representation graph (PRG) which combines features of program dependence
graphs and static single assignment forms. In her definition, semantic equivalence
between two programs P1 and P2 means that, for all states σ such that P1 and P2

260 M. Kim et al.

Fig. 15 JDiff change example and CFG representations [4]

halt, the sequence of values produced at c1 is identical to the sequence of values
produced at c2 where c1 and c2 are corresponding locations. Horwitz uses Yang’s
algorithm [207] to partition the vertices into a group of semantically equivalent
vertices based on three properties, (1) the equivalence of their operators, (2) the
equivalence of their inputs, and (3) the equivalence of the predicates controlling their
evaluation. The partitioning algorithm starts with an initial partition based on the

Software Evolution 261

operators used in the vertices. Then by following flow dependence edges, it refines
the initial partition if the successors of the same group are not in the same group.
Similarly, it further refines the partition by following control dependence edges.
If two vertices in the same partition are textually different, they are considered to
have only a textual change. If two vertices are in different partitions, they have a
semantic change. After the partitioning phase, the algorithm finds correspondences
between P1’s vertices and P2’s vertices that minimize the number of semantically
or textually changed components of P2. In general, PDG-based algorithms are not
applicable to popular modern program languages because they can run only on
a limited subset of C-like languages without global variables, pointers, arrays, or
procedures.

4.2.5 Related Topics: Model Differencing and Clone Detection

A clone detector is simply an implementation of an arbitrary equivalence function.
The equivalence function defined by each clone detector depends on a program
representation and a comparison algorithm. Most clone detectors are heavily
dependent on (1) hash functions to improve performance, (2) parametrization to
allow flexible matches, and (3) thresholds to remove spurious matches. A clone
detector can be considered as a many-to-many matcher based solely on content
similarity heuristics.

In addition to these, several differencing algorithms compare model
elements [201, 139, 174, 38]. For example, UMLdiff [201] matches methods
and classes between two program versions based on their name. However, these
techniques assume that no code elements share the same name in a program and
thus use name similarity to produce one-to-one code element matches. Some
have developed a general, meta-model-based, configurable program differencing
framework [164, 40]. For example, SiDiff [164, 185] allows tool developers to
configure various matching algorithms such as identity-based matching, structure-
based matching, and signature-based matching by defining how different types of
elements need to be compared and by defining the weights for computing an overall
similarity measure.

4.3 Recording Changes: Edit Capture and Replay

Recorded change operations can be used to help programmers reason about
software changes. Several editors or integrated development environment (IDE)
extensions capture and replay keystrokes, editing operations, and high-level update
commands to use the recorded change information for intelligent version merging,
studies of programmers’ activities, and automatic updates of client applications.
When recorded change operations are used for helping programmers reason about
software changes, this approach’s limitation depends on the granularity of recorded
changes. If an editor records only keystrokes and basic edit operations such as

262 M. Kim et al.

cut and paste, it is a programmer’s responsibility to raise the abstraction level by
grouping keystrokes. If an IDE records only high-level change commands such as
refactorings, programmers cannot retrieve a complete change history. In general,
capturing change operations to help programmers reason about software change is
impractical as this approach constrains programmers to use a particular IDE. Below,
we discuss a few examples of recording change operations from IDEs:

Spyware is a representative example in this line of work [157]. It is a smalltalk
IDE extension to capture AST-level change operations (creation, addition, removal,
and property change of an AST node) as well as refactorings. It captures refactorings
during development sessions in an IDE rather than trying to infer refactorings
from two program versions. Spyware is used to study when and how programmers
perform refactorings, but such edit-capture-replay could be used for performing
refactoring-aware version merging [37] or updating client applications due to API
evolution [62].

5 An Organized Tour of Seminal Papers: Change Validation

After making software changes, developers must validate the correctness of updated
software. Validation and verification is a vast area of research. In this section, we
focus on techniques that aim to identify faults introduced due to software changes.
As chapter “Software Testing” discusses the history and seminal work on regression
testing in details, we refer the interested readers to that chapter instead. Section 5.1
discusses change impact analysis, which aims to determine the impact of source
code edits on programs under test. Section 5.2 discusses how to localize program
changes responsible for test failures. Section 5.3 discusses the techniques that
are specifically designed to validate refactoring edits under the assumption that
software’s external behavior should not change after refactoring (Fig. 16).

Fig. 16 Change validation and related research topics

Software Evolution 263

5.1 Change Impact Analysis

Change impact analysis consists of a collection of techniques for determining the
effects of source code modifications and can improve programmer productivity
by (a) allowing programmers to experiment with different edits, observe the code
fragments that they affect, and use this information to determine which edit to select
and/or how to augment test suites; (b) reducing the amount of time and effort needed
in running regression tests, by determining that some tests are guaranteed not to be
affected by a given set of changes; and (c) reducing the amount of time and effort
spent in debugging, by determining a safe approximation of the changes responsible
for a given test’s failure.

In this section, we discuss the seminal change impact analysis work, called
Chianti, that serves both the purposes of affected test identification and isolation
of failure-inducing deltas. It uses a two-phase approach in Fig. 17 [154].

In the first phase, to identify which test cases a developer must rerun on the new
version to ensure that all potential regression faults are identified, Chianti takes the
old and new program versions Po and Pn and an existing test suite T as inputs
and identifies a set of atomic program changes at the level of methods, fields, and
subtyping relationships. It then computes the profile of the test suite T onPo in terms
of dynamic call graphs and selects T ′ ⊂ T that guarantees the same regression fault
revealing capability between T and T ′.

In the second phase, Chianti then first runs the selected test cases T ′ from the
first phase on the new program version Pn and computes the profile of T ′ on Pn in
terms of dynamic call graphs. It then uses both the atomic change set information
together with dynamic call graphs to identify which subset of the delta between Po

and Pn led to the behavior differences for each failed test on Pn.
To represent atomic changes, Chianti compares the syntax tree of the old and

new program versions and decomposes the edits into atomic changes at a method
and field level. Changes are then categorized as added classes (AC), deleted classes
(DC), added methods (AM), deleted methods (DM), changed methods (CM), added

Program Differencing Tool
=> Identify Changes
between Po and Pn

Profiling Tool
=> Run T on Po

Affected Test Selection

Pn Po T={t1,t2,...tn}

Delta (Diagnose Entities) Dynamic Call Graph

T' T

Program Differencing Tool
=> Identify Changes
between Po and Pn

Profiling Tool
=> Run T' on Pn

Isolating Failure-Inducing Change

Pn

Delta Dynamic Call Graph

D' Delta

Affected Test Selection

T' T

Fig. 17 Chianti change impact analysis: identifying affected tests (left) and identifying affecting
change (right) [154]

264 M. Kim et al.

fields (AF), deleted fields (DF), and lookup (i.e., dynamic dispatch) changes (LC).
The LC atomic change category models changes to the dynamic dispatch behavior
of instance methods. In particular, an LC change LC(Y, X.m())models the fact that
a call to method X.m()on an object of type Yresults in the selection of a different
method call target.

For example, Fig. 18 shows a software change example and corresponding lists
of atomic changes inferred from AST-level comparison. An arrow from an atomic
change A1 to an atomic change A2 indicates that A2 is dependent on A1. For
example, the addition of the call B.bar()in method B.foo()is the method body
change CM(B.foo())represented as 8©. This change 8requires the declaration of
method B.bar()to exist first, i.e., AM(B.bar())represented as 6©. This dependence
is represented as an arrow from 6© to 8©.

Phase I reports affected tests—a subset of regression tests relevant to edits. It
identifies a test if its dynamic call graph on the old version contains a node that
corresponds to a changed method (CM) or deleted method (DM) or if the call graph
contains an edge that corresponds to a lookup change (LC). Figure 18 also shows
the dynamic call graph of each test for the old version (left) and the new version
(right). Using the call graphs on the left, it is easy to see that (a) test1 is not
affected; (b) test2 is affected because its call graph contains a node for B.foo() ,
which corresponds to 8©; and (c) test3 is affected because its call graph contains an
edge corresponding to a dispatch to method A.foo()on an object of type C, which
corresponds to 4©.

Phase II then reports affecting changes—a subset of changes relevant to the
execution of affected tests in the new version. For example, we can compute the
affecting changes for test2 as follows. The call graph for test2 in the edited
version of the program contains methods B.foo() and B.bar(). These nodes
correspond to 8© and 9©, respectively. Atomic change 8© requires 6© and 9© requires
6© and 7©. Therefore, the atomic changes affecting test2 are 6©, 7©, 8©, and 9©.
Informally, this means that we can automatically determine that test2 is affected
by the addition of field B.y, the addition of method B.bar(), and the change to
method B.foo(), but not on any of the other source code changes.

5.2 Debugging Changes

The problem of simplifying and isolating failure-inducing input is a long-standing
problem in software engineering. Delta Debugging (DD) addresses this problem
by repetitively running a program with different sub-configurations (subsets) of
the input to systematically isolate failure-inducing inputs [211, 212]. DD splits
the original input into two halves using a binary search-like strategy and reruns
them. DD requires a test oracle function test (c) that takes an input configuration
c and checks whether running a program with c leads to a failure. If one of the
two halves fails, DD recursively applies the same procedure for only that failure-
inducing input configuration. On the other hand, if both halves pass, DD tries

Software Evolution 265

class A {
public A(){ }
public void foo(){ }
public int x;

}
class B extends A {

public B(){ }
public void foo(){ B.bar(); }
public static void bar(){ y = 17; }
public static int y;

}
class C extends A {

public C(){ }
public void foo(){ x = 18; }
public void baz(){ z = 19; }
public int z;

}

class Tests {
public static void test1(){

A a = new A();
a.foo();

}
public static void test2(){

A a = new B();
a.foo();

}
public static void test3(){

A a = new C();
a.foo();

}
}

(a)
}

(b)

(c)

AF
A.x

1
CM

C.foo()

2
LC

C,A.foo()

4
AM

B.bar()

6
CM

B.foo()

8
AF
C.z

10
CM

C.baz()

12

AM
C.foo()

3
LC

C,C.foo()

5
AF
B.y

7
CM

B.bar()

9
AM

C.baz()

11
LC

C,C.baz()

13

Tests.test1()

A.A() A.foo()

<A,A.foo()> Tests.test1()

A.A() A.foo()

<A,A.foo()>

Tests.test2()

B.B() B.foo()

<B,A.foo()>

A.A()

Tests.test2()

B.B() B.foo()

<B,A.foo()>

A.A() B.bar()

Tests.test3()

C.C() A.foo()

<C,A.foo()>

A.A()

Tests.test3()

C.C() A.foo()

<C,A.foo()>

A.A()

Fig. 18 Chianti change impact analysis. (a) Example program with three tests. Added code
fragments are shown in boxes. (b) Atomic changes for the example program, with their inter-
dependencies. (c) Call graphs for the tests before and after the changes were applied

266 M. Kim et al.

different sub-configurations by mixing fine-grained sub-configurations with larger
sub-configurations (computed as the complement from the current configuration).

Under the assumption that failure is monotone, where C is a super set of all
configurations, if a larger configuration c is successful, then any of its smaller sub-
configurations c′ does not fail, that is, ∀c ⊂ C (test (c) = ✓ → ∀c′ ⊂ c (test (c′) �=
✗)), DD returns a minimal failure-inducing configuration.

This idea of Delta Debugging was applied to isolate failure-inducing changes.
It considers all line-level changes between the old and new program version as the
candidate set without considering compilation dependences among those changes.
In Zeller’s seminal paper, “yesterday, my program worked, but today, it does
not, why?” Zeller demonstrates the application of DD to isolate program edits
responsible for regression failures [211]. DDD 3.1.2, released in December, 1998,
exhibited a nasty behavioral change: When invoked with the name of a non-existing
file, DDD 3.1.2 dumped core, while its predecessor DDD 3.1.1 simply gave an error
message. The DDD configuration management archive lists 116 logical changes
between the 3.1.1 and 3.1.2 releases. These changes were split into 344 textual
changes to the DDD source. After only 12 test runs and 58 min, the failure-inducing
change was found:

diff -r1.30 -r1.30.4.1 ddd/gdbinit.C
295,296c296
<
< --- >
string classpath =
getenv("CLASSPATH") != 0 ? getenv("CLASSPATH") : ".";
string classpath = source view->class path();

When called with an argument that is not a file name, DDD 3.1.1 checks whether
it is a Java class; so DDD consults its environment for the class lookup path. As an
“improvement,”DDD 3.1.2 uses a dedicatedmethod for this purpose.Unfortunately,
the source view pointer used is initialized only later, resulting in a core dump.

Spectra-Based Fault Localization Spectrum-based fault localization techniques
such as Tarantula [80] statistically compute suspiciousness scores for statements
based on execution traces of both passed and failed test cases and rank potential
faulty statements based on the derived suspiciousness scores. Researchers have
also introduced more suspiciousness computation measures to the realm of fault
localization for localizing faulty statements [132, 112] and also developed various
automated tool sets which embodies different spectrum-based fault localization
techniques [74]. However, such spectrum-based fault localization techniques are
not scalable to large evolving software systems, as they compute spectra on all
statements in each program version and do not leverage information about program
edits between the old and new versions.

To address this problem, FaultTracer [213] combines Chianti-style change
impact analysis and Tarantula-style fault localization. To present a ranked list of

Software Evolution 267

potential failure-inducing edits, FaultTracer applies a set of spectrum-based ranking
techniques to the affecting changes determined by Chianti-style change impact
analysis. It uses a new enhanced call graph representation to measure test spectrum
information directly for field-level edits and to improve upon the existing Chianti
algorithm. The experimental results show that FaultTracer outperforms Chianti in
selecting affected tests (slightly better) as well as in determining affecting changes
(with an improvement of approximately 20%). By ranking the affecting changes
using spectrum-based profile, it places a real regression fault within a few atomic
changes, significantly reducing developers’ effort in inspecting potential failure-
inducing changes.

5.3 Refactoring Validation

Unlike other types of changes, refactoring validation is a special category of change
validation. By definition, refactoringmust guarantee behavior preservation, and thus
the old version’s behavior could be compared against the new version’s behavior for
behavior preservation. Regression testing is the most used strategy for checking
refactoring correctness. However, a recent study finds that test suites are often
inadequate [149] and developers may hesitate to initiate or perform refactoring tasks
due to inadequate test coverage [94]. Soares et al. [171] design and implement
SafeRefactor that uses randomly generated test suites for detecting refactoring
anomalies.

Formal verification is an alternative for avoiding refactoring anomalies [122].
Some propose rules for guaranteeing semantic preservation [28], use graph rewriting
for specifying refactorings [123], or present a collection of refactoring specifi-
cations, which guarantee the correctness by construction [142]. However, these
approaches focus on improving the correctness of automated refactoring through
formal specifications only. Assuming that developers may apply refactoring manu-
ally rather, Schaeffer et al. validate refactoring edits by comparing data and control
dependences between two program versions [163].

RefDistiller is a static analysis approach [2, 1] to support the inspection of man-
ual refactorings. It combines two techniques. First, it applies predefined templates
to identify potential missed edits during manual refactoring. Second, it leverages an
automated refactoring engine to identify extra edits that might be incorrect, helping
to determine the root cause of detected refactoring anomalies. GhostFactor [50]
checks the correctness of manual refactoring, similar to RefDistiller. Another
approach by Ge and Murphy-Hill [42] helps reviewers by identifying applied
refactorings and letting developers examine them in isolation by separating pure
refactorings.

268 M. Kim et al.

6 Future Directions and Open Problems

Software maintenance is challenging and time-consuming. Albeit various research
and existing tool support, the global cost of debugging software has risen up to $312
billion annually [20]. The cost of software maintenance is rising dramatically and
has been estimated as more than 90% of the total cost for software [43]. Software
evolution research still has a long future ahead, because there are still challenges
and problems that cost developers a lot of time and manual effort. In this section,
we highlight some key issues in change comprehension and suggestion.

6.1 Change Comprehension

Understanding software changes made by other people is a difficult task, because
it requires not only the domain knowledge of the software under maintenance
but also the comprehension of change intent and the interpretation of mappings
between the program semantics of applied changes and those intent. Existing change
comprehension tools discussed in Sect. 4.1 and program differencing tools discussed
in Sect. 4.2 mainly present the textual or syntactical differences between the before
and after versions of software changes. Current large-scale empirical studies on
code changes discussed in Sects. 3.1–3.4 also mainly focus on textual or syntactical
notion of software changes. However, there is no tool support to automatically
summarize the semantics of applied changes or further infer developers’ intent
behind the changes.

The new advanced change comprehension tools must assist software profession-
als in two aspects. First, by summarizing software changes with a natural language
description, these tools must produce more meaningful commit messages when
developers check in their program changes to software version control systems
(e.g., SVN, Git) to facilitate other people (e.g., colleagues and researchers) to
mine, comprehend, and analyze applied changes more precisely [63]. Second,
the generated change summary must provide a second opinion to developers of
the changes and enable them to easily check whether the summarized change
description matches their actual intent. If there is a mismatch, developers should
carefully examine the applied changes and decide whether the changes reflect or
realize their original intent.

To design and implement such advanced change comprehension tools,
researchers must address several challenges.

1. How should we correlate changes applied in source code, configuration files, and
databases to present all relevant changes and their relationships as a whole? For
instance, how can we explain why a configuration file is changed together with a
function’s code body? How are the changes in a database schema correspond to
source code changes?

Software Evolution 269

2. How should we map concrete code changes or abstract change patterns to natural
language descriptions? For instance, when complicated code changes are applied
to improve a program’s performance, how can we detect or reveal that intent?
How should we differentiate between different types of changes when inferring
change intent or producing natural language descriptions accordingly?

3. When developers apply multiple kinds of changes together, such as refactoring
some code to facilitate feature addition, we can we identify the boundary
between the different types of changes? How can we summarize the changes in
a meaningful way so that both types of changes are identified and the connection
between them is characterized clearly?

To solve these challenges, we may need to invent new program analysis techniques
to correlate changes, new change interpretation approaches to characterize different
types of changes, and new text mining and natural language processing techniques
to map changes to natural language descriptions.

6.2 Change Suggestion

Compared with understanding software changes, applying changes is even more
challenging and can cause serious problems if changes are wrongly applied.
Empirical studies showed that 15–70% of the bug fixes applied during software
maintenance were incorrect in their first release [167, 209], which indicates a
desperate need for more sophisticated change suggestion tools. Below we discuss
some of the limitations of existing automatic tool support and also suggest potential
future directions.

Corrective Change Suggestion Although various bug fix and program repair tools
discussed in Sect. 3.1 detect different kinds of bugs or even suggest bug fixes, the
suggested fixes are usually relatively simple. They may focus on single-line bug
fixes, multiple if-condition updates, missing APIs to invoke, or similar code changes
that are likely to be applied to similar code snippets. However, no existing approach
can suggest a whole missing if-statement or while-loop, neither can they suggest
bug fixes that require declaring a new method and inserting the invocation to the
new method in appropriate code locations.

Adaptive Change Suggestion Existing adaptive change support tools discussed in
Sect. 3.2 allow developers to migrate programs between specific previously known
platforms (e.g., desktop and cloud). However, it is not easy to extend these tools
when a new platform becomes available and people need to migrate programs from
existing platforms to the new one. Although cross-platform software development
tools can significantly reduce the necessity of platform-to-platformmigration tools,
these tools are limited to the platforms for which they are originally built. When a
new platform becomes available, these tools will undergo significant modifications
to support the new platform. In the future, we need extensible program migration

270 M. Kim et al.

frameworks, which will automatically infer program migration transformations
from the concrete migration changes manually applied by developers and then
apply the inferred transformations to automate other migration tasks for different
target platforms.With such frameworks, developers will not need to manually apply
repetitive migration changes.

Perfective Change Suggestion There are some programming paradigms devel-
oped (e.g., AOP and FOP discussed in Sect. 3.3), which facilitate developers to apply
perfective changes to enhance or extend any existing software. However, there is no
tool support to automatically suggest what perfective changes to apply and where
to apply those changes. The main challenge of creating such tools is that unlike
other types of changes, perfective changes usually aim to introduce new features
instead of modifying existing features. Without any hint provided by developers,
it is almost impossible for any tool to predict what new features to add to the
software. However, when developers know what new features they want to add but
do not know how to implement those features, some advanced tools can be helpful
by automatically searching for relevant open-source projects, identifying relevant
code implementation for the queried features, or even providing customized change
suggestion to implement the features and to integrate the features into existing
software.

Preventive Change Suggestion Although various refactoring tools discussed in
Sect. 3.4 can automatically refactor code, all the supported refactorings are limited
to predefined behavior-preserving program transformations. It is not easy to extend
existing refactoring tools to automate new refactorings, especially when the program
transformation involves modifications of multiple software entities (i.e., classes,
methods, and fields). Some future tools should be designed and implemented to
facilitate the extensions of refactoring capabilities. There are also some refactoring
tools that suggest refactoring opportunities based on code smells. For instance,
if there are many code clones in a codebase, existing tools can suggest a clone
removal refactoring to reduce duplicated code. In reality, nevertheless, most of the
time developers apply refactorings only when they want to apply bug fixes or add
new features, which means that refactorings are more likely to be motivated by other
kinds of changes instead of code smells and change history [168]. In the future, with
the better change comprehension tools mentioned above, we may be able to identify
the trends of developers’ change intent in the past and observe how refactoringswere
applied in combination with other types of changes. Furthermore, with the observed
trends, new tools must be built to predict developers’ change intent in future and
then suggest refactorings accordingly to prepare for the upcoming changes.

6.3 Change Validation

In terms of change validation discussed in Sect. 5, there is disproportionately more
work being done in the area of validating refactoring (i.e., preventative changes),

Software Evolution 271

compared to other types of changes such as adaptive and perfective changes.
Similarly, in the absence of adequate existing tests which helped to discover defects
in the first place, it is not easy to validate whether corrective changes are applied
correctly to fix the defects.

The reason why is that, with the exception of refactoring that has a canonical,
straightforward definition of behavior preserving modifications, when it comes to
other types of software changes, it is difficult to define the updated semantics of
software systems. For example, when a developer adds a new feature, how can we
know the desired semantics of the updated software?

This problem naturally brings up the needs of having the correct specifications
of updated software and having easier means to write such specifications in the
context of software changes. Therefore, new tools must be built to guide developers
in writing software specifications for the changed parts of the systems. In particular,
we see a new opportunity for tool support suggests the template for updated
specifications by recognizing the type and pattern of program changes to guide
developers in writing updated specifications—Are there common specification
patterns for each common type of software changes? Can we then suggest which
specifications to write based on common types of program modifications such as
API evolution? Such tool support must not require developers to write specifications
from scratch but rather guide developers on which specific parts of software require
new, updated specifications, which parts of software may need additional tests,
and how to leverage those written specifications effectively to guide the remaining
areas for writing better specifications. We envision that, with such tool support for
reducing the effort of writing specifications for updated software, researchers can
build change validation techniques that actively leverage those specifications. Such
effort will contribute to expansion of change-type-specific debugging and testing
technologies.

Appendix

The following text box shows selected, recommended readings for understanding
the area of software evolution.

272 M. Kim et al.

Key References

Apiwattanapong, T., Orso, A., Harrold, M.J.: A differencing algorithm for object-oriented
programs. In: ASE ‘04: Proceedings of the 19th IEEE International Conference on Automated
Software Engineering, pp. 2–13. IEEE Computer Society, Washington (2004)

Bacchelli, A., Bird, C.: Expectations, outcomes, and challenges of modern code review. In:
Proceedings of the 2013 International Conference on Software Engineering, pp. 712–721. IEEE
Press, Piscataway (2013)

Cordy, J.R.: The txl source transformation language. Sci. Comput. Program. 61(3), 190–210
(2006)

Engler, D.R., Chen, D.Y., Chou, A.: Bugs as inconsistent behavior: a general approach to inferring
errors in systems code. In: Symposium on Operating Systems Principles, pp. 57–72 (2001)

Henkel, J., Diwan, A.: Catchup!: capturing and replaying refactorings to support API evolution. In:
ICSE ‘05: Proceedings of the 27th International Conference on Software Engineering, pp. 274–
283. ACM, New York (2005)

Kim, M., Sazawal, V., Notkin, D., Murphy, G.: An empirical study of code clone genealogies.
In: Proceedings of the 10th European Software Engineering Conference Held Jointly with
13th ACM SIGSOFT International Symposium on Foundations of Software Engineering,
ESEC/FSE-13, pp. 187–196. ACM, New York (2005)

Kim, M., Zimmermann, T., Nagappan, N.: A field study of refactoring challenges and benefits.
In: Proceedings of the ACM SIGSOFT 20th International Symposium on the Foundations of
Software Engineering, FSE ‘12, pp. 50:1–50:11. ACM, New York (2012)

Prete, K., Rachatasumrit, N., Sudan, N., Kim, M.: Template-based reconstruction of complex
refactorings. In: 2010 IEEE International Conference on Software Maintenance (ICSM), pp. 1–
10. IEEE Press, Piscataway (2010)

Ren, X., Shah, F., Tip, F., Ryder, B.G., Chesley, O.: Chianti: a tool for change impact analysis of
java programs. In: OOPSLA ‘04: Proceedings of the 19th annual ACM SIGPLAN Conference
on Object-Oriented Programming, Systems, Languages, and Applications, pp. 432–448. ACM,
New York (2004)

Tarr, P., Ossher, H., Harrison, W., Sutton, JSM.: N degrees of separation: multi-dimensional
separation of concerns. In: ICSE ‘99: Proceedings of the 21st International Conference on
Software Engineering, pp. 107–119. IEEE Computer Society Press, Los Alamitos (1999)

Weimer, W., Nguyen, T., Le Goues, C., Forrest, S.: Automatically finding patches using genetic
programming. In: Proceedings of the 31st International Conference on Software Engineering,
ICSE ‘09, pp. 364–374. IEEE Computer Society, Washington (2009)

Zeller, A.: Yesterday, my program worked. today, it does not. Why? In: ESEC/FSE-7: Proceedings
of the 7th European Software Engineering Conference Held Jointly with the 7th ACM
SIGSOFT International Symposium on Foundations of Software Engineering, pp. 253–267.
Springer, London (1999)

Software Evolution 273

References

1. Alves, E.L.G., Song, M., Kim, M.: Refdistiller: a refactoring aware code review tool
for inspecting manual refactoring edits. In: Proceedings of the 22Nd ACM SIGSOFT
International Symposium on Foundations of Software Engineering, FSE 2014, pp. 751–754.
ACM, New York (2014)

2. Alves, E.L.G., Song, M., Massoni, T., Machado, P.D.L., Kim, M.: Refactoring inspection
support for manual refactoring edits. IEEE Trans. Softw. Eng. PP(99), 1–1 (2017)

3. Apiwattanapong, T., Orso, A., Harrold, M.J.: A differencing algorithm for object-oriented
programs. In: ASE ‘04: Proceedings of the 19th IEEE International Conference on Automated
Software Engineering, pp. 2–13. IEEE Computer Society, Washington (2004)

4. Apiwattanapong, T., Orso, A., Harrold, M.J.: Efficient and precise dynamic impact analysis
using execute-after sequences. In: ICSE ‘05: Proceedings of the 27th International Conference
on Software Engineering, pp. 432–441. ACM, New York (2005)

5. Apostolico, A., Galil, Z. (eds.): Pattern Matching Algorithms. Oxford University Press,
Oxford (1997). Program differencing LCS

6. ASM. http://asm.ow2.org
7. Bacchelli, A., Bird, C.: Expectations, outcomes, and challenges of modern code review.

In: Proceedings of the 2013 International Conference on Software Engineering, pp. 712–721.
IEEE Press, Piscataway (2013)

8. Balazinska, M., Merlo, E., Dagenais, M., Lague, B., Kontogiannis, K.: Partial redesign
of java software systems based on clone analysis. In: WCRE ‘99: Proceedings of the Sixth
Working Conference on Reverse Engineering, p. 326. IEEE Computer Society, Washington
(1999)

9. Balazinska, M., Merlo, E., Dagenais, M., Lague, B., Kontogiannis, K.: Advanced clone-
analysis to support object-oriented system refactoring. In: Proceedings Seventh Working
Conference on Reverse Engineering, pp. 98–107 (2000)

10. Baldwin, C.Y., Clark, K.B.: Design Rules: The Power of Modularity. MIT Press, Cambridge
(1999)

11. Barnett, M., Bird, C., Brunet, J., Lahiri, S.K.: Helping developers help themselves:
automatic decomposition of code review changesets. In: Proceedings of the 37th International
Conference on Software Engineering-Volume 1, pp. 134–144. IEEE Press, Piscataway (2015)

12. Batory, D., O’Malley, S.: The design and implementation of hierarchical software systems
with reusable components. ACM Trans. Softw. Eng. Methodol. 1(4), 355–398 (1992)

13. Belady, L.A., Lehman, M.M.: A model of large program development. IBM Syst. J. 15(3),
225–252 (1976)

14. Beller, M., Bacchelli, A., Zaidman, A., Juergens, E.: Modern code reviews in open-source
projects: which problems do they fix? In: Proceedings of the 11th Working Conference on
Mining Software Repositories, pp. 202–211. ACM, New York (2014)

15. Binkley, D., Horwitz, S., Reps, T.: Program integration for languages with procedure calls.
ACM Trans. Softw. Eng. Methodol. 4(1), 3–35 (1995)

16. Boshernitsan, M., Graham, S.L., Hearst, M.A.: Aligning development tools with the way
programmers think about code changes. In: CHI ‘07: Proceedings of the SIGCHI Conference
on Human Factors in Computing Systems, pp. 567–576. ACM, New York (2007)

17. Bosu, A., Greiler, M., Bird, C.: Characteristics of useful code reviews: an empirical study at
microsoft. In: 2015 IEEE/ACM 12th Working Conference on Mining Software Repositories
(MSR), pp. 146–156. IEEE, Piscataway (2015)

18. Breu, S., Zimmermann, T.: Mining aspects from version history. In: International Conference
on Automated Software Engineering, pp. 221–230 (2006)

19. Brown, N., Cai, Y., Guo, Y., Kazman, R., Kim, M., Kruchten, P., Lim, E., MacCormack,
A., Nord, R., Ozkaya, I., Sangwan, R., Seaman, C., Sullivan, K., Zazworka, N.: Managing
technical debt in software-reliant systems. In: Proceedings of the FSE/SDP Workshop on
Future of Software Engineering Research, FoSER ‘10, pp. 47–52. ACM, New York (2010)

http://asm.ow2.org

274 M. Kim et al.

20. Cambridge University Study States Software Bugs Cost Economy $312 Billion
Per Year. http://markets.financialcontent.com/stocks/news/read/23147130/Cambridge_
University_Study_States_Software_Bugs_Cost_Economy_$312_Billion_Per_Year

21. Canfora, G., Cerulo, L., Cimitile, M., Di Penta, M.: Social interactions around cross-system
bug fixings: the case of freebsd and openbsd. In: Proceeding of the 8th Working Conference
on Mining Software Repositories, MSR ‘11, pp. 143–152. ACM, New York (2011)

22. Carriere, J., Kazman, R., Ozkaya, I.: A cost-benefit framework for making architectural
decisions in a business context. In: ICSE ‘10: Proceedings of the 32nd ACM/IEEE
International Conference on Software Engineering, pp. 149–157. ACM, New York (2010)

23. Chawathe, S.S., Rajaraman, A., Garcia-Molina, H., Widom, J.: Change detection in
hierarchically structured information. In: SIGMOD ‘96: Proceedings of the 1996 ACM
SIGMOD International Conference on Management of Data, pp. 493–504. ACM, New York
(1996)

24. Chou, A., Yang, J., Chelf, B., Hallem, S., Engler, D.: An empirical study of operating
systems errors. In: Proceedings of the Eighteenth ACM Symposium on Operating Systems
Principles, SOSP ‘01, pp. 73–88. ACM, New York (2001)

25. Chow, K., Notkin, D.: Semi-automatic update of applications in response to library changes.
In: ICSM ‘96: Proceedings of the 1996 International Conference on Software Maintenance,
p. 359. IEEE Computer Society, Washington (1996)

26. Cordy, J.R.: The txl source transformation language. Sci. Comput. Program. 61(3), 190–210
(2006)

27. Cordy, J.R.: Exploring large-scale system similarity using incremental clone detection and
live scatterplots. In: 2011 IEEE 19th International Conference on Program Comprehension
(2011), pp. 151–160

28. Cornélio, M., Cavalcanti, A., Sampaio, A.: Sound refactorings. Sci. Comput. Program.
75(3), 106–133 (2010)

29. Cossette, B.E., Walker, R.J.: Seeking the ground truth: a retroactive study on the evolution
and migration of software libraries. In: FSE ‘12 Proceedings of the ACM SIGSOFT 20th
International Symposium on the Foundations of Software Engineering. ACM, New York
(2012)

30. Cottrell, R., Chang, J.J.C., Walker, R.J., Denzinger, J.: Determining detailed structural
correspondence for generalization tasks. In: Proceedings of the the 6th Joint Meeting of
the European Software Engineering Conference and the ACM SIGSOFT Symposium on The
Foundations of Software Engineering, ESEC-FSE ‘07, pp. 165–174. ACM, New York (2007)

31. Cunningham, W.: The WyCash portfolio management system. In: OOPSLA ‘92: Addendum
to the Proceedings on Object-Oriented Programming Systems, Languages, and Applications
(Addendum), pp. 29–30. ACM, New York (1992)

32. Dagenais, B., Robillard, M.P.: Recommending adaptive changes for framework evolution.
In: Proceedings of the 30th International Conference on Software Engineering, ICSE ‘08,
pp. 481–490. ACM, New York (2008)

33. Dagenais, B., Breu, S., Warr, F.W., Robillard, M.P.: Inferring structural patterns for concern
traceability in evolving software. In: ASE ‘07: Proceedings of the Twenty-Second IEEE/ACM
International Conference on Automated Software Engineering, pp. 254–263. ACM, NewYork
(2007)

34. Demeyer, S., Ducasse, S., Nierstrasz, O.: Finding refactorings via change metrics. In:
OOPSLA ‘00: Proceedings of the 15th ACM SIGPLAN Conference on Object-Oriented
Programming, Systems, Languages, and Applications, pp. 166–177. ACM, New York (2000)

35. Dig, D., Johnson, R.: Automated detection of refactorings in evolving components.
In: ECOOP ‘06: Proceedings of European Conference on Object-Oriented Programming,
pp. 404–428. Springer, Berlin (2006)

36. Dig, D., Johnson, R.: How do APIs evolve? A story of refactoring. J. Softw. Maint. Evol.
Res. Pract. 18(2), 83–107 (2006)

http://markets.financialcontent.com/stocks/news/read/23147130/Cambridge_University_Study_States_Software_Bugs_Cost_Economy_$312_Billion_Per_Year
http://markets.financialcontent.com/stocks/news/read/23147130/Cambridge_University_Study_States_Software_Bugs_Cost_Economy_$312_Billion_Per_Year

Software Evolution 275

37. Dig, D., Manzoor, K., Johnson, R., Nguyen, T.N.: Refactoring-aware configuration
management for object-oriented programs. In: 29th International Conference on Software
Engineering, 2007, ICSE 2007, pp. 427–436 (2007)

38. Duley, A., Spandikow, C., Kim, M.: Vdiff: a program differencing algorithm for verilog
hardware description language. Autom. Softw. Eng. 19, 459–490 (2012)

39. Dunsmore, A., Roper, M., Wood, M.: Object-oriented inspection in the face of delocalisation.
In: ICSE ‘00: Proceedings of the 22nd International Conference on Software Engineering,
pp. 467–476. ACM, New York (2000). Code inspection, code review, object-oriented,
delocalized

40. Eclipse EMF Compare Project description: http://www.eclipse.org/emft/projects/compare
41. Eick, S.G., Graves, T.L., Karr, A.F., Marron, J.S., Mockus, A.: Does code decay? Assessing

the evidence from change management data. IEEE Trans. Softw. Eng. 27(1), 1–12 (2001)
42. EmersonMurphy-Hill, X.S.: Towards refactoring-aware code review. In: CHASE’ 14: 7th

International Workshop on Cooperative and Human Aspects of Software Engineering, Co-
located with 2014 ACM and IEEE 36th International Conference on Software Engineering
(2014)

43. Engelbertink, F.P., Vogt, H.H.: How to save on software maintenance costs. Omnext white
paper (2010)

44. Engler, D., Chelf, B., Chou, A., Hallem, S.: Checking system rules using system-
specific, programmer-written compiler extensions. In: Proceedings of the 4th Conference on
Symposium on Operating System Design & Implementation - Volume 4, OSDI’00. USENIX
Association, Berkeley (2000)

45. Engler, D.R., Chen, D.Y., Chou, A.: Bugs as inconsistent behavior: A general approach to
inferring errors in systems code. In: Symposium on Operating Systems Principles, pp. 57–72
(2001)

46. Fagan, M.E.: Design and code inspections to reduce errors in program development. IBM
Syst. J. 38(2–3), 258–287 (1999). Code inspection, checklist

47. Fischer, M., Oberleitner, J., Ratzinger, J., Gall, H.: Mining evolution data of a product
family. In: MSR ‘05: Proceedings of the 2005 International Workshop on Mining Software
Repositories, pp. 1–5. ACM, New York (2005)

48. Fluri, B., Würsch, M., Pinzger, M., Gall, H.C.: Change distilling—tree differencing for
fine-grained source code change extraction. IEEE Trans. Softw. Eng. 33(11), 18 (2007)

49. Garcia, J., Popescu, D., Edwards, G., Medvidovic, N.: Identifying architectural bad smells.
In: CSMR ‘09: Proceedings of the 2009 European Conference on Software Maintenance and
Reengineering, pp. 255–258. IEEE Computer Society, Washington (2009)

50. Ge, X., Murphy-Hill, E.: Manual refactoring changes with automated refactoring validation.
In: 36th International Conference on Software Engineering (ICSE 2014). IEEE, Piscataway
(2014)

51. Görg, C., Weißgerber, P.: Error detection by refactoring reconstruction. In: MSR ‘05:
Proceedings of the 2005 International Workshop on Mining Software Repositories, pp. 1–5.
ACM Press, New York (2005)

52. Griswold, W.G.: Program restructuring as an aid to software maintenance. PhD thesis, Seattle
(1992). UMI Order No. GAX92-03258

53. Griswold, W.: Coping with crosscutting software changes using information transparency.
In: Reflection 2001: The Third International Conference on Metalevel Architectures and
Separation of Crosscutting Concerns, pp. 250–265. Springer, Berlin (2001)

54. Griswold, W.G., Atkinson, D.C., McCurdy, C.: Fast, flexible syntactic pattern matching
and processing. In: WPC ‘96: Proceedings of the 4th International Workshop on Program
Comprehension, p. 144. IEEE Computer Society, Washington (1996)

55. Grubb, P., Takang, A.A.: Software Maintenance: Concepts and Practice. World Scientific
(2003)

56. Guéhéneuc, Y.-G., Albin-Amiot, H.: Using design patterns and constraints to automate
the detection and correction of inter-class design defects. In: Proceedings of the 39th
International Conference and Exhibition on Technology of Object-Oriented Languages and
Systems (TOOLS39), TOOLS ‘01, p. 296. IEEE Computer Society, Washington (2001)

http://www.eclipse.org/emft/projects/compare

276 M. Kim et al.

57. Guo, Y., Seaman, C., Zazworka, N., Shull, F.: Domain-specific tailoring of code smells:
an empirical study. In: Proceedings of the 32nd ACM/IEEE International Conference on
Software Engineering - Volume 2, ICSE ‘10, pp. 167–170. ACM, New York (2010)

58. Guo, Y., Seaman, C., Gomes, R., Cavalcanti, A., Tonin, G., Da Silva, F.Q.B., Santos,
A.L.M., Siebra, C.: Tracking technical debt - an exploratory case study. In: 27th IEEE
International Conference on Software Maintenance (ICSM), pp. 528–531 (2011)

59. Harman, M.: The current state and future of search based software engineering. In:
International Conference on Software Engineering, pp. 342–357 (2007)

60. Harrison, W., Ossher, H., Sutton, S., Tarr, P.: Concern modeling in the concern manipulation
environment. In: Proceedings of the 2005 Workshop on Modeling and Analysis of Concerns
in Software, pp. 1–5. ACM Press, New York (2005)

61. Harrold, M.J., Jones, J.A., Li, T., Liang, D., Orso, A., Pennings, M., Sinha, S., Spoon, S.A.,
Gujarathi, A.: Regression test selection for java software. In: OOPSLA ‘01: Proceedings of
the 16th ACM SIGPLAN Conference on Object Oriented Programming, Systems, Languages,
and Applications, pp. 312–326. ACM, New York (2001)

62. Henkel, J., Diwan, A.: Catchup!: capturing and replaying refactorings to support API
evolution. In: ICSE ‘05: Proceedings of the 27th International Conference on Software
Engineering, pp. 274–283. ACM, New York (2005)

63. Herzig, K., Zeller, A.: The impact of tangled code changes. In: 2013 10th IEEE Working
Conference on Mining Software Repositories (MSR), pp. 121–130. IEEE, Piscataway (2013)

64. Higo, Y., Kamiya, T., Kusumoto, S., Inoue, K.: Refactoring support based on code clone
analysis. In: PROFES ‘04: Proceedings of 5th International Conference on Product Focused
Software Process Improvement, Kausai Science City, April 5–8, 2004, pp. 220–233 (2004)

65. Horwitz, S.: Identifying the semantic and textual differences between two versions of
a program. In: PLDI ‘90: Proceedings of the ACM SIGPLAN 1990 Conference on
Programming Language Design and Implementation, pp. 234–245. ACM, New York (1990)

66. Horwitz, S., Prins, J., Reps, T.: Integrating noninterfering versions of programs. ACM Trans.
Program. Lang. Syst. 11(3), 345–387 (1989)

67. Hotta, K., Higo, Y., Kusumoto, S.: Identifying, tailoring, and suggesting form template
method refactoring opportunities with program dependence graph. In: 2012 16th European
Conference on Software Maintenance and Reengineering (CSMR), pp. 53–62. IEEE, Piscat-
away (2012)

68. Hou, D., Yao, X.: Exploring the intent behind API evolution: a case study. In: Proceedings of
the 2011 18th Working Conference on Reverse Engineering, WCRE ‘11, pp. 131–140. IEEE
Computer Society, Washington (2011)

69. Hunt, J.W., Szymanski, T.G.: A fast algorithm for computing longest common subsequences.
Commun. ACM 20(5), 350–353 (1977)

70. ISO/IEC 14764:2006: Software engineering software life cycle processes maintenance.
Technical report, ISO/IEC (2006)

71. Izurieta, C., Bieman, J.M.: How software designs decay: a pilot study of pattern evolution.
In: First International Symposium on ESEM, pp. 449–451 (2007)

72. Jablonski, P., Hou, D.: CReN: a tool for tracking copy-and-paste code clones and renaming
identifiers consistently in the IDE. In: Proceedings of the 2007 OOPSLAWorkshop on Eclipse
Technology eXchange, eclipse ‘07, pp. 16–20. ACM, New York (2007)

73. Jackson, D., Ladd, D.A.: Semantic diff: a tool for summarizing the effects of modifications.
In: ICSM ‘94: Proceedings of the International Conference on Software Maintenance,
pp. 243–252. IEEE Computer Society, Washington (1994)

74. Janssen, T., Abreu, R., Gemund, A.: Zoltar: a toolset for automatic fault localization. In:
Proc. of ASE, pp. 662–664. IEEE Computer Society, Washington (2009)

75. Javassist. http://jboss-javassist.github.io/javassist/
76. Jiang, L., Misherghi, G., Su, Z., Glondu, S.: Deckard: scalable and accurate tree-based

detection of code clones. In: ICSE ‘07: Proceedings of the 29th International Conference on
Software Engineering, pp. 96–105. IEEE Computer Society, Washington (2007)

http://jboss-javassist.github.io/javassist/

Software Evolution 277

77. Jiang, L., Su, Z., Chiu, E.: Context-based detection of clone-related bugs. In: ESEC-FSE ‘07:
Proceedings of the the 6th Joint Meeting of the European Software Engineering Conference
and the ACM SIGSOFT Symposium on the Foundations of Software Engineering, pp. 55–64.
ACM, New York (2007)

78. Johnson, P.M.: Reengineering inspection. Commun. ACM 41(2), 49–52 (1998)
79. Johnson, R.: Beyond behavior preservation. Microsoft Faculty Summit 2011, Invited Talk,

July 2011
80. Jones, J.A., Harrold, M.J., Stasko, J.: Visualization of test information to assist fault

localization. In: Proceedings of the 24th International Conference on Software Engineering,
ICSE ‘02, pp. 467–477. ACM, New York (2002)

81. Juergens, E., Deissenboeck, F., Hummel, B., Wagner, S.: Do code clones matter?
In: Proceedings of the 31st International Conference on Software Engineering, ICSE ‘09,
pp. 485–495. IEEE Computer Society, Washington (2009)

82. Juillerat, N., Hirsbrunner, B.: Toward an implementation of the “form template method”
refactoring. In: SCAM 2007. Seventh IEEE International Working Conference on Source
Code Analysis and Manipulation, pp. 81–90. IEEE, Piscataway (2007)

83. Kataoka, Y., Notkin, D., Ernst, M.D., Griswold, W.G.: Automated support for program
refactoring using invariants. In: Proceedings of the IEEE International Conference on
Software Maintenance (ICSM’01), ICSM ‘01, pp. 736. IEEE Computer Society, Washington
(2001)

84. Kataoka, Y., Imai, T., Andou, H., Fukaya, T.: A quantitative evaluation of maintainability
enhancement by refactoring. In: Proceedings of the International Conference on Software
Maintenance (ICSM 2002), pp. 576–585. IEEE Computer Society, Washington (2002)

85. Kawrykow, D., Robillard, M.P.: Non-essential changes in version histories. In: Proceedings
of the 33rd International Conference on Software Engineering, ICSE ‘11, pp. 351–360. ACM,
New York (2011)

86. Kiczales, G., Hilsdale, E., Hugunin, J., Kersten, M., Palm, J., Griswold, W.G.: An
overview of AspectJ. In: Proceedings of the 15th European Conference on Object-Oriented
Programming, ECOOP ‘01, pp. 327–353. Springer, London (2001)

87. Kim, M., Notkin, D.: Discovering and representing systematic code changes. In: Proceedings
of the 31st International Conference on Software Engineering, ICSE ‘09, pp. 309–319. IEEE
Computer Society, Washington (2009)

88. Kim, M., Sazawal, V., Notkin, D., Murphy, G.: An empirical study of code clone
genealogies. In: Proceedings of the 10th European Software Engineering Conference Held
Jointly with 13th ACM SIGSOFT International Symposium on Foundations of Software
Engineering, ESEC/FSE-13, pp. 187–196. ACM, New York (2005)

89. Kim, S., Pan, K., James Whitehead, J.E.: When functions change their names: automatic
detection of origin relationships. In: WCRE ‘05: Proceedings of the 12th Working Conference
on Reverse Engineering, pp. 143–152. IEEE Computer Society, Washington (2005)

90. Kim, S., Pan, K., Whitehead, E.E.J. Jr.: Memories of bug fixes. In: Proceedings of the
14th ACM SIGSOFT International Symposium on Foundations of Software Engineering,
SIGSOFT ‘06/FSE-14, pp. 35–45. ACM, New York (2006)

91. Kim, M., Notkin, D., Grossman, D.: Automatic inference of structural changes for matching
across program versions. In: ICSE ‘07: Proceedings of the 29th International Conference on
Software Engineering, pp. 333–343. IEEE Computer Society, Washington (2007)

92. Kim, M., Gee, M., Loh, A., Rachatasumrit, N.: Ref-finder: a refactoring reconstruction tool
based on logic query templates. In: FSE ‘10: Proceedings of the Eighteenth ACM SIGSOFT
International Symposium on Foundations of Software Engineering, pp. 371–372. ACM, New
York (2010)

93. Kim, M., Cai, D., Kim, S.: An empirical investigation into the role of refactorings during
software evolution. In: ICSE’ 11: Proceedings of the 2011 ACM and IEEE 33rd International
Conference on Software Engineering (2011)

278 M. Kim et al.

94. Kim, M., Zimmermann, T., Nagappan, N.: A field study of refactoring challenges and
benefits. In: Proceedings of the ACM SIGSOFT 20th International Symposium on the
Foundations of Software Engineering, FSE ‘12, pp. 50:1–50:11. ACM, New York (2012)

95. Kim, D., Nam, J., Song, J., Kim, S.: Automatic patch generation learned from human-written
patches. In: IEEE/ACM International Conference on Software Engineering (2013)

96. Kim, M., Zimmermann, T., Nagappan, N.: An empirical study of refactoring challenges and
benefits at microsoft. IEEE Trans. Softw. Eng. 40(7), 633–649 (2014)

97. Kolb, R., Muthig, D., Patzke, T., Yamauchi, K.: Refactoring a legacy component for reuse
in a software product line: a case study: practice articles. J. Softw. Maint. Evol. 18, 109–132
(2006)

98. Komondoor, R., Horwitz, S.: Semantics-preserving procedure extraction. In: POPL ‘00:
Proceedings of the 27th ACM SIGPLAN-SIGACT Symposium on Principles of Programming
Languages, pp. 155–169. ACM Press, New York (2000)

99. Komondoor, R., Horwitz, S.: Effective, automatic procedure extraction. In: IWPC ‘03:
Proceedings of the 11th IEEE International Workshop on Program Comprehension, p. 33.
IEEE Computer Society, Washington (2003)

100. Koni-N’Sapu, G.G.: A scenario based approach for refactoring duplicated code in object-
oriented systems. Master’s thesis, University of Bern, June 2001

101. Krishnan, G.P., Tsantalis, N.: Refactoring clones: an optimization problem. In: Proceedings
of the ICSM, pp. 360–363 (2013)

102. Ladd, D.A., Ramming, J.C.: A*: a language for implementing language processors. IEEE
Trans. Softw. Eng. 21(11), 894–901 (1995)

103. Lammel, R., Saraiva, J., Visser, J. (eds.): Generative and Transformational Techniques in
Software Engineering IV, International Summer School, GTTSE 2011, Braga, July 3–9, 2011.
Revised Papers. Lecture Notes in Computer Science, vol. 7680. Springer, Berlin (2013)

104. Landauer, J., Hirakawa, M.: Visual AWK: a model for text processing by demonstration. In:
Proceedings of the 11th International IEEE Symposium on Visual Languages, VL ‘95, p. 267.
IEEE Computer Society, Washington (1995)

105. Laski, J., Szermer, W.: Identification of program modifications and its applications in
software maintenance. In: ICSM 1992: Proceedings of International Conference on Software
Maintenance (1992)

106. Lau, T., Wolfman, S.A., Domingos, P., Weld, D.S.: Learning Repetitive Text-Editing
Procedures with SMARTedit, pp. 209–226. Morgan Kaufmann, San Francisco (2001)

107. Le Goues, C., Dewey-Vogt, M., Forrest, S., Weimer, W.: A systematic study of automated
program repair: fixing 55 out of 105 bugs for $8 each. In: International Conference on
Software Engineering, pp. 3–13 (2012)

108. Lehman, M.M.: On understanding laws, evolution, and conservation in the large-program life
cycle. J. Syst. Softw. 1, 213–221 (1984)

109. Li, Z., Lu, S., Myagmar, S., Zhou, Y.: CP-miner: a tool for finding copy-paste and related
bugs in operating system code. In: Proceedings of the 6th Conference on Symposium on
Operating Systems Design & Implementation - Volume 6, OSDI’04, pp. 20–20. USENIX
Association, Berkeley (2004)

110. Li, Z., Lu, S., Myagmar, S., Zhou, Y.: CP-miner: finding copy-paste and related bugs in
large-scale software code. IEEE Trans. Softw. Eng. 32(3), 176–192 (2006)

111. Li, Z., Tan, L., Wang, X., Lu, S., Zhou, Y., Zhai, C.: Have things changed now?: An
empirical study of bug characteristics in modern open source software. In: Proceedings of the
1st Workshop on Architectural and System Support for Improving Software Dependability,
ASID ‘06, pp. 25–33. ACM, New York (2006)

112. Lo, D., Jiang, L., Budi, A., et al.: Comprehensive evaluation of association measures for
fault localization. In: Proceedings of ICSM, pp. 1–10. IEEE, Piscataway (2010)

113. MacCormack, A., Rusnak, J., Baldwin, C.Y.: Exploring the structure of complex software
designs: an empirical study of open source and proprietary code. Manag. Sci. 52(7), 1015–
1030 (2006)

Software Evolution 279

114. Madhavji, N.H., Ramil, F.J.C., Perry, D.E.: Software Evolution and Feedback: Theory and
Practice. Wiley, Hoboken (2006)

115. Malpohl, G., Hunt, J.J., Tichy, W.F.: Renaming detection. Autom. Softw. Eng. 10(2), 183–202
(2000)

116. Marinescu, R.: Detection strategies: metrics-based rules for detecting design flaws. In:
Proceedings of the 20th IEEE International Conference on Software Maintenance, pp. 350–
359. IEEE Computer Society, Washington (2004)

117. McDonnell, T., Ray, B., Kim, M.: An empirical study of API stability and adoption in the
android ecosystem. In: 2013 29th IEEE International Conference on Software Maintenance
(ICSM), pp. 70–79 (2013)

118. Meng, N., Kim,M., McKinley, K.S.: Systematic editing: generating program transformations
from an example. In: Proceedings of the 32nd ACM SIGPLAN Conference on Programming
Language Design and Implementation, PLDI ‘11, pp. 329–342. ACM, New York (2011)

119. Meng, N., Kim, M., McKinley, K.S.: Lase: locating and applying systematic edits by
learning from examples. In: Proceedings of the 2013 International Conference on Software
Engineering, ICSE ‘13, pp. 502–511. IEEE Press, Piscataway (2013)

120. Meng, N., Hua, L., Kim,M., McKinley, K.S.: Does automated refactoring obviate systematic
editing? In: Proceedings of the 37th International Conference on Software Engineering -
Volume 1, ICSE ‘15, pp. 392–402. IEEE Press, Piscataway (2015)

121. Mens, T.: A state-of-the-art survey on software merging. IEEE Trans. Softw. Eng. 28(5),
449–462 (2002)

122. Mens, T., Tourwé, T.: A survey of software refactoring. IEEE Trans. Softw. Eng. 30(2),
126–139 (2004)

123. Mens, T., Van Eetvelde, N., Demeyer, S., Janssens, D.: Formalizing refactorings with graph
transformations. J. Softw. Maint. Evol. Res. Pract. 17(4), 247–276 (2005)

124. Miller, R.C., Myers, B.A.: Interactive simultaneous editing of multiple text regions. In:
Proceedings of the General Track: 2002 USENIX Annual Technical Conference, pp. 161–
174. USENIX Association, Berkeley (2001)

125. Moha, N., Guéhéneuc, Y.-G., Meur, A.-F.L., Duchien, L.: A domain analysis to specify
design defects and generate detection algorithms. In: Fiadeiro, J.L., Inverardi, P. (eds.)
International Conference on FASE, vol. 4961. Lecture Notes in Computer Science, pp. 276–
291. Springer, Berlin (2008)

126. Moser, R., Sillitti, A., Abrahamsson, P., Succi, G.: Does refactoring improve reusability?
In: Proceedings of ICSR, pp. 287–297 (2006)

127. Mossienko, M.: Automated Cobol to Java recycling. In: Proceedings Seventh European
Conference on Software Maintenance and Reengineering (2003)

128. Muchnick, S.S.: Advanced Compiler Design and Implementation. Morgan Kaufmann, San
Francisco (1997)

129. Murphy, G.C., Kersten, M., Findlater, L.: How are Java Software Developers Using the
Eclipse IDE? vol. 23, pp. 76–83. IEEE Computer Society Press, Los Alamitos (2006)

130. Murphy-Hill, E., Parnin, C., Black, A.P.: How we refactor, and how we know it. IEEE Trans.
Softw. Eng. 38(1), 5–18 (2012)

131. Nagappan, N., Ball, T.: Use of relative code churn measures to predict system defect density.
In: ICSE ‘05: Proceedings of the 27th International Conference on Software Engineering,
pp. 284–292. ACM, New York (2005)

132. Naish, L., Lee, H., Ramamohanarao, K.: A model for spectra-based software diagnosis.
ACM TOSEM 20(3), 11 (2011)

133. Nguyen, T.T., Nguyen, H.A., Pham, N.H., Al-Kofahi, J.M., Nguyen, T.N.: Graph-based
mining of multiple object usage patterns. In: ESEC/FSE ‘09: Proceedings of the the 7th
Joint Meeting of the European Software Engineering Conference and the ACM SIGSOFT
Symposium on the Foundations of Software Engineering, pp. 383–392. ACM, New York
(2009)

280 M. Kim et al.

134. Nguyen, H.A., Nguyen, T.T., Wilson, G. Jr., Nguyen, A.T., Kim, M., Nguyen, T.N.: A
graph-based approach to API usage adaptation. In: Proceedings of the ACM International
Conference on Object Oriented Programming Systems Languages and Applications, OOP-
SLA ‘10, pp. 302–321. ACM, New York (2010)

135. Nguyen, A.T., Nguyen, H.A., Nguyen, T.T., Nguyen, T.N.: Statistical learning approach for
mining API usage mappings for code migration. In: Proceedings of the 29th ACM/IEEE
International Conference on Automated Software Engineering, pp. 457–468. ACM, NewYork
(2014)

136. Nguyen, A.T., Nguyen, T.T., Nguyen, T.N.: Divide-and-conquer approach for multi-phase
statistical migration for source code (t). In: 2015 30th IEEE/ACM International Conference
on Automated Software Engineering (ASE) (2015)

137. Nguyen, T.D., Nguyen, A.T., Phan, H.D., Nguyen, T.N.: Exploring API embedding for API
usages and applications. In: Proceedings of the 39th International Conference on Software
Engineering, ICSE ‘17, pp. 438–449. IEEE Press, Piscataway (2017)

138. Nix, R.: Editing by example. In: Proceedings of the 11th ACM SIGACT-SIGPLAN
Symposium on Principles of Programming Languages, POPL ‘84, pp. 186–195. ACM, New
York (1984)

139. Ohst, D., Welle, M., Kelter, U.: Difference tools for analysis and design documents. In:
International Conference on ICSM ‘03, p. 13. IEEE Computer Society, Washington (2003)

140. Opdyke, W.F.: Refactoring object-oriented frameworks. PhD thesis, Champaign (1992). UMI
Order No. GAX93-05645

141. Orso, A., Shi, N., Harrold, M.J.: Scaling regression testing to large software systems.
In: SIGSOFT ‘04/FSE-12: Proceedings of the 12th ACM SIGSOFT Twelfth International
Symposium on Foundations of Software Engineering, pp. 241–251. ACM, New York (2004)

142. Overbey, J.L., Fotzler, M.J., Kasza, A.J., Johnson, R.E.: A collection of refactoring
specifications for fortran 95. In: ACM SIGPLAN Fortran Forum, vol. 29, pp. 11–25. ACM,
New York (2010)

143. Padioleau, Y., Lawall, J.L., Muller, G.: Understanding collateral evolution in linux device
drivers. In: Proceedings of the 1st ACM SIGOPS/EuroSys European Conference on Computer
Systems 2006, EuroSys ‘06, pp. 59–71. ACM, New York (2006)

144. Padioleau, Y., Lawall, J., Hansen, R.R., Muller, G.: Documenting and automating collateral
evolutions in linux device drivers. In: Proceedings of the 3rd ACM SIGOPS/EuroSys
European Conference on Computer Systems 2008, Eurosys ‘08, pp. 247–260. ACM, New
York (2008)

145. Perry, D.E., Siy, H.P., Votta, L.G.: Parallel changes in large-scale software development: an
observational case study. ACM Trans. Softw. Eng. Methodol. 10(3), 308–337 (2001)

146. Pmd: http://pmd.sourceforge.net/
147. Prete, K., Rachatasumrit, N., Sudan, N., Kim, M.: Template-based reconstruction of

complex refactorings. In: 2010 IEEE International Conference on Software Maintenance
(ICSM), pp. 1–10. IEEE Press, Piscataway (2010)

148. Purushothaman, R., Perry, D.E.: Toward understanding the rhetoric of small source code
changes. IEEE Trans. Softw. Eng. 31(6), 511–526 (2005)

149. Rachatasumrit, N., Kim, M.: An empirical investigation into the impact of refactoring
on regression testing. In: ICSM ‘12: the 28th IEEE International Conference on Software
Maintenance, p. 10. IEEE Society, Washington (2012)

150. Ratzinger, J., Fischer, M., Gall, H.: Improving evolvability through refactoring. In: MSR ’05
Proceedings of the 2005 International Workshop on Mining Software Repositories, pp. 1–5
(2005)

151. Ratzinger, J., Sigmund, T., Gall, H.C.: On the relation of refactorings and software defect
prediction. In: MSR ‘08: Proceedings of the 2008 International Working Conference on
Mining Software Repositories, pp. 35–38. ACM, New York (2008)

152. Ray, B., Kim, M.: A case study of cross-system porting in forked projects. In: Proceedings
of the ACM SIGSOFT 20th International Symposium on the Foundations of Software
Engineering, FSE ‘12, pp. 53:1–53:11. ACM, New York (2012)

http://pmd.sourceforge.net/

Software Evolution 281

153. Ray, B., Kim, M., Person, S., Rungta, N.: Detecting and characterizing semantic
inconsistencies in ported code. In: 2013 IEEE/ACM 28th International Conference on
Automated Software Engineering (ASE), pp. 367–377 (2013)

154. Ren, X., Shah, F., Tip, F., Ryder, B.G., Chesley, O.: Chianti: a tool for change
impact analysis of java programs. In: OOPSLA ‘04: Proceedings of the 19th annual
ACM SIGPLAN Conference on Object-Oriented Programming, Systems, Languages, and
Applications, pp. 432–448. ACM, New York (2004)

155. Rigby, P.C., Bird, C.: Convergent contemporary software peer review practices. In:
Proceedings of the 2013 9th Joint Meeting on Foundations of Software Engineering, pp. 202–
212. ACM, New York (2013)

156. Rigby, P.C., German, D.M., Storey, M.-A.: Open source software peer review practices: a case
study of the apache server. In: ICSE ‘08: Proceedings of the 30th International Conference on
Software Engineering, pp. 541–550. ACM, New York (2008)

157. Robbes, R., Lanza, M.: Spyware: a change-aware development toolset. In: ICSE ‘08:
Proceedings of the 30th International Conference on Software Engineering, pp. 847–850.
ACM, New York (2008)

158. Robbes, R., Lungu, M., Röthlisberger, D.: How do developers react to API deprecation?:
The case of a smalltalk ecosystem. In: Proceedings of the ACM SIGSOFT 20th International
Symposium on the Foundations of Software Engineering, FSE ‘12, pp. 56:1–56:11. ACM,
New York (2012)

159. Roberts, D., Opdyke, W., Beck, K., Fowler, M., Brant, J.: Refactoring: Improving the Design
of Existing Code. Addison-Wesley Longman Publishing Co., Inc., Boston (1999)

160. Robillard, M.P., Murphy, G.C.: Feat: a tool for locating, describing, and analyzing concerns
in source code. In: ICSE ‘03: Proceedings of the 25th International Conference on Software
Engineering, pp. 822–823. IEEE Computer Society, Washington (2003)

161. Rolim, R., Soares, G., D’Antoni, L., Polozov, O., Gulwani, S., Gheyi, R., Suzuki, R.,
Hartmann, B.: Learning syntactic program transformations from examples. In: Proceedings
of the 39th International Conference on Software Engineering, ICSE ‘17, pp. 404–415. IEEE
Press, Piscataway (2017)

162. Rothermel, G., Harrold, M.J.: A safe, efficient regression test selection technique. ACM
Trans. Softw. Eng. Methodol. 6(2), 173–210 (1997)

163. Schaefer, M., de Moor, O.: Specifying and implementing refactorings. In: Proceedings of
the ACM International Conference on Object Oriented Programming Systems Languages and
Applications, OOPSLA ‘10, pp. 286–301. ACM, New York (2010)

164. Schmidt, M., Gloetzner, T.: Constructing difference tools for models using the sidiff
framework. In: ICSE Companion ‘08: Companion of the 30th International Conference on
Software Engineering, pp. 947–948. ACM, New York (2008)

165. Shao, D., Khurshid, S., Perry, D.: Evaluation of semantic interference detection in parallel
changes: an exploratory experiment. In: ICSM 2007. IEEE International Conference on
Software Maintenance, pp. 74–83 (2007)

166. Shepherd, D., Fry, Z.P., Hill, E., Pollock, L., Vijay-Shanker, K.: Using natural language
program analysis to locate and understand action-oriented concerns. In: AOSD ‘07:
Proceedings of the 6th International Conference on Aspect-Oriented Software Development,
pp. 212–224. ACM, New York (2007)

167. Sidiroglou, S., Ioannidis, S., Keromytis, A.D.: Band-aid patching. In: Proceedings of the
3rd Workshop on on Hot Topics in System Dependability, HotDep’07. USENIX Association,
Berkeley (2007)

168. Silva, D., Tsantalis, N., Valente, M.T.: Why we refactor? confessions of Github contributors.
In: Proceedings of the 2016 24th ACM SIGSOFT International Symposium on Foundations
of Software Engineering, FSE 2016, pp. 858–870. ACM, New York (2016)

169. Śliwerski, J., Zimmermann, T., Zeller, A.: When do changes induce fixes? In: Proceedings of
the 2005 International Workshop on Mining Software Repositories, MSR ‘05, pp. 1–5. ACM,
New York (2005)

282 M. Kim et al.

170. Sneed, H.M.: Migrating from COBOL to Java. In: Proceedings of the 2010 IEEE International
Conference on Software Maintenance (2010)

171. Soares, G.: Making program refactoring safer. In: Proceedings of the 32Nd ACM/IEEE
International Conference on Software Engineering - Volume 2, ICSE ‘10, pp. 521–522 (2010)

172. Software Maintenance and Computers (IEEE Computer Society Press Tutorial). IEEE
Computer Society, Los Alamitos (1990)

173. Son, S., McKinley, K.S., Shmatikov, V.: Fix me up: repairing access-control bugs in web
applications. In: NDSS Symposium (2013)

174. Soto, M., Münch, J.: Process Model Difference Analysis for Supporting Process Evolution.
Lecture Notes in Computer Science, vol. 4257, pp. 123–134. Springer, Berlin (2006)

175. Sullivan, K., Chalasani, P., Sazawal, V.: Software design as an investment activity: a real
options perspective. Technical report (1998)

176. Swanson, E.B.: The dimensions of maintenance. In: Proceedings of the 2Nd International
Conference on Software Engineering, ICSE ‘76, pp. 492–497. IEEE Computer Society Press,
Los Alamitos (1976)

177. Tahvildari, L., Kontogiannis, K.: A metric-based approach to enhance design quality
through meta-pattern transformations. In: Proceedings of the Seventh European Conference
on Software Maintenance and Reengineering, CSMR ‘03, p. 183. IEEE Computer Society,
Washington (2003)

178. Tairas, R., Gray, J.: Increasing clone maintenance support by unifying clone detection and
refactoring activities. Inf. Softw. Technol. 54(12), 1297–1307 (2012)

179. Tao, Y., Kim, S.: Partitioning composite code changes to facilitate code review. In: 2015
IEEE/ACM 12thWorking Conference on Mining Software Repositories (MSR), pp. 180–190.
IEEE, Piscataway (2015)

180. Tarr, P., Ossher, H., Harrison, W., Sutton, JSM.: N degrees of separation: multi-dimensional
separation of concerns. In: ICSE ‘99: Proceedings of the 21st International Conference on
Software Engineering, pp. 107–119. IEEE Computer Society Press, Los Alamitos (1999)

181. The AspectJ Project. https://eclipse.org/aspectj/
182. The Guided Tour of TXL. https://www.txl.ca/tour/tour1.html
183. Tichy, W.F.: The string-to-string correction problem with block moves. ACM Trans. Comput.

Syst. 2(4), 309–321 (1984)
184. Toomim, M., Begel, A., Graham, S.L.: Managing duplicated code with linked editing.

In: VLHCC ‘04: Proceedings of the 2004 IEEE Symposium on Visual Languages - Human
Centric Computing, pp. 173–180. IEEE Computer Society, Washington (2004)

185. Treude, C., Berlik, S., Wenzel, S., Kelter, U.: Difference computation of large models. In:
Proceedings of the the 6th Joint Meeting of the European Software Engineering Conference
and the ACM SIGSOFT Symposium on the Foundations of Software Engineering, ESEC-FSE
‘07, pp. 295–304. ACM, New York (2007)

186. Tsantalis, N., Chatzigeorgiou, A.: Identification of extract method refactoring opportunities.
In: CSMR ‘09: Proceedings of the 2009 European Conference on Software Maintenance and
Reengineering, pp. 119–128. IEEE Computer Society, Washington (2009)

187. Tsantalis, N., Chatzigeorgiou, A.: Identification of move method refactoring opportunities.
IEEE Trans. Softw. Eng. 35(3), 347–367 (2009)

188. Tsantalis, N., Chatzigeorgiou, A.: Identification of extract method refactoring opportunities
for the decomposition of methods. J. Syst. Softw. 84(10), 1757–1782 (2011)

189. Tsantalis, N., Chatzigeorgiou, A.: Ranking refactoring suggestions based on historical
volatility. In: 2011 15th European Conference on Software Maintenance and Reengineering,
pp. 25–34 (2011)

190. Tsantalis, N., Chaikalis, T., Chatzigeorgiou, A.: Jdeodorant: identification and removal
of type-checking bad smells. In: CSMR ‘08: Proceedings of the 2008 12th European
Conference on Software Maintenance and Reengineering, pp. 329–331. IEEE Computer
Society, Washington (2008)

191. Vakilian, M., Chen, N., Negara, S., Rajkumar, B.A., Bailey, B.P., Johnson, R.E.: Use, disuse,
and misuse of automated refactorings. In: 2012 34th International Conference on Software
Engineering (ICSE), pp. 233–243 (2012)

https://eclipse.org/aspectj/
https://www.txl.ca/tour/tour1.html

Software Evolution 283

192. van Engelen, R.: On the use of clone detection for identifying crosscutting concern code.
IEEE Trans. Softw. Eng. 31(10), 804–818 (2005). Student Member-Magiel Bruntink and
Member-Arie van Deursen and Member-Tom Tourwe

193. Visser, E.: Program transformation with Stratego/XT: rules, strategies, tools, and systems in
StrategoXT-0.9. Domain-Specific Program Generation 3016, 216–238 (2004)

194. Wang, W., Godfrey, M.W.: Recommending clones for refactoring using design, context, and
history. In: 2014 IEEE International Conference on Software Maintenance and Evolution,
pp. 331–340 (2014)

195. Wei, Y., Pei, Y., Furia, C.A., Silva, L.S., Buchholz, S., Meyer, B., Zeller, A.: Automated
fixing of programs with contracts. In: Proceedings of the 19th International Symposium on
Software Testing and Analysis, ISSTA ‘10, pp. 61–72. ACM, New York (2010)

196. Weißgerber, P., Diehl, S.: Are refactorings less error-prone than other changes? In: MSR ‘06:
Proceedings of the 2006 International Workshop on Mining Software Repositories, pp. 112–
118. ACM, New York (2006)

197. Weißgerber, P., Diehl, S.: Identifying refactorings from source-code changes. In: ASE
‘06: Proceedings of the 21st IEEE/ACM International Conference on Automated Software
Engineering, pp. 231–240. IEEE Computer Society, Washington (2006)

198. Weimer, W., Nguyen, T., Le Goues, C., Forrest, S.: Automatically finding patches using
genetic programming. In: Proceedings of the 31st International Conference on Software
Engineering, ICSE ‘09, pp. 364–374. IEEE Computer Society, Washington (2009)

199. Wikipedia. Comparison of BSD operating systems — Wikipedia, the free encyclopedia
(2012)

200. Wong, S., Cai, Y., Kim, M., Dalton, M.: Detecting software modularity violations. In:
ICSE’ 11: Proceedings of the 2011 ACM and IEEE 33rd International Conference on Software
Engineering (2011)

201. Xing, Z., Stroulia, E.: UMLDiff: an algorithm for object-oriented design differencing.
In: ASE ‘05: Proceedings of the 20th IEEE/ACM International Conference on Automated
Software Engineering, pp. 54–65. ACM, New York (2005)

202. Xing, Z., Stroulia, E.: Refactoring detection based on UMLDiff change-facts queries. In:
WCRE ‘06: Proceedings of the 13th Working Conference on Reverse Engineering, pp. 263–
274. IEEE Computer Society, Washington (2006)

203. Xing, Z., Stroulia, E.: Refactoring practice: how it is and how it should be supported - an
eclipse case study. In: ICSM ‘06: Proceedings of the 22nd IEEE International Conference on
Software Maintenance, pp. 458–468. IEEE Computer Society, Washington (2006)

204. Xing, Z., Stroulia, E.: API-evolution support with diff-catchup. IEEE Trans. Softw. Eng.
33(12), 818–836 (2007)

205. Yamamoto, T., Matsushita, M., Kamiya, T., Inoue, K.: Measuring similarity of large
software systems based on source code correspondence. In: Proceedings of 2005 Product
Focused Software Process Improvement, pp. 530–544 (2005)

206. Yang, W.: Identifying syntactic differences between two programs. Softw. Pract. Experience
21(7), 739–755 (1991)

207. Yang, W., Horwitz, S., Reps, T.: Detecting program components with equivalent behaviors.
Technical Report CS-TR-1989-840, University of Wisconsin, Madison (1989)

208. Yasumatsu, K., Doi, N.: SPiCE: a system for translating Smalltalk programs into a C
environment. IEEE Trans. Softw. Eng. 21(11), 902–912 (1995)

209. Yin, Z., Yuan, D., Zhou, Y., Pasupathy, S., Bairavasundaram, L.: How do fixes become
bugs? In: Proceedings of the 19th ACM SIGSOFT Symposium and the 13th European
Conference on Foundations of Software Engineering, ESEC/FSE ‘11, pp. 26–36. ACM, New
York (2011)

210. Yokomori, R., Siy, H.P., Noro, M., Inoue, K.: Assessing the impact of framework changes
using component ranking. In: Proceedings of ICSM, pp. 189–198. IEEE, Piscataway (2009)

211. Zeller, A.: Yesterday, my program worked. today, it does not. Why? In: ESEC/FSE-7:
Proceedings of the 7th European Software Engineering Conference Held Jointly with the 7th
ACM SIGSOFT International Symposium on Foundations of Software Engineering, pp. 253–
267. Springer, London (1999)

284 M. Kim et al.

212. Zeller, A.: Automated debugging: are we close? IEEE Comput. 34(11), 26–31 (2001)
213. Zhang, L., Kim, M., Khurshid, S.: Localizing failure-inducing program edits based on

spectrum information. In: Proceedings of ICSM, pp. 23–32. IEEE, Piscataway (2011)
214. Zhang, T., Song, M., Pinedo, J., Kim, M.: Interactive code review for systematic changes.

In: Proceedings of the 37th International Conference on Software Engineering-Volume 1,
pp. 111–122. IEEE Press, Piscataway (2015)

215. Zhong, H., Thummalapenta, S., Xie, T., Zhang, L., Wang, Q.: Mining API mapping for
language migration. In: Proceedings of the 32nd ACM/IEEE International Conference on
Software Engineering-Volume 1, pp. 195–204. ACM, New York (2010)

216. Zou, L., Godfrey, M.W.: Using origin analysis to detect merging and splitting of source code
entities. IEEE Trans. Softw. Eng. 31(2), 166–181 (2005)

	Software Evolution
	1 Introduction
	2 Concepts and Principles
	2.1 Corrective Change
	2.2 Adaptive Change
	2.3 Perfective Change
	2.4 Preventive Change

	3 An Organized Tour of Seminal Papers: Applying Changes
	3.1 Corrective Change
	3.1.1 Empirical Studies of Bug Fixes
	3.1.2 Rule-Based Bug Detection and Fixing Approaches
	3.1.3 Automated Repair

	3.2 Adaptive Change
	3.2.1 Cross-System Porting
	3.2.2 Cross-Language Migration
	3.2.3 Library Upgrade and API Evolution

	3.3 Perfective Change
	3.3.1 Techniques for Locating Crosscutting Concerns
	3.3.2 Language Support for Crosscutting Concerns

	3.4 Preventive Change
	3.4.1 Definition of Refactoring Operations
	3.4.2 Empirical Studies of Refactoring
	3.4.3 Automated Refactoring
	3.4.4 Real-World Refactoring Practices
	3.4.5 Quantitative Assessment of Refactoring Impact
	3.4.6 Code Smells Detection

	3.5 Automatic Change Application
	3.5.1 Source Transformation and Languages and Tools
	3.5.2 Programming by Demonstration

	4 An Organized Tour of Seminal Papers: Inspecting Changes
	4.1 Software Inspection and Modern Code Review Practices
	4.1.1 Commercial Code Review Tools
	4.1.2 Change Decomposition
	4.1.3 Refactoring Aware Code Review
	4.1.4 Change Conflicts, Interference, and Relevance
	4.1.5 Detecting and Preventing Inconsistent Changes to Clones

	4.2 Program Differencing
	4.2.1 String and Lexical Matching
	4.2.2 Syntax Tree Matching
	4.2.3 Control Flow Graph Matching
	4.2.4 Program Dependence Graph Matching
	4.2.5 Related Topics: Model Differencing and Clone Detection

	4.3 Recording Changes: Edit Capture and Replay

	5 An Organized Tour of Seminal Papers: Change Validation
	5.1 Change Impact Analysis
	5.2 Debugging Changes
	5.3 Refactoring Validation

	6 Future Directions and Open Problems
	6.1 Change Comprehension
	6.2 Change Suggestion
	6.3 Change Validation

	Appendix
	Key References
	References

