
Inferring and Applying Def-Use Like Configuration Couplings
in Deployment Descriptors

Chengyuan Wen
wechyu88@vt.edu

Virginia Tech
Blacksburg, Virginia

Yaxuan Zhang
yaxuan93@vt.edu
Virginia Tech

Blacksburg, Virginia

Xiao He
hexiao@ustb.edu.cn

University of Science and Technology
Beijing, China

Na Meng
nm8247@vt.edu
Virginia Tech

Blacksburg, Virginia

ABSTRACT

When building enterprise applications on Java frameworks (e.g.,
Spring), developers often specify components and configure op-
erations with a special kind of XML files named “deployment

descriptors (DD)”. Maintaining such XML files is challenging and
time-consuming; because (1) the correct configuration semantics is
domain-specific but usually vaguely documented, and (2) existing
compilers and program analysis tools rarely examine XML files.
To help developers ensure the quality of DD, this paper presents a
novel approach—Xeditor—that extracts configuration couplings
(i.e., frequently co-occurring configurations) from DD, and adopts
the coupling rules to validate new or updated files.

Xeditor has two phases: coupling extraction and bug detec-
tion. To identify couplings, Xeditor first mines DD in open-source
projects, and extracts XML entity pairs that (i) frequently coexist
in the same files and (ii) hold the same data at least once. Xeditor
then applies customized association rule mining to the extracted
pairs. For bug detection, given a new XML file, Xeditor checks
whether the file violates any coupling; if so, Xeditor reports the
violation(s). For evaluation, we first created two data sets with the
4,248 DD mined from 1,137 GitHub projects. According to the ex-
periments with these data sets, Xeditor extracted couplings with
high precision (73%); it detected bugs with 92% precision, 96% recall,
and 94% accuracy. Additionally, we applied Xeditor to the version
history of another 478 GitHub projects. Xeditor identified 25 very
suspicious XML updates, 15 of which were later fixed by developers.

KEYWORDS

Configuration coupling, deployment descriptor, rule mining

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
ASE ’20, September 21–25, 2020, Virtual Event, Australia

© 2020 Association for Computing Machinery.
ACM ISBN 978-1-4503-6768-4/20/09. . . $15.00
https://doi.org/10.1145/3324884.3416577

ACM Reference Format:

Chengyuan Wen, Yaxuan Zhang, Xiao He, and Na Meng. 2020. Inferring
and Applying Def-Use Like Configuration Couplings in Deployment De-
scriptors. In 35th IEEE/ACM International Conference on Automated Software

Engineering (ASE ’20), September 21–25, 2020, Virtual Event, Australia. ACM,
New York, NY, USA, 12 pages. https://doi.org/10.1145/3324884.3416577

1 INTRODUCTION

When building enterprise applications on top of software frame-
works (e.g., Java EE platforms), developers usually create deploy-
ment descriptors (e.g., web.xml)—a special kind of XML files—to
configure deployment options [11]. Erroneous DD can trigger ab-
normal runtime behaviors [44] or confusing errors [13]. Debugging
such XML files can be challenging and time-consuming for three
reasons. First, frameworks have domain-specific rules to define
or specify deployment options as XML entities (i.e., elements

and attributes), and developers have application-specific ways to
configure DD for distinct needs. Unfortunately, the domain-specific
rules and application-specific configurations are usually vaguely
documented [14]. Second, it is tedious and error-prone for devel-
opers to memorize all DD-related rules. Third, existing compilers
and tools examine source code instead of XML files. Even though
XML file validators can be built to validate syntax based on XML
Schemas or DTDs, the validators do not examine DD semantics.

Existing research provides quite limited support for checking
or transforming XML files [20, 22, 30]. For instance, XQuery is a
domain-specific language for finding elements and attributes in
XML documents [22]. To find particular XML errors, developers
have to learn XQuery, and then use XQuery tomanually describe the
patternmatchingmechanism. The learning curve of XQuerymay be
long to some developers, while the pattern definition procedure can
be also tedious and error-prone. We believe that with an automatic

approach to (1) infer rules from correct XML configuration files and (2)

apply those rules in order to locate erroneous XML files, we can provide

quality assurance for XML files without requiring much human effort.

This paper presents Xeditor, our novel approach to infer and
apply XML rules based on open-source projects. Because different
frameworks define diverse formats of XML files and the DD seman-
tics vary a lot, it is almost infeasible to infer arbitrarily complex
XML rules in a domain-agnostic way. To ensure the generalizability
of our approach, we designed Xeditor to mainly focus on one
type of rules that commonly exist in distinct frameworks: def-use

ASE ’20, September 21–25, 2020, Virtual Event, Australia C. Wen et al.

<beans xmlns=http://www.springframework.org/schema/beans
xmlns:xsi=http://www.w3.org/2001/XMLSchema-instance …>
 <bean id="OutputHelper” class="com.mkyong.output.OutputHelper">
 <property name="outputGenerator">
 <ref local="CsvOutputGenerator"/>
 </property>
 </bean>

 <bean id="CsvOutputGenerator”
class="com.mkyong.output.impl.CsvOutputGenerator"/>
 …
</beans>

Figure 1: An exemplar deployment descriptor

<bean id="validator”
class="org.springframework...FactoryBean">

<property name="validationMessageSource”
ref =“messageSource”/>

</bean>
+ <!--

<bean id=“messageSource” class=...>
…

</bean>
+ -->

Figure 2: The incorrectlymaintained dispatcher-servlet.xml file

in project addressbook-sample-jpa that violates re f → id [12]

like couplings “A → B” between XML entities. Here, “A→ B”
means “if entityA refers to an identifier or a string literal, then there
must be another entity B that defines meaning for that identifier.”

For instance, in Spring [5], a bean is an object that is instantiated,
assembled, and managed by a Spring container. In DD, a reference
to a bean identifier is always coupled with the identifier definition,
or any bean reference is valid only when there is a definition for the
bean. Figure 1 presents an example to demonstrate this constraint.
In this figure, entity ref is a reference to CsvOutputGenerator, which
is coupled with the bean id declaration of CsvOutputGenerator, i.e.,
re f → id . Our research intends to reveal DD semantic rules similar
to such def-use couplings. Notice that although re f → id is easy
to understand, based on our experience, many def-use like rules
are not so obvious (see Listing 1). More importantly, developers
sometimes violated such rules when maintaining DD. Figure 2
shows an incorrectly updated deployment descriptor in the open-
source project address-sample-jpa [12], where developers commented
the bean id declaration of messageSource but kept a ref to that bean.

We believe that "if two entities frequently coexist in the same file

and often hold the same data, they are correlated". With this insight,
we designed Xeditor to have two phases, as illustrated by Figure 3.
Given DD or an XML corpus from open-source projects, Phase I ex-
tracts candidate pairs of XML entities that (i) frequently co-occur in
XML files, and (ii) hold the same data or string literals at least once.
For each candidate pair, Xeditor identifies the longest common
XML path C shared by both entities on the XML parsing tree, and
then contextualizes the representation of both entities based on C .
For every candidate (A,B), Xeditor tentatively extracts couplings
by applying our customized association rule mining technique. In
particular, Xeditor identifies all occurrences of each entity in the
XML corpus, together with the corresponding string literals. If (1)
the occurrence of one entity (e.g., A) is usually coupled with that of
the other entity (e.g., B), and (2) both entities usually hold identical
string literals, then Xeditor infers a rule (e.g., A→ B).

Phase II takes in an XML file f that developers newly created
or updated from an existing file, Xeditor tentatively matches f

Candidate
Identification

Rule
Extraction

Coupling
Database

Phase I: Coupling Extraction

A New
XML File

Coupling-Based
Checking

Bug Report with
Suggested
Changes

Phase II: Bug Detection

Open-
Source

Projects

Figure 3: Xeditor consists of two phases: Phase I extracts

configuration couplings from open-source projects, and

Phase II uses the couplings to check for bugs in DD

against all extracted couplings. If there is a coupling rule for which
the file contains A without B, Xeditor recommends developers to
(1) insert B or delete A and (2) ensure both entities hold the same
string literal. In the Continuous Integration (CI) practices [24], we
envision Xeditor to be used for correctness checking before a
submitted commit is integrated into the software product. In this
way, Xeditor helps developers correctly edit DD and complement
existing code-oriented program analysis techniques.

For evaluation, we first applied Xeditor to the 4,248 DD from
1,137 projects, and manually inspected the extracted couplings.
With the default parameter setting,Xeditor identified 30 couplings,
among which 22 couplings are true positives. It means that our
approach can extract rules with high precision (73%). Furthermore,
based on our manual inspection results, we built a ground truth
data set of coupling occurrences in the 4,248 DD. We randomly
split the XML corpus into 10 portions and conducted 10-fold cross
validation to evaluate Xeditor’s effectiveness of bug detection. In
each fold, we used nine portions of data for coupling extraction;
we constructed test cases by removing some XML entities from the
remaining one portion of data, and applied Xeditor to those test
cases. Our evaluation shows that on average, Xeditor detected
bugs with 92% precision, 96% recall, and 94% accuracy.

Additionally, we applied Xeditor to the program commits in
another 478 open-source projects. Xeditor revealed 25 incorrectly
updated DD, 15 of whichwere later fixed by developers. This implies
that Xeditor can help developers avoid introducing bugs when
they modify DD. Finally, we compared Xeditor with a baseline
approach that extracts couplings from co-changed entities, and
applies both approaches to the same data sets. Our comparison
shows thatXeditor detected more rule violations than the baseline;
Xeditor obtained lower precision (92% vs. 98%), much higher recall
(96% vs. 78%), and higher accuracy (94% vs. 87%).

In summary, this paper makes the following contributions:

• We developed a novel approach—Xeditor—to automatically
extract configuration couplings in DD and detect related
bugs. Different from most prior work, Xeditor does not
need users to manually prescribe any rule or matching logic.
• We built Xeditor to extract couplings from the coexistence
of XML entities. Compared with a baseline technique that ex-
tracts couplings from co-changed entities, Xeditor worked
better by detecting rule violations with higher accuracy.
• We conducted a comprehensive evaluation on Xeditor. Our
evaluation shows that (1) Xeditor could identify important
couplings because developers did make mistakes by ignoring

Inferring and Applying Def-Use Like Configuration Couplings in Deployment Descriptors ASE ’20, September 21–25, 2020, Virtual Event, Australia

such delicate constraints, and (2) Xeditor suggested useful
corrective changes for buggy XML files.

At https://figshare.com/s/d4dc1f8ab527c1ce68ef, we open-sourced
our program and data.

2 BACKGROUND

This section first introduces DD (Section 2.1) and XML syntax
(Section 2.2). It then explains why it is challenging to configure DD
appropriately (Section 2.3).

2.1 Deployment Descriptors (DD)

A deployment descriptor is a configuration file that specifies how
an artifact should be deployed. For instance, in a web application
App written in Java, the deployment descriptor (e.g., web.xml) de-
scribes component classes, resources, and configurations of App;
it also specifies how a server uses these components to serve web
requests [7]. Similarly, in a Java EE application, the deployment de-
scriptor (e.g., application.xml) clarifies the configurations, container
options, and security settings [8]. XML is used for the syntax of

DD. Depending on the types of applications and modules, DD may
be located in various file folders and named differently.

Listing 1: A simplified version of a web.xml file [2]
1 <?xml v e r s i o n = " 1 . 0 " encod ing ="UTF−8"? >
2 <web−app v e r s i o n = " 2 . 5 " xmlns =" h t t p : / / j a v a . sun . com / . . . "
3 xmlns : x s i =" h t t p : / /www. w3 . org / 2 0 0 1 / XMLSchema− i n s t a n c e "
4 x s i : s chemaLoca t ion =" h t t p : / / j a v a . sun . com / xml / ns / . . . " >
5 . . .
6 < s e c u r i t y −c o n s t r a i n t >
7 . . .
8 <auth−c o n s t r a i n t >
9 < ro l e −name>comm</ ro l e −name>
10 </ auth−c o n s t r a i n t >
11 </ s e c u r i t y −c o n s t r a i n t >
12 . . .
13 < s e c u r i t y −r o l e >
14 < ro l e −name>comm</ ro l e −name>
15 </ s e c u r i t y −r o l e >
16 </web−app>

2.2 XML Syntax

XML syntax defines how an XML file can be written [10]. Accord-
ing to the syntax rules, each XML file includes one or more XML

elements, which are organized in a tree structure. Namely, there is
only one root element in any XML file, and the root element has
one or more child elements. For the exemplar XML file shown in
Listing 1, the <web-app> element is root; one of its child element is
<security-constraint>.

Generally speaking, an XML document consists of markups

and data. Markups are provided in the form of tags and attributes.
Data is the text that goes in between tags or is provided as values
for attributes. XML elements are represented by tags. An element
usually consists of an opening tag (e.g., “<role-name>”), a closing
tag (e.g., “</role-name>”), and data between the tags (e.g., “comm”)
Attributes can be added to XML elements; they are represented
as name-value pairs (e.g., “version="2.5"”). This paper uses XML

entities to refer to both XML elements and attributes.

2.3 Problem Statement

In DD, there are various rules that developers have to follow in order

to realize their deployment requirements. For instance, as shown
in Listing 1, a security constraint (security-constraint) is used to

define the access privileges to a collection of resources; an autho-
rization constraint (auth-constraint) authorizes certain role(s) with
the defined access privileges, and has one or more role-name ele-
ments to list the authorized roles [17]. Meanwhile, a security role
(security-role) defines an abstract name that can be assigned to
users and groups [9]. A relevant rule is that each role name listed
in auth-constraint (e.g., comm) must correspond to the role name
defined in one of the security-role elements (e.g., comm). However,
in the big and lengthy Java EE Tutorial (with 980 pages), there is
only one small paragraph together with a single code example [17]
vaguely implying the above-mentioned rule:

“The following snippet of a deployment descriptor declares the roles

that will be used in an application using the security-role element

and specifies which of these roles is authorized to access protected

resources using the auth-constraint element: ...”

It is very tedious and error-prone for developers to identify,
remember, and follow all domain-specific rules when they maintain
DD. According to a recent study on StackOverflow [36], many
developers asked various questions on how to correctly configure
DD and expressed frustrations with XML debugging. Unfortunately,
there is limited tool support for bug detection or fix in DD. Two
reasons may explain such technique insufficiency:

(1) Domain-specific rules are usually vaguely described or even
poorly documented, so it can be time-consuming for tool
builders to extract rules from software library/framework
documentation and then code those rules into their tools.

(2) Different software defines divergent DD rules, so it can be
challenging for tool builders to frequently integrate the rules
related to newly released software into their tools.

To build a tool that can help developers debug DD, we need to solve
the two technical challenges mentioned above.

3 APPROACH

In this section, we explain our automatic approach—Xeditor—that
detects bugs in XML files and provides corrective suggestions. To
overcome the two technical challenges mentioned in Section 2.3,
we designed Xeditor to infer def-use like configuration couplings
from open-source DD, and to adopt the inferred couplings for bug
detection. As shown in Figure 3, Xeditor has two phases. This
section first summarizes the steps in each phase and then describes
each step in detail (Section 3.1-Section 3.3).

Phase I: Rule Inference

• Given a set of open-source projects, Xeditor locates a set of
DD: F = { f1, f2, . . . , fm }, from which files Xeditor extracts
candidate XML entity pairs C = {c1, c2, . . . , cn }, where ci =
(ei1, ei2) with ei1 and ei2 being coexisting entities.
• For each candidate ci , Xeditor searches among all files F to
find the occurrence of either entity (i.e., ei1 and ei2); it further
applies our customized association rule mining to infer any
def-use like couplings between entities. Each mined rule has
the format “A→ B” and is saved into a database D.

Phase II: Rule Application

• Given a new XML file f , for each rule r ∈ D, Xeditor checks
whether A and B coexist in the file. Xeditor reports a bug if
(1) A exists but B does not, or (2) A refers to a string literal
which is not held by any B.

ASE ’20, September 21–25, 2020, Virtual Event, Australia C. Wen et al.

By inferring def-use like rules from open-source DD in a domain-
agnostic way, we avoid the manual effort of (1) extracting such
rules from software documentation and (2) hardcoding the rules in
Xeditor. By implementing the first phase to store rules to D and
the second phase to load rules from D, we ensure that Xeditor can
be easily extended to cover new rules introduced by newly released
software frameworks or libraries.

3.1 Candidate Identification

Given a set of open-source projects, we need to first locate DD.
Although the DD of different Java projects are all XML files, not all
XML files are DD. To efficiently locate DD among the available XML
files, we adopted a heuristic to focus on files whose paths have any
of the following keywords: “WEB-INF”, “spring”, “security”, and
“web”. We defined this heuristic because based on our experience,
DD usually exist in specific folders or have specialized names.

For each located XML file, we applied Antlr [15, 16] to generate a
parsing tree, where nodes represent XML entities or data and edges
represent the parent-child containment relationship. To identify
candidate pairs in the tree representation, a naïve approach can
• identify all XML entities E = {e1, e2, . . . , en }, and
• create a pair for any two coexisting entities (i.e., (ei , ej),
where i, j ∈ [1,n] and i , j).

However, since many irrelevant entities may coexist in the same
file for distinct requirements, their coexistence is meaningless.
Therefore, many of the candidate pairs constructed by the above-
mentioned naïve approach are actually useless for rule inference.

To overcome the challenge of noisy entity pairs and to iden-
tify promising candidates, we used a heuristic that “if two XML

entities hold the same string value at least once, they are likely to

be correlated”. As shown in Listing 1, the <role-name> element un-
der <security-constraint> holds the data “comm” (line 9), while the
<role-name> element under <security-role> contains the same string
literal (line 14). Therefore,Xeditor generates a candidate pair based
on the two elements.

Before generalizing rules from the concrete candidate pairs, we
need to solve another challenge: how can we represent candidates

in an unambiguous way? In Listing 1, the two elements referring
to “comm” have the same tag <role-name>. If we simply use these tags
to define a candidate pair (<role-name>, <role-name>), the semantics
is very confusing and we cannot tell the elements apart. To solve
this problem, we decided to include the context, i.e., the parent
and even ancestors of both entities, into our representation for
disambiguation. Suppose that an entity A has its parent entity as
P , while P is contained by the root element R. Then our context-
aware representation for A is: R_P_A, which corresponds to the
XML path from root to A. For the candidate pair mentioned above,
our context-aware representation is:

(web-app_security-constraint_auth-constraint_role-name,

web-app_security-role_role-name).
When a rule-to-infer r has multiple occurrences, it can corre-

spond to multiple candidates with distinct XML paths, such as
cp=(beans_bean_id, beans_bean_property_ref) and cq=(beans_beans_bean_id,
beans_beans_bean_property_ref) shown in Figure 4. If we do not ap-
propriately process the path divergences between candidates, we
may fail to infer true rules or always infer duplicated rules. Es-
sentially, we need an abstract context-aware representation of

beans

bean

id

bean

property

ref

beans

bean

id

bean

property

ref

beans

(cp) (cq)
Figure 4: XML trees to visualize the spatial relationship be-

tween entities in cp and cq

candidates that is (1) sensitive to the path divergences between enti-
ties inside each candidate, but (2) insensitive to the path divergences
among candidates showing the same rule.

To create the abstract representation, for each candidate ci =
(ei1, ei2), Xeditor identifies the lowest common XML ancestor,
and converts the paths of both entities based on that ancestor. For
instance, the entities in cp of Figure 4 have the lowest common
ancestor as beans, so the abstract representation is (*_beans_bean_id,

*_beans_bean_property_ref). Here “wildcard (∗)” represents the com-
mon XML path prefix of beans shared by both entities. Similarly, cq
is converted to (*_beans_bean_id, *_beans_bean_property_ref). There-
fore, the above-mentioned candidate pair from Listing 1 can be
abstracted as:

(*_web-app_security_security-constraint_auth-constraint_role-name,

*_web-app_security_security-role_role-name).
By representing candidate pairs in an abstract and context-aware

way, we can (1) differentiate between same-tag entities, (2) cluster
candidates showing the same rule, and (3) simplify rule extraction
and application (Section 3.2-Section 3.3).

3.2 Rule Extraction

After extracting a set of candidate pairs (i.e., C = {c1, c2, . . . , cm })
from corpus F , Xeditor infers rules with our customized associa-
tion rule mining technique. This technique first adopts traditional
association rule mining [51] to infer the occurrence coupling be-
tween XML entities; it then applies two filters to remove cooccur-
ring entity pairs that are less likely to have def-use relations.

Association rule mining (ARM) [51] is a classical way to find
patterns in data and detect couplings between data entities. An
assocation rule between two entities e1 and e2 can have the format
“e1 ⇒ e2” or “e2 ⇒ e1”. In the notation “e1 ⇒ e2”, e1 is called the
antecedent, and e2 is called the consequent. The notation means that
the occurrence of e1 implies that of e2. With such rules, we can
predict the occurrence of e2 when e1 occurs. ARMmines association
rules in a probabilistic way. Intuitively, ARM infers the rule “e1 ⇒
e2” if the two entities cooccur for a sufficient number of times and
whenever e1 occurs, e2 usually occurs. Formally, suppose that the
numbers of occurrences of e1 and e2 are separately f req(e1) and
f req(e2). We represent the number of cooccurrences between the
entities as f req(e1, e2). The rule “e1 ⇒ e2” is derived if

(1) f req(e1, e2) ≥ supp, where supp is the threshold for the
number of cooccurrences, and

(2) Pr (e2 |e1) =
f req(e1, e2)
f req(e1)

≥ conf , where conf is the thresh-
old for the probability.

In our research, for each candidate ci = (ei1, ei2), Xeditor iden-
tifies the occurrences of ei1 and ei2 in all files; it then computes

Inferring and Applying Def-Use Like Configuration Couplings in Deployment Descriptors ASE ’20, September 21–25, 2020, Virtual Event, Australia

f req(ei1, ei2), Pr (ei2 |ei1), and Pr (ei1 |ei2) accordingly to reveal ex-
istence couplings between entities.

Two Filters. In certain projects, some irrelevant entities acci-
dentally coexist a lot. To avoid inferring noisy def-use like rules
from such accidental coexistence, we decided to build two filters
that refine the above-mentioned existence couplings.
(F1) p f req(e1, e2) ≥ pth, where pth is the minimum number of

projects that support the cooccurrences between e1 and e2.
We designed this filter because certain accidental coexistence was
introduced by the coding habits of some programmers. However, it
is very unlikely that such accidental coexistence popularly exists in
many projects. This filter removes any rule that is only supported
by a small number of projects.

(F2) Pr (same_strinд) = f req(strinд(ei1) = strinд(ei2))
f req(ei1, ei2)

≥ vth,

wherevth is the minimum rate of same-string cooccurrences.
We designed this filter because in some DD, developers unneces-
sarily set irrelevant XML entities to hold identical values such that
they do not have to carefully examine the correspondence between
entities. However, more developers still use distinct and meaningful
string values to tell apart irrelevant entities. Therefore, this filter
removes any rule where the two entities do not frequently hold the
same string literal.

By default, Xeditor extracts a def-use like rule “ei1 → ei2” if
supp = 10, conf = 0.9, vth = 0.95, and pth = 9. We used these
threshold values because our evaluation shows that Xeditorworks
most effectively with this setting (Section 4.3).

At the end of this step, Xeditor obtains a set of def-use con-
figuration couplings and saves them into its database D. For the
example shown in Listing 1, from this exemplar file together with
several other files containing relevant entity pairs, Xeditor can
infer the following rule:

*_web-app_security-constraint_auth-constraint_role-name→

*_web-app_security-role_role-name. (Rule 1)

3.3 Rule-Based Checking

Given a new XML file f , Xeditor enumerates the inferred rules to
detect bugs in the file and suggests changes when possible. Specif-
ically, Xeditor adopts Antlr to create a parsing tree for f and
extracts all entities from the tree. For each rule r = A → B in
the database, Xeditor searches entity matches for A and B sepa-
rately. For simplicity, we represent the two sets of found matches
with EA = {eA1, eA2, . . . , eAh } and EB = {eB1, eB2, . . . , eBl }. Next,
Xeditor pairs up entities between EA and EB based on (1) abstract
context-aware representations of entities and (2) the common string
literals they share. If eAi (i ∈ [1,h]) cannot be paired up with any
entity in EB , Xeditor reports a bug and suggests possible fixes.

For instance, by applying the above-mentioned inferred rule
(Rule 1) to the XML file in Listing 2, Xeditor can find two matches
for the antecedent <role-name> element under <security-constraint>,
but find no match for the consequent <role-name> element. In this
scenario,Xeditor reports two bugs and suggests the corresponding
fixes as below:

“Insert a <role-name> entity with value ‘prof’ under <web-app>

<security-role>; or delete the <role-name> entity with value ‘prof’

under <security-constraint> <auth-constraint>.”

“Insert a <role-name> entity with value ‘stu’ under <web-app>

<security-role>; or delete the <role-name> entity with value ‘stu’ under

<security-constraint> <auth-constraint>.”

Listing 2: A simplified version of another web.xml file [1]
1 <?xml v e r s i o n = " 1 . 0 " encod ing ="UTF−8"? >
2 <web−app v e r s i o n = " 2 . 5 " xmlns =" h t t p : / / j a v a . sun . com / . . . "
3 xmlns : x s i =" h t t p : / /www. w3 . org / 2 0 0 1 / XMLSchema− i n s t a n c e "
4 x s i : s chemaLoca t ion =" h t t p : / / j a v a . sun . com / xml / ns / . . . " >
5 . . .
6 < s e c u r i t y −c o n s t r a i n t >
7 . . .
8 <auth−c o n s t r a i n t >
9 < ro l e −name>prof </ ro l e −name>
10 </ auth−c o n s t r a i n t >
11 </ s e c u r i t y −c o n s t r a i n t >
12 . . .
13 < s e c u r i t y −c o n s t r a i n t >
14 . . .
15 <auth−c o n s t r a i n t >
16 < ro l e −name>stu </ ro l e −name>
17 </ auth−c o n s t r a i n t >
18 </ s e c u r i t y −c o n s t r a i n t >
19 </web−app>

4 EVALUATION

This section first introduces our data sets (Section 4.1) and eval-
uation metrics (Section 4.2). Next, it presents our evaluation on
Xeditor’s effectiveness of rule inference (Section 4.3) and rule
application (Section 4.4). Finally, it expounds on the comparison
between Xeditor and a baseline technique (Section 4.5).

4.1 Data Sets

We constructed two major data sets for evaluation. Specifically, we
mined Java open-source projects on GitHub [3] using the heuristics
described in Section 3.1. We crawled the website for any project that
contains at least one XML file, whose file path has any of the fol-
lowing keywords: “WEB-INF”, “spring”, “security”, and “web”. After
removing redundant projects, we randomly put the crawled projects
into two data sets. The first set (D1) contains 70% of projects (i.e.,
1,137), while the second set (D2) contains 30% of projects (i.e., 478).
For D1, Xeditor identified 4,248 DD in the latest version of 1,137
projects. We used these DD to explore three research questions:
RQ1: How effectively does Xeditor infer rules?
RQ2: How effectively does Xeditor apply rules to locate bugs?
RQ3: How well does Xeditor compare with a baseline approach,

which detects XML bugs based on co-changed instead of
coexisting entities?

After inferring rules from D1, we used Xeditor to apply rules to
individual program versions in D2. We investigated two questions:
RQ4: Did developers introduce any of the XML bugs that Xeditor

can detect during XML file maintenance?
RQ5: How well do Xeditor’s change suggestions match develop-

ers’ actual fixes for those detected XML bugs?
Our experiments with D1 intend to assess the usability of Xeditor,
while our experiments with D2 intend to mimic the real application
scenarios of Xeditor and assess the tool’s usefulness to develop-
ers. Notice that Xeditor is actually applicable to arbitrary DD to
examine for any rule violation, no matter whether the files have
been newly created, recently updated, or unchanged for a long time.

ASE ’20, September 21–25, 2020, Virtual Event, Australia C. Wen et al.

In our experiments with D2, we intentionally applied Xeditor to
revisions of programs to demonstrate one typical usage of the tool.

4.2 Metrics

We used the following metrics to evaluate the effectiveness of Xed-
itor and the baseline technique.

Precision (P) measures among all reports generated by a tech-
nique, how many of them are true positives:

P =
of correct reports

Total # of generated reports × 100%. (1)

Precision can be used to evaluate the effectiveness of rule inference
and rule application. For rule inference, P measures how many
reported rules are correct rules. For rule application, P measures
among all reported XML bugs, how many of them are real bugs.

Recall (R) measures among all known true positives, how many
of them are reported by a technique:

R =
of correct reports

Total # of true positives × 100%. (2)

Since we do not have any prior knowledge on the true rules exist-
ing in XML files, we did not evaluate the recall of rule inference.
However, based on the inferred rules and our manual inspection,
we managed to construct a ground truth data set and evaluated the
recall of rule application.

F score (F) combines P and R to measure the accuracy:

F =
2 × P × R
P + R

× 100%. (3)

The F score measures the trade-off between precision and recall,
thus we leveraged it to measure the accuracy of rule application.

4.3 Effectiveness of Rule Inference

There are four parameters in Xeditor that can influence its ca-
pability of rule inference: supp, conf , vth and pth. To investigate
how sensitive Xeditor is to these parameters, we applied Xeditor
to the first data set D1 with distinct parameter settings, and then
manually inspected the inferred rules to calculate precision. Before
our manual inspection, we did not have any prior knowledge of
the correct rules. Therefore, it is infeasible for us to evaluate the
recall of Xeditor’s rule inference. To evaluate the precision, given
a rule reported by Xeditor, our manual inspection involves on-
line search for (1) the related library specifications or framework
tutorials, and/or (2) relevant discussions on technical forums (e.g.,
StackOverflow [6]). We consider an inferred rule to be true if online
documentation or discussion recommends it, or no online XML
example violates the rule.
4.3.1 Sensitivity to supp. We increased supp from 0 to 19, and
explored 20 settings for the parameter. Due to the space limit, in
Table 1, we present the results for only five settings. Intuitively,
supp counts the number of supporting instances for any candidate
rule. The more supporting instances there are, the more likely that
a candidate rule is a real one. As shown in the table, when supp
increases from 8 to 12, the number of inferred rules by Xeditor
decreases from 56 to 40, while the number of correctly inferred
rules decreases from 34 to 24. The observations are understandable
because with the other parameters unchanged, the more supporting

Table 1: Rule inference with different settings of supp

supp conf vth pth

of Inferred

Rules

of Correct

Rules

Precision

(%)

8 0.9 0.9 3 56 34 61
9 0.9 0.9 3 53 32 60
10 0.9 0.9 3 50 32 64
11 0.9 0.9 3 44 27 61
12 0.9 0.9 3 40 24 60

Table 2: Rule inference with different settings of conf

supp conf vth pth

of Inferred

Rules

of Correct

Rules

Precision

(%)

10 0.75 0.9 3 59 32 54
10 0.80 0.9 3 54 32 59
10 0.85 0.9 3 52 32 62
10 0.90 0.9 3 50 32 64
10 0.95 0.9 3 40 25 63

Table 3: Rule inference with different settings ofvth

supp conf vth pth

of Inferred

Rules

of Correct

Rules

Precision

(%)

10 0.9 0.75 3 67 38 57
10 0.9 0.80 3 58 35 60
10 0.9 0.85 3 53 33 62
10 0.9 0.90 3 50 32 64
10 0.9 0.95 3 36 23 64

Table 4: Rule inference with different settings of pth

supp conf vth pth

of Inferred

Rules

of Correct

Rules

Precision

(%)

10 0.9 0.95 8 32 23 72
10 0.9 0.95 9 30 22 73
10 0.9 0.95 10 27 20 74
10 0.9 0.95 11 24 17 71
10 0.9 0.95 12 15 10 75

instances are required, the fewer rules have sufficient occurrence
rates to meet the criterion. Among all investigated settings, we
identified a precision peak at supp = 10, which is 64%. Therefore,
we set supp = 10 by default.
4.3.2 Sensitivity to conf . We increased conf from 0.00 to 0.95 with
0.05 increment, and explored 20 settings for the parameter. Due to
the space limit, Table 2 only presents our results for five parameter
settings. Theoretically, for each candidate ruleA→ B, conf reflects
the likelihood of B’s occurrence given A’s occurrence. Thus, the
higher conf is, the more likely that a candidate rule is a true pos-
itive. According to the table, as conf increases from 0.75 to 0.95,
the number of inferred rules decreases from 59 to 40, while the
number of correctly inferred rules remains to be 32 initially and
then decreases to 25. The major reason for these observed trends is
that as the threshold increases, there are fewer rules satisfying the
filtering condition. Because the precision of Xeditor’s inference
increases first and then decreases, we set conf = 0.9 by default.
4.3.3 Sensitivity to vth. We increased vth from 0.00 to 0.95 with
0.05 increment, and explored 20 settings for the parameter. Table 3
shows our results for five of those investigated settings. Basically,
given a candidate rule A→ B, vth reflects the ratio of same-value
cooccurrences between A and B among all of their cooccurrences.
Therefore, the higher vth is, the more convincing a candidate rule
is. In Table 3, as vth increases, Xeditor inferred fewer rules and

Inferring and Applying Def-Use Like Configuration Couplings in Deployment Descriptors ASE ’20, September 21–25, 2020, Virtual Event, Australia

Table 5: The 10-fold cross validation for Xeditor’s effectiveness of bug detection

Id
Rule Inference Rule Application

of Rules

Inferred

of Correctly

Inferred Rules

of Bugs

Reported

of Known

Bugs

of Correctly

Reported Bugs
Precision Recall Accuracy

1 25 20 304 283 271 89% 96% 92%
2 25 20 322 291 285 89% 98% 93%
3 21 17 258 251 240 93% 96% 94%
4 23 19 307 300 292 95% 97% 96%
5 26 21 283 276 272 96% 99% 97%
6 23 20 298 277 272 91% 98% 95%
7 21 17 270 269 252 93% 94% 94%
8 20 18 293 271 265 90% 98% 94%
9 20 18 270 268 253 94% 94% 94%
10 22 18 282 266 244 87% 92% 89%

acquired fewer correct rules; the inference precision goes up from
57% to 64%. Thus, by default, we set vth = 0.95.

4.3.4 Sensitivity to pth. We increased pth from 0 to 19, and ex-
plored 20 settings for the parameter. Table 4 shows our results for
five of the explored settings. Essentially, pth counts the number of
projects holding at least one supporting instance for any candidate
rule. The more projects there are to support a candidate rule, the
more possible that the rule is true. In Table 4, as pth increases, the
number of rules inferred by Xeditor decreases from 32 to 15 and
the number of correct rules decreases from 23 to 10. The precision
rate first increases, then decreases, and next increases again. To
achieve a good trade-off between the number of correctly inferred
rules and inference precision, we set pth = 9 by default.

Finding 1: For rule inference, Xeditor’s effectiveness is consid-

erably influenced by the settings of all four parameters. As each

parameter has its value increased, Xeditor usually infers fewer

rules and obtains fewer correct rules, while the precision rate may

increase, decrease, or remain the same.

4.3.5 Xeditor’ Precision for Rule Inference. After manually check-
ing all inferred rules by Xeditor with different parameter settings,
we confirmed 57 correctly inferred rules. Among these rules, 22
rules can be retrieved by Xeditor with its default configuration:
supp = 10, conf = 0.9, vth = 0.95, and pth = 9. Essentially, differ-
ent parameter settings indicate different trade-offs between two
factors: (1) the number of inferred rules and (2) the precision rate.
When we decided upon the default setting, we cared more about
precision than the other factor. This is because to make Xeditor
usable to people, we want to ensure that most of the rules reported
by Xeditor are correct and valuable.

Our experiment implies significant space for future improve-
ment in rule inference from DD. Specifically, with our carefully
chosen parameter configuration, Xeditor inferred rules with 73%
precision; novel approaches are still needed to considerably boost
the precision rate. Additionally, among the 57 validated rules so far,
at most 38 rules can be retrieved with one of the explored param-
eter combinations. More advanced techniques are still in need to
identify more true rules with reasonably good precision rates.

Finding 2 (Response to RQ1):With the default setting supp =
10, conf = 0.9, vth = 0.95, and pth = 9, Xeditor effectively

inferred rules with high precision (73%).

4.4 Effectiveness of Bug Detection and Fix

To evaluate Xeditor’s effectiveness of rule application, we con-
ducted two experiments. The first experiment splits D1 into 10
portions evenly, and conducts 10-fold cross validation to evaluate
how bugs detected by Xeditor match the known bugs in our data
sets. In the second experiment, with 57 rules extracted from D1, we
applied Xeditor to different versions of deployment descriptors
in D2, and validated the reported bugs and fixes based on later
versions in software history or developers’ feedback.

4.4.1 Experiment Based on D1. We split the 4,248 DD into 10 por-
tions P = {p1,p2, . . . ,p10}, and conducted 10-fold cross validation
to evaluate Xeditor’s effectiveness of bug detection and fix. In each
fold, we fed Xeditor with nine portions of data for rule inference
(e.g., including p1, p2, . . . , p9); we used the remaining one portion
of data (e.g., p10) to create a test set, and then relied on the test data
to assess Xeditor’s effectiveness of rule application. Among the 10
folds of validation, we rotated data and ensured that each portion
was used exactly once for test data creation.

Specifically, to build a test set with a data portion pi (i ∈ [1, 10]),
we first applied Antlr to convert each deployment descriptor f ∈ pi
to a parsing tree t , and then extracted entities from t . If there is
any entity pair c = (e1, e2) demonstrating a rule r = A→ B which
belongs to the 22 confirmed rules in Section 4.3, we removed B’s
match (e.g., e2) from the tree to get a different tree t ′. In this way,
if Xeditor works successfully, it should be able to (1) infer rule r
from the other nine portions of data, and (2) use that rule to report a
bug (e.g., missing B’s match e2) when scanning t ′. With the created
test sets, we compared all bugs reported by Xeditor against the
known bugs in modified parsing trees, and evaluated the precision,
recall, and accuracy accordingly.

Table 5 presents our experiment results for the 10-fold cross
validation. In the table, # of Rules Inferred shows howmany rules
Xeditor inferred from the nine data portions for each round. # of

Correctly Inferred Rules reports how many of the inferred rules
are actually correct according to our manual analysis. # of Bugs

Reported presents the number of bugsXeditor detected in the test
set. # of Known Bugs shows the number of bugs we introduced
by modifying parsing trees and removing certain entities. # of

Correctly Reported Bugs counts the reported bugs that match
our ground truth. Precision, Recall, and Accuracy reflect the
effectiveness of Xeditor’s bug detection capability. For instance,
in round 1, Xeditor inferred 25 rules from the given data portions,
while 20 of these rules are true positives. Based on all inferred 25

ASE ’20, September 21–25, 2020, Virtual Event, Australia C. Wen et al.

Table 6: The 15 real XML bugs fixed by developers

Bug

Index
Violated Rule (A→ B) Root Cause Category Fixing Strategy Vdiff(fix, bug)

1 *_beans_bean_property_ref → *_beans_bean_id Delete B only Import an XML file 2

2
*_web-app_security-constraint_auth-constraint_role-name →

*_web-app_security-role_role-name

Update the data of A while B’s data
is unchanged Update the data of B 1

3
*_web-app_security-constraint_auth-constraint_role-name →

*_web-app_security-role_role-name

Update the data of A while B’s data
is unchanged Update the data of B 1

4
*_web-app_security-constraint_auth-constraint_role-name →

*_web-app_security-role_role-name
Insert A only Insert B 4

5
*_web-app_security-constraint_auth-constraint_role-name →

*_web-app_security-role_role-name
Insert A only Insert B 4

6 *_beans_bean_property_ref → *_beans_bean_id Insert A only Delete A 2

7
*_beans:beans_beans:bean_beans:property_ref →

*_beans:beans_beans:bean_id
Insert A only Delete A 1

8
*_beans:beans_beans:bean_beans:property_ref →

*_beans:beans_beans:bean_id
Delete B only Delete A 5

9
*_web-app_servlet-mapping_servlet-name →

*_web-app_servlet_servlet-name

Insert A and B with different string
literals used Update the data of A 3

10
*_web-app_servlet-mapping_servlet-name →

*_web-app_servlet_servlet-name
Delete B only Insert B 1

11
*_web-app_servlet-mapping_servlet-name →

*_web-app_servlet_servlet-name
Insert A only Insert B 150

12
*_web-app_servlet_servlet-name →

*_web-app_servlet-mapping_servlet-name
Insert A only Delete A 6

13
*_web-app_servlet-mapping_servlet-name →

*_web-app_servlet_servlet-name
Insert A only Delete A 1

14
*_web-app_servlet-mapping_servlet-name →

*_web-app_servlet_servlet-name
Insert A only Delete A 1

15
*_web-app_servlet_servlet-name →

*_web-app_servlet-mapping_servlet-name

Insert A and B with different string
literals Update the data of B 3

rules, Xeditor detected 304 bugs in the test set, although there are
283 known bugs in the set. The intersection between bug reports
and our ground truth is 271 bugs. Thus, Xeditor achieved 89%
precision, 96% recall, and 92% accuracy for round 1.

In each round, given 9 portions of data, Xeditor inferred 20-26
def-use like rules, and 17-21 of these rules are true rules. Based on all
inferred rules, Xeditor reported 258-322 bugs, and 240-292 of them
are true bugs. Among the 10 rounds, on average, Xeditor achieved
92% precision, 96% recall, and 94% accuracy for bug detection. Two
reasons can explain why Xeditor could not achieve 100% accuracy.
First, when Xeditor obtained false positives for rule inference, the
incorrectly inferred rules misled Xeditor to produce false positives
for rule application and thus report false bugs. Second, some true
rules have insufficient supporting instances in the selected nine data
portions. Consequently, these rules cannot be inferred by Xeditor,
neither can Xeditor detect the known bugs in the test set for these
rules. In other words, the false negatives in rule inference cause
false negatives in rule application.

Finding 3 (Response to RQ2): Xeditor detected bugs in XML

files with 92% precision, 96% recall, and 94% accuracy.

4.4.2 Experiment Based on D2. With the 57 true rules revealed in
Section 4.3, we applied Xeditor to the second data set D2 to evalu-
ate whether Xeditor can (1) detect any real bug in updated XML
files, and (2) suggest fixes that correspond to developers’ actual
fixes in reality. Specifically for each project, if a commit C in the
version history modifies a deployment descriptor f , Xeditor scans
the after-change version of f . If there is any bug detected, we man-
ually examine versions after C in the repository to decide whether

the reported bug was ultimately fixed by developers. If so, the re-
ported bug is a real bug, and we can further compare Xeditor’s fix
suggestion against the actual fix applied by developers.

By manually checking the bug reports generated by Xeditor,
we identified 25 really problematic XML updates. Interestingly,
15 of these 25 bugs were later fixed by developers according to
the version history. This observation means that developers did
introduce the XML bugs that Xeditor can detect, and Xeditor is
capable of revealing developers’ mistakes when they edited DD.

Finding 4 (Response to RQ4): Xeditor revealed 15 XML bugs

in open-source software repositories. Our observation indicates the

importance of Xeditor, because developers did introduce the XML

bugs that Xeditor could detect during XML file maintenance.

Table 6 presents the 15 bugs that developers later fixed. Specifi-
cally, column Bug Index shows the index we assigned to each bug.
Violated Rule shows the rule Xeditor used to identify the bug.
Root Cause Category explains how developers introduced the
bug. Fixing Strategy describes how developers resolved the bug in
a later version. Vdiff(fix, bug) describes the version difference be-
tween the bug-fixing commit and bug-introducing one. Let us take
the first bug as an example. The violated rule is *_beans_bean_property
_ref → *_beans_bean_id. In one commit Ci , developers deleted the
consequent entity (B) while keeping the antecedent (A). In a later
commit Ci+2, developers fixed the bug by importing an XML file
where B defines the literal used by A. Therefore, Vdiff(fix, bug) =
(i+2) - i = 2.

Inferring and Applying Def-Use Like Configuration Couplings in Deployment Descriptors ASE ’20, September 21–25, 2020, Virtual Event, Australia

Table 7: The 10-fold cross validation for Baseline’s effectiveness of bug detection

Id
Rule Inference Rule Application

of Rules

Inferred

of Correctly

Inferred Rules

of Bugs

Reported

of Known

Bugs

of Correctly

Reported Bugs
Precision Recall Accuracy

1 23 18 252 272 248 98% 91% 95%
2 17 12 260 322 257 99% 80% 88%
3 21 16 225 287 222 99% 77% 87%
4 21 16 270 296 266 99% 90% 94%
5 21 16 254 288 248 98% 86% 92%
6 22 17 246 365 245 100% 67% 80%
7 20 15 230 321 227 99% 71% 82%
8 20 15 241 261 236 98% 90% 94%
9 21 16 238 343 234 98% 68% 81%
10 23 18 221 352 217 98% 62% 76%

According to Table 6, four bugs (i.e., 4th , 5th , 10th , and 11th)
were fixed via the insertion of B. Developers fixed another six bugs
(i.e., 6th , 7th , 8th , 12th , 13th , and 14th) by deleting A. Four bugs
(i.e., 2nd , 3rd , 9th , and 15th) were fixed via data updates to A or
B. One bug (i.e., 1st) was fixed when developers imported another
XML file for the data value used by A. Among all these applied fixes,
10 fixes are covered by the strategies suggested by Xeditor (Insert
B or Delete A). It means that Xeditor usually suggests helpful fixes.

Additionally, for 6 out of the 15 bugs, developers applied fixes
in the immediate next commit; they fixed the remaining bugs af-
ter at least two commits. Most interestingly, developers fixed one
bug (i.e., 11th) after 150 commits. These observations imply that if
developers had used Xeditor to examine their updated XML files
before committing program changes, they should have avoided
checking in the erroneous program changes, or even have fixed the
introduced bugs earlier.

Finding 5 (Response to RQ5): Xeditor’s change suggestions

match developers’ actual fixes for 10 of the 15 detected XML bugs.

4.5 Comparison with Baseline

Prior change suggestion tools mine software version history for
co-change patterns, and use those patterns to identify any miss-
ing change [26, 27, 32, 40, 49, 53]. For instance, ROSE leverages
association rule mining (ARM) to identify the co-change rules be-
tween program entities (e.g., “if method A is changed, method B
should also be changed”), such that whenever an entity (e.g., A) is
changed and its related entity (e.g., B) is not, ROSE suggests the
missing change [53]. These tools are similar to Xeditor due to
their adoption of ARM, but different by relying on the co-changes
instead of coexistence of program entities. We were curious how
Xeditor compares with prior work, but no prior work extracts any
project-agnostic co-change rules for deployment descriptors.

The Baseline Approach (Baseline). To facilitate the com-
parison between two methodologies, i.e., coexistence-based vs. co-
change-based, we built a ROSE-like baseline approach (named
“Baseline” for short). Baseline mines frequently co-changed XML
entities in software version history, and uses our customized as-
sociation rule mining to infer rules of the format “Chanдe (A) →
Chanдe (B)”. Baseline then exploits these rules to check individual
program commits (i.e., the program changes) for any erroneous
XML update. Similar to Xeditor, Baseline extracts two entities
as a candidate pair if (i) they are frequently co-changed within the
same files and (ii) they usually refer to the same string literal.

Experiment Setting. As with Xeditor, Baseline also has four
parameters: supp, conf ,vth, and pth. For fair comparison, we tuned
parameters in the manner described in Section 4.3 and found a
reasonably good default setting for Baseline: supp = 5, conf =
0.65, vth = 0.8, and pth = 8. Afterwards, we evaluated Baseline
using 10-fold cross validation based on the data set D1.

Results. Table 7 presents Baseline’s effectiveness of bug de-
tection in the 10-fold cross validation experiment. According to
the table, in each round, Baseline infers 17-23 rules, while 12-18
of these inferred rules are correct. When detecting bugs based on
all inferred rules, Baseline obtained 98%-100% precision, 62%-91%
recall, and 76%-95% accuracy. On average, Baseline detected bugs
with 98% precision, 78% recall, and 87% accuracy. Compared with
Xeditor’s effectiveness shown in Table 5, on average, Baseline
achieved higher precision (98% vs. 92%), lower recall (78% vs. 96%),
and lower accuracy (87% vs. 92%). These results indicate that Xedi-
tor and Baseline achieved different trade-offs between precision
and recall. When software practitioners choose an approach to use
for XML debugging, they can either choose Baseline for higher
precision and lower false positive rates, or selectXeditor for higher
recall and lower false negative rates.

Two reasons can explain the above-mentioned comparison re-
sults. First, Baseline analyzes the evolution history of 4,288 DD,
while Xeditor examines only one version of these files. Actually,
the frequent co-changes indicate stronger relevance between enti-
ties than recurring coexistence. Namely, if two entities are often
changed together in the same file, they definitely coexist; neverthe-
less, if two entities often coexist in the same file, they do not have to
be changed or get frequently changed together. Consequently, the
rules inferred from co-changed entities are generally more precise.
Second, When two closely related entities are barely changed in
version history, Baseline cannot infer any correlation between
them, neither can it predict any co-changes for those entities. Con-
sequently, Baseline obtained lower recalls.

Finding 6 (Response to RQ3): Compared with Baseline, Xed-

itor detected bugs with lower precision (92% vs. 98%), higher

recall (96% vs. 78%), and higher accuracy (92% vs. 87%). These two

approaches made distinct trade-offs between precision and recall.

5 THREATS TO VALIDITY

Threats to External Validity. All inferred rules and detected bugs
mentioned in this paper are limited to our experiment data sets. The
observations may not generalize well to close-source projects. In the

ASE ’20, September 21–25, 2020, Virtual Event, Australia C. Wen et al.

future, we would like to include more projects into our evaluation,
or even include close-source projects if possible, so that our findings
are more representative.

Threats to Construct Validity. In our 10-fold cross validation for
Xeditor’s effectiveness of bug detection and suggestion, for each
fold, we automatically generated bugs by removing some XML
entities from DD. These bugs may not represent the real bugs intro-
duced by developers during software maintenance, so our empirical
measurements can be biased. In the future, we will construct data
sets with real bugs in DD to better evaluate Xeditor’s capability
of bug detection and suggestion.

Threats to Internal Validity. Our manual analysis for the output
by Xeditor is subject to human bias and limited to our domain
knowledge. To mitigate the problem, we had two authors to exam-
ine the rules reported by Xeditor for agreement. The two authors
agreed with each other in most scenarios. When they disagreed
upon certain rules mainly because of their limited domain knowl-
edge, they shared relevant documentation or examples with each
other for discussion until coming to an agreement. Among the 25
really buggy XML updates detected by Xeditor, there are 10 bugs
not fixed by developers. We sent emails to the owner developers to
check whether any of these 10 bugs is true. So far, we have only
received one response email, which pointed out that the violation
shown in Listing 3 is a false positive. As we gather more comments
from developers, we will further improve the quality of inferred
rules and change suggestions.

6 LESSONS LEARNED

We conducted customized association rule mining to extract def-use
like XML rules in a domain-agnostic way. Our approach is based on
the insight that “if two entities frequently coexist in the same file and

often hold the same data, they are correlated”. Our evaluation shows
that Xeditor reveals some interesting rules that can effectively
capture the XML bugs caused by human errors. More importantly,
by manually analyzing the false positives produced by Xeditor,
we also learnt four research challenges in this area.

First, related entities do not always coexist in the same deployment

descriptor. We observed that some correlated entities are defined
in two separate XML files; their relationship is established when
(1) one XML file imports the other file or (2) a Java annotation in
source code specifies both files. For instance, for the rule

*_beans_bean_property_ref → *_beans_bean_id,
we found 1,196 occurrences of ref in D2, and 49 of them correspond
to the id defined in another XML file. To resolve such issues, we will
conduct cross-file association rule mining by treating multiple XML
files and Java files as a whole and analyzing them simultaneously.

Listing 3: A file that violates one of our inferred rules but is

considered to be valid by its owner developer [4]

1 . . .
2 <beans xmlns =" h t t p : / /www. spr ing f ramework . org / . . . >
3 <mongo : db− f a c t o r y dbname=" $ { mongo . d a t a b a s e . name } " mongo

− r e f ="mongo " / >
4 <bean i d =" mongoTemplate " c l a s s = . . . >
5 < c on s t r u c t o r −arg name="mongoDbFactory " r e f ="

mongoDbFactory " / >
6 </ bean >
7 </ beans >

Second, some related entities may never refer to the same value.

Listing 3 presents a file that violates an inferred rule but is consid-
ered to be correct by the owner developer. Based on the rule

*_beans_bean_constructor-arg_ref → *_beans_bean_id,
Listing 3 has a rule violation and should include another bean
defined with the id mongoDbFactory. However, from our email con-
versation with the developer and relevant documentation [41], we
learnt that by default, the <db-factory> element enables Spring to
create an instance of MongoDbFactory and to register the instance as
a bean named mongoDbFactory. In other words, with the existence of
mongo:db-factory, we shouldNOT define a beanwith the id mongoDbFactory.
Such delicate constraints are currently not inferable by Xeditor,
because the specification does not align well with our insight. To ex-
tract such constraints, more heuristics and domain-specific insights
are needed for better approach design.

Third, some related entities may not cooccur frequently enough.

Currently, Xeditor adopts multiple parameters (i.e., supp and pth)
to refine inferred rules based on the cooccurrence frequency be-
tween entities. According to our experience, there are def-use
rules that Xeditor could not identify simply because the cooccur-
rence rates are low. This limitation is commonly shared among all
probability-based rule inference approaches. More novel techniques
are still needed to reveal rules based on rare entity occurrences.

Fourth, the fixing strategies for rule violations can vary a lot. Cur-
rently, when a ruleA→ B is violated, Xeditor suggests developers
to either remove A or insert B. However, in reality, developers’ fix-
ing strategies can be more diverse, such as modifying an existing
entity to satisfy the constraint or importing an XML file with B
defined. Researches may need better techniques to propose more
fixing strategies automatically and to fully automate XML repair.

7 RELATEDWORK

The related work of this research includes metadata validation,
program change prediction, traceability management, and configu-
ration debugging.

7.1 Validation of Metadata

Several approaches were proposed to help check and/or fix the
usage of metadata (i.e., XML and annotations) [20, 22, 23, 25, 30, 37,
43, 45]. For instance, XQuery is a widely used query and functional
programming language that queries and transforms collections of
structured or unstructured data in XML documents [22]. Similarly,
CDuce [20] and XDuce [31] are independently developed domain-
specific languages (DSLs) for XML processing. To validate and
transform XML files, users have to learn one of these DSLs and use
the DSL to prescribe matching logic and change operations, which
procedure can be tedious and error-prone.

To validate Java annotation usage, Eichberg et al. provided a
DSL for users to define constraints [25]. To check user-specified
constraints, the researchers automatically converted Java bytecode
to XML documents, and converted constraints to XQuery path ex-
pressions. Similarly, Darwin [23] and Noguera et al. [37] separately
defined DSLs for users to specify and then validate the constraints
on annotation usage. However, general developers may not have
sufficient domain knowledge to properly utilize these languages.

Inferring and Applying Def-Use Like Configuration Couplings in Deployment Descriptors ASE ’20, September 21–25, 2020, Virtual Event, Australia

Song and Tilevich built an approach to automatically infer and
check invariants between metadata and program constructs, with-
out requiring users to manually prescribe anything [43]. However,
this approach focuses on the relations between metadata and code;
it does not handle any editing constraint within XML files.

7.2 Program Change Prediction

Researchers built tools to mine version histories for co-change pat-
terns, and used those patterns to predict any missing change [26, 27,
49, 53]. Specifically, Gall et al. mined release data for the co-change
relationship between subsystems [26] and classes [27]. Zimmerman
et al. and Ying et al. further extracted the co-change relationship
between finer-grained program entities (e.g., classes, methods, and
fields) [49, 53]. However, these approaches predict changes purely
based on entities’ co-change frequencies, without considering any
syntactic or semantic relationship between entities. When lots of
irrelevant entities are accidentally co-changed multiple times, such
tools may incorrectly infer rules and produce incorrect predictions.

Some hybrid approaches combine history-based association rule
mining with information retrieval (IR) [28, 35, 50]. Given a soft-
ware entity E, these approaches leverage IR-based techniques to
(1) extract terms from E and any other entity and (2) rank those
entities based on their term overlapping with E. Meanwhile, these
approaches also mine history for co-changes and rank entities ac-
cordingly. Given a new commit, these approaches combine the two
ranked lists in distinct ways to reveal any missing change. How-
ever, the effectiveness of these approaches are also limited by the
frequency of co-changed entities.

Several researchers used the syntactic relationship between enti-
ties or files to predict changes [33, 42, 46]. For instance, Shirabad et
al. trained a machine-learning model to characterize any common-
ality between co-changed files, such as numbers of commonly used
types/functions/variables [42]. Given a changed file, the model pre-
dicts what other files to change together. Wang et al. characterized
the common field accesses and/or common method invocations
between co-changed methods [47]. Based on the characterization,
Wang et al. built CMSuggester, a tool to predict methods for change
given an added field or method and one or more changed meth-
ods [33, 46]. However, these approaches only analyze source code;
they are not applicable to non-code artifacts like XML files.

7.3 Traceability Management

Software artifact traceability means “the ability to follow the life of a
requirement in a forward and backward direction” [29]. Maintaining
traceability across software artifacts helps ensure the coevolution
of artifacts [38]. For instance, when a high-level requirement docu-
ment is changed, traceability helps locate the pieces of design or
code which should also be changed. Various information retrieval
approaches were proposed to reveal traceability links mainly be-
tween requirement documentation and other types of artifacts (e.g.,
design documents and source code) [21]. Additionally, Kagdi and
Maletic built a tool to analyze commits in a software version his-
tories and to mine for highly frequently co-occurring changes to
different artifacts [34]. Lozano et al. built MaTraca—a tool that sup-
ports users to specify traceability links across domains via logic
predicates. With users’ specifications, MaTraca checks the links
between (1) entity definitions in one domain (e.g., Java) and (2)

entity usage in another (e.g., XML). However, none of these tools
examine the coevolution patterns within the same XML file.

7.4 Configuration Debugging

Several tools were built to diagnose or fix software configuration
errors [18, 19, 39, 48, 52]. These approaches execute buggy soft-
ware, gather execution profiles, compare the profiles, and conduct
dynamic analysis to locate errors. For instance, ConfDiagnoser
records program predicates that may be affected by each config-
uration option, and collects the execution profiles of a program’s
correct and undesired runs [52]. By comparing the behavioral dif-
ferences between two types of runs in terms of recorded predicates,
ConfDiagnoser identifies the candidate options with misconfigured
values. Weiss et al. built an approach to generalize system configura-
tion repairs for certain types of machines from the shell commands
developers entered to update one machine [48].

The configuration files examined by these approaches are irrele-
vant to XML documents. None of these tools check for any coupling
between configuration options.

8 CONCLUSION

Deployment descriptors are hard to create and maintain, because
there are domain-specific constraints on the XML formats defined
by different software libraries. In this paper, we built Xeditor—
an approach to automatically infer the def-use like configuration
couplings in DD. By applying the inferred rules to a given XML file,
Xeditor can identify any rule violation to report bugs and provide
suggestions. Similar to prior rule mining approaches, Xeditor also
leverages association rule mining to infer rules based on statistics.
However, different from prior work, Xeditor (1) infers rules from
DD instead of source code, (2) relies on the common data shared
between XML entities to locate candidate pairs, (3) mines rules
based on the coexistence instead of co-changes between entities,
and (4) adopts more filters to refine the mined rules.

Our evaluation reveals interesting phenomena. First, the effec-
tiveness of Xeditor is sensitive to its parameter settings. With
appropriate configuration, Xeditor was able to infer rules with
high precision (73%). Second, Xeditor could detect bugs in DD
with high precision (92%), high recall (96%), and high accuracy
(94%). Third, Xeditor could identify real bugs in DD, which were
actually later fixed by developers. This demonstrates the usefulness
of Xeditor and the necessity of similar static analysis tools for DD.

There is still significant space for future improvements in DD-
related rule inference and application. Our research currently fo-
cuses on def-use like configuration couplings because we observed
such rules in various software frameworks. However, it is still un-
known what major types of DD bugs exist in real software systems
and how def-use bugs compare with other bug categories in terms
of the occurrence rates and severity. As the future work, we will
conduct an empirical study on DD bugs in open-source projects.

ACKNOWLEDGMENT

We thank reviewers for their insightful comments. This work was
supported by NSF grants CCF-1845446 and CNS-1929701, and Bei-
jing Natural Science Foundation No. 4192036.

ASE ’20, September 21–25, 2020, Virtual Event, Australia C. Wen et al.

REFERENCES

[1] bagh. https://github.com/moghim/bagh/commit/
cae2a77fbdefedc823291a5fa98a3f51bb0c4816#diff-
411d1a9625fc3f5d5be34d116942f6ca.

[2] demo-web. https://github.com/agile-shark/demo-web/blob/master/src/main/
webapp/WEB-INF/web.xml.

[3] GitHub. https://github.com.
[4] poc-spring-data-mongodb. https://github.com/rodrigozrusso/poc-spring-data-

mongodb/blob/master/src/main/resources/spring-mongodb.xml.
[5] Spring - Bean Definition. https://www.tutorialspoint.com/spring/spring_bean_

definition.htm.
[6] StackOverflow. https://stackoverflow.com.
[7] The Deployment Descriptor: web.xml. https://cloud.google.com/appengine/docs/

standard/java/config/webxml.
[8] Viewing Deployment Descriptors. https://www.ibm.com/support/

knowledgecenter/en/SS7K4U_9.0.5/com.ibm.websphere.zseries.doc/ae/trun_
app_deploymtdesc.html.

[9] Working with Security Roles. https://docs.oracle.com/cd/E19226-01/820-7627/
bncav/index.html.

[10] XML Syntax. https://www.w3schools.com/xml/xml_syntax.asp.
[11] Introduction to Web Application Deployment Descriptors. https://docs.oracle.

com/cd/E19226-01/820-7627/bncbj/index.html, 2010.
[12] Manual Wiring Functional. https://github.com/yholkamp/addressbook-sample-

jpa/commit/726bf62be03eac0e8292362340b117a7e10dd611, 2012.
[13] Securing REST URLs with Spring. https://stackoverflow.com/questions/13836451,

2012.
[14] How to Correctly Manage Feature Configuration Deployment in JBoss Fuse 6.2.1?

https://stackoverflow.com/questions/39706237, 2016.
[15] ANTLR. https://www.antlr.org, 2020.
[16] Gumtreediff/gumtree. https://github.com/GumTreeDiff/gumtree, 2020.
[17] Securing Web Applications. https://docs.oracle.com/javaee/7/tutorial/security-

webtier002.htm, 2020.
[18] M. Attariyan and J. Flinn. Using causality to diagnose configuration bugs. In

USENIX 2008 Annual Technical Conference, ATC’08, pages 281–286, Berkeley, CA,
USA, 2008. USENIX Association.

[19] M. Attariyan and J. Flinn. Automating configuration troubleshooting with dy-
namic information flow analysis. In Proceedings of the 9th USENIX Conference on

Operating Systems Design and Implementation, OSDI’10, pages 237–250, Berkeley,
CA, USA, 2010. USENIX Association.

[20] V. Benzaken, G. Castagna, and A. Frisch. Cduce: An XML-centric general-purpose
language. In Proceedings of the Eighth ACM SIGPLAN International Conference on

Functional Programming, ICFP ’03, pages 51–63, New York, NY, USA, 2003. ACM.
[21] M. Borg, P. Runeson, and A. Ardö. Recovering from a decade: a systematic

mapping of information retrieval approaches to software traceability. Empirical

Software Engineering, 19(6):1565–1616, 2014.
[22] M. Brundage. XQuery: The XML Query Language. Pearson Higher Education,

2004.
[23] I. Darwin. Annabot: A static verifier for Java annotation usage. Advances in

Software Engineering, 2010.
[24] P. Duvall, S. M. Matyas, and A. Glover. Continuous Integration: Improving Software

Quality and Reducing Risk (The Addison-Wesley Signature Series). Addison-Wesley
Professional, 2007.

[25] M. Eichberg, T. Schäfer, and M. Mezini. Using annotations to check structural
properties of classes. In Proceedings of the 8th International Conference, Held As

Part of the Joint European Conference on Theory and Practice of Software Conference

on Fundamental Approaches to Software Engineering, FASE’05, pages 237–252,
Berlin, Heidelberg, 2005. Springer-Verlag.

[26] H. Gall, K. Hajek, and M. Jazayeri. Detection of logical coupling based on product
release history. In Proc. ICSM, pages 190–198, 1998.

[27] H. Gall, M. Jazayeri, and J. Krajewski. CVS release history data for detecting
logical couplings. In Proc. IWPSE, pages 13–23, 2003.

[28] M. Gethers, B. Dit, H. Kagdi, and D. Poshyvanyk. Integrated impact analysis for
managing software changes. In 2012 34th International Conference on Software

Engineering (ICSE), pages 430–440, June 2012.
[29] O. C. Z. Gotel and C. W. Finkelstein. An analysis of the requirements traceabil-

ity problem. In Proceedings of IEEE International Conference on Requirements

Engineering, pages 94–101, 1994.
[30] H. Hosoya and B. C. Pierce. Regular expression pattern matching for XML. J.

Funct. Program., 13(6):961–1004, Nov. 2003.
[31] H. Hosoya and B. C. Pierce. Xduce: A statically typed XML processing language.

ACM Trans. Internet Technol., 3(2):117–148, May 2003.
[32] M. A. Islam, M. M. Islam, M. Mondal, B. Roy, C. K. Roy, and K. A. Schneider.

[research paper] detecting evolutionary coupling using transitive association
rules. In 2018 IEEE 18th International Working Conference on Source Code Analysis

and Manipulation (SCAM), pages 113–122, Sep. 2018.
[33] Z. Jiang, Y. Wang, H. Zhong, and N. Meng. Automatic method change suggestion

to complement multi-entity edits. Journal of Systems and Software, 159:110441,

2020.
[34] H. Kagdi and J. Maletic. Software repositories: A source for traceability links.

TEFSE/GCT’07, 2007.
[35] H. H. Kagdi, M. Gethers, and D. Poshyvanyk. Integrating conceptual and logical

couplings for change impact analysis in software. Empirical Software Engineering,
18:933–969, 2012.

[36] N. Meng, S. Nagy, D. Yao, W. Zhuang, and G. A. Argoty. Secure coding practices
in Java: Challenges and vulnerabilities. In ICSE, 2018.

[37] C. Noguera and L. Duchien. Annotation Framework Validation Using Domain

Models, pages 48–62. Springer Berlin Heidelberg, Berlin, Heidelberg, 2008.
[38] R. Oliveto, G. Antoniol, A. Marcus, and J. Hayes. Software artefact traceability: the

never-ending challenge. In IEEE International Conference on Software Maintenance,

ICSM, pages 485 – 488, 11 2007.
[39] A. Rabkin and R. Katz. Precomputing possible configuration error diagnoses. In

Proceedings of the 2011 26th IEEE/ACM International Conference on Automated

Software Engineering, ASE ’11, pages 193–202, Washington, DC, USA, 2011. IEEE
Computer Society.

[40] T. Rolfsnes, S. D. Alesio, R. Behjati, L. Moonen, and D. W. Binkley. Generalizing
the analysis of evolutionary coupling for software change impact analysis. In
2016 IEEE 23rd International Conference on Software Analysis, Evolution, and

Reengineering (SANER), volume 1, pages 201–212, March 2016.
[41] J. Sharma and A. Sarin. Getting Started with Spring Framework: Covers Spring 5.

CreateSpace Independent Publishing Platform, USA, 4th edition, 2017.
[42] J. S. Shirabad, T. C. Lethbridge, and S. Matwin. Mining the maintenance history

of a legacy software system. In Proc. ICSM, pages 95–104, 2003.
[43] M. Song and E. Tilevich. Metadata invariants: Checking and inferring metadata

coding conventions. In 2012 34th International Conference on Software Engineering
(ICSE), pages 694–704, June 2012.

[44] Spring security JDK based proxy issue while using @Secured annotation on Con-
troller method. https://stackoverflow.com/questions/35860442/spring-security-
jdk-based-proxy-issue-while-using-secured-annotation\discretionary{-}{}{}on-
control.

[45] J. W. W. Wan and G. Dobbie. Extracting association rules from XML documents
using XQuery. In Proceedings of the 5th ACM International Workshop on Web

Information and Data Management, WIDM ’03, pages 94–97, New York, NY, USA,
2003. Association for Computing Machinery.

[46] Y. Wang, N. Meng, and H. Zhong. Cmsuggester: Method change suggestion to
complement multi-entity edits. In SATE, 2018.

[47] Y. Wang, N. Meng, and H. Zhong. An empirical study of multi-entity changes in
real bug fixes. 2018 IEEE International Conference on Software Maintenance and

Evolution (ICSME), pages 287–298, 2018.
[48] A. Weiss, A. Guha, and Y. Brun. Tortoise: Interactive system configuration repair.

In Proceedings of the 32Nd IEEE/ACM International Conference on Automated

Software Engineering, ASE 2017, pages 625–636, Piscataway, NJ, USA, 2017. IEEE
Press.

[49] A. T. T. Ying, G. C. Murphy, R. Ng, and M. C. Chu-Carroll. Predicting source code
changes by mining change history. IEEE Transactions on Software Engineering,
30(9):574–586, Sept 2004.

[50] M. B. Zanjani, G. Swartzendruber, and H. Kagdi. Impact analysis of change
requests on source code based on interaction and commit histories. In Proceedings
of the 11th Working Conference on Mining Software Repositories, MSR 2014, pages
162–171, New York, NY, USA, 2014. ACM.

[51] C. Zhang and S. Zhang. Association Rule Mining: Models and Algorithms. Springer-
Verlag, Berlin, Heidelberg, 2002.

[52] S. Zhang and M. D. Ernst. Automated diagnosis of software configuration errors.
In Proceedings of the 2013 International Conference on Software Engineering, ICSE
’13, pages 312–321, Piscataway, NJ, USA, 2013. IEEE Press.

[53] T. Zimmermann, P. Weisgerber, S. Diehl, and A. Zeller. Mining version histories
to guide software changes. In Proc. ICSE, pages 563–572, 2004.

