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a b s t r a c t 

Categorizing software and detecting similar programs are useful for various purposes including exper- 

tise sharing, program comprehension, and rapid prototyping. However, existing categorization and similar 

software detection tools are not sufficient. Some tools only handle applications written in certain lan- 

guages or belonging to specific domains like Java or Android. Other tools require significant configuration 

effort due to their sensitivity to parameter settings, and may produce excessively large numbers of cate- 

gories. In this paper, we present a more usable and reliable approach of Language-Agnostic Software Cat- 

egorization and similar Application Detection ( Lascad ). Our approach applies Latent Dirichlet Allocation 

(LDA) and hierarchical clustering to programs’ source code in order to reveal which applications imple- 

ment similar functionalities. Lascad is easier to use in cases when no domain-specific tool is available or 

when users want to find similar software in different programming languages. 

To evaluate Lascad ’s capability of categorizing software, we used three labeled data sets: two sets from 

prior work and one larger set that we created with 103 applications implemented in 19 different lan- 

guages. By comparing Lascad with prior approaches on these data sets, we found Lascad to be more 

usable and outperform existing tools. To evaluate Lascad ’s capability of similar application detection, we 

reused our 103-application data set and a newly created unlabeled data set of 5220 applications. The 

relevance scores of the Top-1 retrieved applications within these two data sets were, separately, 70% and 

71%. Overall, Lascad effectively categorizes and detects similar programs across languages. 

© 2018 Elsevier Inc. All rights reserved. 
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. Introduction 

As more projects are open sourced to facilitate communica-

ion and collaboration, effectively categorizing and detecting sim-

lar software becomes crucially important to assist skill learning,

xpertise sharing, program comprehension, and rapid prototyping

 Kontogiannis, 1993; Michail and Notkin, 1999; Liu et al., 2006;

ager et al., 2006; Schuler et al., 2007; McMillan et al., 2012b ).

pecifically, there are two major scenarios in which automatic soft-

are categorization and similar software search are useful: 

• Cross-platform software migration. When software require-

ments and execution environments change developers may mi-

grate their applications to new software or hardware platforms

(e.g., from Windows OS to Linux, or from Android phones to

iPhones). As a result, the software, components, or libraries that

work in the original environment may not work in the new
∗ Corresponding author. 
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context. Developers have to search for or build alternative soft-

ware solutions to replace the not-working software. For exam-

ple, if developers would like to build an iPhone version for their

Android app, they may want to find iOS apps similar to their

Android app, and learn (1) how other similar apps are imple-

mented for iOS, and (2) what libraries or technologies they can

use that provide similar functionalities as their original code. 
• Software upgrading. Developers sometimes reimplement soft- 

ware with a different programming language to support more

features or to improve software quality. For instance, with C,

MLBibTex reimplements BibTex (originally implemented in Pas-

cal) to support the extra multilingual features ( Hufflen, 2004 ).

When such reimplementation information is not well docu-

mented, automatic software categorization and similar applica-

tion detection can assist users to discover a useful reimplemen-

tation software, and to further decide whether to upgrade soft-

ware and benefit from the reimplementation. 

As of 2017, GitHub has 57 million repositories. Despite the avail-

bility of millions of open source projects, the GitHub showcases

now known as Collections) has less than a 10 0 0 manually labeled

https://doi.org/10.1016/j.jss.2018.04.018
http://www.ScienceDirect.com
http://www.elsevier.com/locate/jss
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jss.2018.04.018&domain=pdf
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applications for the users to explore. Manually classifying and de-

tecting similar software is time-consuming and infeasible for large

source code search engines. Added to the challenge, not all projects

have documentation or a detailed readme file. Thus, more auto-

matic categorization and similar software detection approaches are

needed to utilize the wide availability of open source projects and

to improve software showcases and functionality-based search en-

gines. 

Existing automatic categorization and similar software detection

approaches ( Linares-Vásquez et al., 2016; McMillan et al., 2012a;

Bajracharya et al., 2010; Tian et al., 2009; Kawaguchi et al., 2006;

Michail and Notkin, 1999 ) are limited for a variety of reasons.

CodeWeb identifies similar classes, functions, and relations based

on name matching. It is sensitive to the naming style of differ-

ent software ( Michail and Notkin, 1999 ). SSI ( Bajracharya et al.,

2010 ), CLAN ( McMillan et al., 2012a ) and CLANdroid ( Linares-

ásquez et al., 2016 ) detect similar Java or Android applications

based on language-specific and/or domain-specific features, such

as APIs, permission configurations, and sensor usage. Nevertheless,

these approaches are limited to the domains for which they are de-

signed. They are not helpful to detect similar software across lan-

guages, i.e., software implemented in different programming lan-

guages. MUDABlue ( Kawaguchi et al., 2006 ) and LACT ( Tian et al.,

2009 ) categorize software by extracting words from source code,

and by applying Information Retrieval (IR) techniques, such as La-

tent Semantic Indexing (LSI) and Latent Dirichlet Allocation (LDA),

to cluster programs containing similar or relevant words. However,

the effectiveness of both tools is sensitive to parameter settings,

which are data-dependent and thus difficult to tune. In addition,

MUDABlue and LACT can produce unbounded numbers of cate-

gories and cannot be used to produce a desired number of classes.

In addition, some cases can require generating a specific (or at

least bounded) number of categories such as for the purpose of

visualization (limited space) or software browsing catalogs 1 . 

In this paper, we present Lascad —a more usable and reliable

approach for language-agnostic software categorization and simi-

lar application detection using only the source code. Although de-

velopers may build similar software differently (e.g., using various

languages and following different coding styles), it is believed that

identifiers used in code and words mentioned in comments are de-

fined or used in meaningful ways that can indicate similar program

semantics ( Tian et al., 2009; Kawaguchi et al., 2006 ). Therefore, we

rely on terms (i.e., identifiers and words) used in source code to

classify and detect similar software. 

Specifically, we designed and implemented Lascad that com-

bines LDA with hierarchical clustering to categorize and detect

similar software. Although LDA is the most widely used topic mod-

eling method in software engineering research ( Chen et al., 2015 ),

its parameter for specifying the number of latent topics has been

notoriously difficult to tune ( Binkley et al., 2014; Grant et al., 2013;

Panichella et al., 2013; Chen et al., 2015 ). Different from prior work

based on LDA, Lascad leverages hierarchical clustering to eliminate

the need for tuning this specific parameter and to reduce develop-

ers’ manual effort of parameter tuning. 

Lascad contains three phases. Given a set of open source appli-

cations, Lascad first extracts terms from the source code of each

software, and preprocesses terms by removing English stop words

and programming language keywords, splitting identifiers, and re-

moving most and least frequent terms. In Phase II, Lascad uses LDA

to identify latent topics of similar or relevant terms in each ap-

plication. It leverages hierarchical clustering to recursively merge

similar topics until getting a desired number of categories. By as-

sociating software with the categories, Lascad establishes an appli-
1 https://github.com/showcases 

 

 

 

ation database with applications categorized based on the latent

opics in their terms. In Phase III, to detect applications similar to

 query application, Lascad extracts latent topics from the query

pplication, and then searches its database for programs with sim-

lar topic distribution using Jensen-Shannon Divergence similarity

 Lin, 1991 ). 

Lascad ’s implementation is available at https://github.com/

oaa-altarawy/LASCAD . 

We used three data sets to evaluate Lascad ’s capability of cat-

gorizing software. The first is MUDABlue’s category-labeled data

f 41 C programs; the second is LACT’s labeled data set of 43

rograms in 6 languages; and the third is our newly created la-

eled data of 103 programs in 19 different languages. We exper-

mented with these data sets to compare Lascad with two prior

ools: MUDABlue and LACT, and found that Lascad outperformed

ther tools in three aspects. First, Lascad obtained higher F-scores

i.e., the harmonic mean of precision and recall) and produced bet-

er numbers of categories. Second, Lascad is easier to use with-

ut requiring developers to tune the LDA parameter—number of

opics. Third, Lascad produces a bounded number of categories

hile allowing users to directly control its number. On the other

and, prior tools produced an undesirably large number of cate-

ories with no way to specify it). Although previous methods at-

empt to automatically determine the number of categories, they

roduce many non-meaningful categories ( Kawaguchi et al., 2006 )

hich does not actually make the number of categories success-

ully automated. 

To evaluate Lascad ’s similar software search capability, we

eused the third data set mentioned above and created another

ata set of 5220 unlabeled open source applications implemented

n 17 different languages. For the unlabeled data set, we randomly

hose 38 software applications as queries and used Lascad to

earch for similar applications for each of them within the whole

ataset of 5220 applications. Then, we manually inspected the top

etrieved results for each query to check their relevance. For the

ther data set with ground truth labels, we used all of the 103

pplications as queries. After inspecting the top retrieved applica-

ions of Lascad , we found that 71-70% of Top-1 and 64% of Top-5

esults were relevant to queries. In addition, the correctly retrieved

imilar applications are across languages. 

Finally, we conducted two case studies with the applications

hat Lascad did not correctly classify or retrieve as similar soft-

are. Our case studies can shed light and help in future design

nd evaluation of automatic approaches for software classification

nd similar application detection. 

In summary, this paper makes the following contributions. 

• We developed Lascad , a more usable and reliable language-

agnostic approach to categorize software and to detect applica-

tions with similar functionalities. Only source code is used and

no other language- or domain-specific information is required.

Our tool is particularly useful when across language is needed

or when no domain-specific tool for software classification and

detection (such as Java or Android tools) exists. 
• We are the first to design and implement an algorithm, com-

bining LDA with hierarchical clustering, for software categoriza-

tion that eliminates the need to tune number of latent topics—a

non-intuitive and well-known hard-to-tune parameter in LDA. 
• With three different data sets, we conducted a comprehen-

sive evaluation of three automatic software categorization ap-

proaches. Our evaluation showed that Lascad outperformed

prior tools, and worked stably well even when varying the

number of categories. 
• Unlike previous tools, Lascad gives the user direct control over

number of desired categories and avoids the large and non-

meaningful number of categories produced by previous catego-

https://github.com/showcases
https://github.com/doaa-altarawy/LASCAD
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b

rization tools. In future work, we plan to make this parameter

optional by investigating appropriate machine learning methods

that can correctly learn number of categories. 
• We created two data sets that can be used as benchmarks

for source code analysis. The first data set has manually la-

beled categories and can be used in software categorization.

It has 103 projects belonging to 6 categories and implemented

in 19 languages. The second data set contains 5220 unlabeled

projects written in 17 languages, which can be used as a pool

for finding similar applications across languages. 
• We conducted two case studies with the applications that Las-

cad did not correctly classify or retrieve as similar software.

Our case studies can shed light on future research directions

to design and evaluate automatic approaches for software clas-

sification and similar application detection. 

In the following part of this paper, we will first intro-

uce background knowledge in Section 2 , including LDA, hier-

rchical clustering, and metrics to measure categorization effec-

iveness. In Section 3 , we will discuss our approach in detail.

ection 4 will expound on all our experiments to evaluate Las-

ad ’s capabilities to categorize software and detect similar soft-

are. Section 5 presents related work. Section 6 explains threats

o validity, and Section 7 concludes the paper. 

. Background 

This section first introduces the two techniques used in our ap-

roach: LDA and hierarchical clustering. It then defines four met-

ics to evaluate Lascad ’s categorization effectiveness. Finally, it de-

nes two notations frequently used in the paper. 

.1. LDA Topic modeling 

Topic modeling ( Wallach, 2006 ) is a natural language process-

ng method to discover the abstract “topics” in a collection of doc-

ments. Each topic is a collection of relevant words. There are var-

ous topic modeling methods, such as LDA ( Blei et al., 2003 ) and

SI ( Deerwester et al., 1990 ). Among various topic modeling meth-

ds, we chose to use LDA because it has been widely used, and has

hown more advantages than other methods ( Chen et al., 2015 ). 

LDA is a generative statistical model that identifies a set of la-

ent topics in a collection of documents. In LDA, each topic has

ossibilities of generating various words, and a word can be gen-

rated from multiple topics with different probabilities. This gives

DA the flexibility of considering the same word in different con-

exts. Moreover, a document can be represented as a mixture of

everal topics ( Blei and Lafferty, 2009 ). 

LDA takes two inputs: the number of latent topics and

 document-term matrix D . For a collection of documents

 d 1 , d 2 , . . . , d n } , we can create the matrix D by extracting terms

rom documents, and by assigning each cell D ij with the number of

ccurrence of term j in document d i . LDA outputs another two ma-

rices: a document-topic matrix to describe the likelihood of each

ocument belonging to each topic, and a topic-word matrix to de-

cribe the possibilities of each topic generating various words. 

.2. Hierarchical clustering 

Clustering or cluster analysis ( Everitt et al., 2009 ) is the task of

rouping a set of objects so that similar objects are put in the same

roup. Hierarchical clustering ( Zaki and Meira Jr, 2014 ) is a cluster

nalysis method which seeks to build a hierarchy of clusters. To

onduct hierarchical clustering, users often specify one parameter:

umber of clusters , which we call cat num 

. 

There are mainly two approaches to perform hierarchical clus-

ering: agglomerative and divisive . Given the objects to cluster, the
gglomerative (bottom-up) approach initiates an independent clus-

er for each object, compares clusters pair-by-pair, and merges the

ost similar ones into larger clusters. In comparison, the divisive

top-down) approach starts with the largest cluster and splits the

luster into smaller ones recursively. In our approach, we take the

gglomerative approach. 

Specifically, the agglomerative algorithm works as follows:

iven N objects to cluster, it initializes a cluster for each object,

etting N clusters: { C 1 , C 2 , . . . , C N } . Then it creates an N × N distance

atrix by computing the distance between every two clusters. The

ore similar two objects are to each other, the smaller distance

hey have. Next, in each round of cluster merging, the algorithm

ooks for any cluster pair with the minimum distance, such as ( C i ,

 j ) where i, j ∈ [1, N ]. Then it merges the two clusters into a bigger

ne C ′ , removes the original two clusters, and updates the distance

atrix accordingly. This merging process continues until the de-

ired number of clusters are acquired. 

.3. Categorization effectiveness metrics 

We use four metrics to measure categorization effectiveness:

recision, recall, F-score, and relDiff. 

.3.1. Precision 

As defined in prior work ( Kawaguchi et al., 2006 ), given a clas-

ification approach A (such as Lascad , MUDABlue, or LACT), preci-

ion describes how precise A’s categorization is compared with an

deal categorization. Formally, 

precision = 

∑ 

s ∈ S precision sof t (s ) 

| S| (1) 

precision sof t (s ) = 

| C A (s ) ∩ C Ideal (s ) | 
| C A ( s ) | (2) 

 represents the set of applications under categorization, while s

epresents an arbitrary application in the set. In Formula (1) , pre-

ision is the mean of precision soft among all applications, where

recision soft is called soft precision . Given an application s , soft pre-

ision compares ideal category labels C Ideal ( s ) with A’s category la-

els C A ( s ), and decides what percentage of assigned labels by A are

orrect. 

.3.2. Recall 

As defined in prior work ( Kawaguchi et al., 2006 ), recall de-

cribes what percentage of ideal category labels are correctly iden-

ified by A. Formally, 

 ecall = 

∑ 

s ∈ S r ecall sof t (s ) 

| S| (3) 

ecall sof t (s ) = 

| C A (s ) ∩ C Ideal (s ) | 
| C Ideal ( s ) | (4) 

In Formula (3) , recall is the mean of recall soft among all applica-

ions, where recall soft means soft recall . Given an application s , soft

ecall compares the set of ideal category labels C Ideal ( s ) with A’s

ategory labels C A ( s ), and decides what percentage of ideal labels

re identified by A. 

.3.3. F-Score 

It computes the harmonic mean of precision and recall to

eight them evenly. Mathematically, 

-score = 

2 ∗ precision ∗ recall 

precision + recall 
(5) 

Suppose given an application s 1 , C Ideal (s 1 ) = { L 1 , L 2 } , and

 A (s 1 ) = { L 1 } . Then precision sof t = 

1 
1 = 100% , because A did not

rongly assign any label to s 1 . Meanwhile, recall sof t (s 1 ) = 

1 
2 =

0% , because A only identified L 1 , but missed the other correct la-

el L 2 . Overall, F-score = 

2 ∗100% ∗50% 
100%+50% = 67% . 
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Fig. 1. Lascad overview. 
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2.3.4. Relative difference of category number (relDiff) 

This metric is defined to measure the difference between the

identified number of categories and the ideal number of categories.

If the number of identified categories is too small compared to the

ideal number, many dissimilar applications are wrongly clustered

together. On the other hand, if the number of identified categories

is much larger than the ideal number, many similar applications

are scattered in different categories and become hard to interpret.

Formally, given a set of applications, 

relDiff = 

| # of identified categories − # of ideal categories | 
# of ideal categories 

. (6)

RelDiff’s range is [0 , + ∞ ) . When relDiff= 0, the number of identi-

fied categories is equal to the ideal number. The closer relDiff is to

0, the better number of identified categories we obtain. 

2.4. Notations 

We use the following notations to facilitate explanation: 

• t _ num represents LDA’s parameter: the number of latent topics .

By default, we set it to 50 in Lascad . 
• cat _ num is Lascad ’s parameter: the number of desired software

categories . It is set to 20 in our evaluation. 

3. Approach 

There are three phases in Lascad . As shown in Fig. 1 , given

a set of software applications, Lascad first preprocesses the data

to prepare for the categorization and similar application detec-

tion ( Section 3.1 ) which is a common Information Retrieval step.

In Phase II, given cat_num , Lascad applies LDA and hierarchical

clustering to classify software into a desired number of categories

( Section 3.2 ). In Phase III, based on the LDA results, Lascad re-

trieves software similar to a given query application ( Section 3.3 ). 

3.1. Phase I: Source Code Preprocessing 

Given a collection of documents, source code preprocessing

takes three steps to extract and refine terms, and finally, outputs

a document-term matrix. 

Extracting terms. For each software application, Lascad identifies

source code files to extract identifiers in code and words in com-

ments. These extracted terms compose the initial corpus generated

from applications. Documentations and HTML files are excluded by

Lascad , because they do not always exist in every application, and

may bias topic modeling if they contain a lot of natural language

descriptions. 
efining terms based on language features. We refine the corpus

y removing language-specific terms and by splitting synthesized

erms. We remove English-language stop words like “in”, “are”,

at”, “the”, etc., because they are unimportant. We also remove

rogramming language-specific keywords, such as “class”, “for”,

if”, and “while”, because keywords vary with languages. Specif-

cally, we created a list of keywords for the most common pro-

ramming languages and removed those keywords from the cor-

us. Note that it is not necessary to remove keywords for each

nd every newly added language because most frequent keywords

verlap across several languages. 

Developers define identifiers differently. To mitigate the influ-

nce of coding styles on Lascad ’s effectiveness, we split identifier

ames in camel case and snake case into simpler terms. For in-

tance, a camel case identifier “methodName” is split to “method”

nd “name”, while a snake case identifier “method_name” is split

o “method” and “name”. Even though these two identifiers are dif-

erent, their normalized representations are the same. 

emoving overly common and overly rare terms. As any LDA-based

pproach does, Lascad removes the most frequent and the least

requent terms from the corpus, because these terms may not re-

ect the program’s real semantics, but can confuse LDA. Formally,

uppose among m documents, a term t occurs in k documents.

hen the document frequency of term t is df = 

k 
m 

, where df de-

cribes how frequently a term occurs in a collection of documents.

imilar to prior work ( Chen et al., 2015 ), Lascad removes any term

hose df is either above 0.8 or below 0.2. 

.2. Phase II: Software categorization 

To categorize software based on the corpus extracted from

ource code, we take four steps. Given the desired number of cate-

ories cat _ num, we first use LDA to extract topics from the corpus.

hen we perform hierarchical clustering to group topics until get-

ing cat _ num groups. Next, we assign projects to clusters based on

he project-topic matrix and the generated clustering of topics. Fi-

ally, we assign a category label to each group of projects. 

tep 1. After taking in the document-term matrix output from

hase I, LDA discovers latent topics, and produces two matrices:

he topic-term ( TT ) matrix and the project-topic ( PT ) matrix. By

efault, we configured LDA to identify 50 latent topics in the given

orpus, because our experiment in Section 4.2 showed that Las-

ad was not very sensitive to the topic number parameter, and we

ould make the parameter transparent to users by setting a default

alue. 

tep 2. Given a TT matrix created by Step 1, hierarchical cluster-

ng groups similar topics recursively until getting cat _ num clusters,
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Fig. 2. Clustering similar topics in a bottom-up way. 
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here cat _ num has the default value 20. Specifically, the TT ma-

rix represents each topic with a vector L = [ l 1 , l 2 , . . . , l m 

] , where m

s the number of extracted terms, and l i ( i ∈ [1, m ]) represents the

ikelihood of term t i belonging to the topic. To cluster topics, we

nitially consider every topic as an independent cluster, and then

ompare every two topics for the cosine similarity as 

os _ Sim i j = 

L i · L j 

|| L i || || L j || = 

∑ m 

k =1 l ik l jk √ ∑ m 

k =1 l 
2 
ik 

√ ∑ m 

k =1 l 
2 
jk 

. (7)

Once we identify the most similar two topics or clusters, we

erge them into a larger cluster, remove the original two clusters,

nd calculate the centroid vector for the new cluster using 

 cen = [ 
l i 1 + l j1 

2 

, 
l i 2 + l j2 

2 

, . . . , 
l im 

+ l jm 

2 

] . (8)

For the newly created cluster, we then calculate its similarity

ith other clusters and find the next two closest clusters to group

ogether. As visualized in Fig. 2 , suppose given 6 topics, we set

at _ num = 2 . Clusters are recursively merged in a bottom-up way.

n each round, two clusters with the maximum similarity or min-

mum distance (i.e. 1 − Cos _ Sim ) are chosen and merged until we

et 2 topic clusters: (Topic 0, 3, 4) and (Topic 1, 2, 5). To facilitate

ater explanation, we formally represent the created topic clusters

s Clu = { cls 1 , cls 2 , . . . , cls cat _ num 

} . 

tep 3. We group projects based on the project-topic ( PT ) ma-

rix produced by Step 1, and the topic clusters Clu from Step 2.

ntuitively, if two projects belong to the topics within the same

luster, the projects are put into the same software group. In this

ay, we get cat _ num software classes, formally represented as

ls = { cls 1 , cls 2 , . . . , cls cat _ num 

} . 
With more detail, the PT matrix represents each project as a

ector S = [ s 1 , s 2 , . . . , s t _ num 

] , where s i (i ∈ [1 , t _ num ]) shows the

ikelihood of the project belonging to the i th topic. A project may

elong to multiple topics, while a topic belongs to exactly one

luster. Therefore, Lascad computes the project-cluster relevance

atrix M as follows: 

 i j = 

t _ num ∑ 

k =1 

s ik b k j , where 

b k j = 

{
0 , if k th topic does not belong to cls j , or 

1 , if k th topic belongs to cls j 
(9) 

ntuitively, to compute the relevance of i th project to j th cluster, we

dentify all topics inside the cluster, and sum up the project’s like-

ihoods for those topics. Since the sum is not guaranteed to be

ithin [0, 1], we further normalize the values for each project.

f the normalized relevance value between the i th project and the

 

th cluster is above a relevance threshold r _ th, it is classified into

he corresponding j th software group cls j ; otherwise, it is not. If a

roject has multiple relevance values above r _ th, it means that the
roject belongs to multiple groups simultaneously. By default, we

et r _ th = 0 . 1 to identify as many categories as possible for each

pplication. 

tep 4. With software grouped based on topic clusters, we created

 category label for each group to complete software categoriza-

ion. In prior work ( Kawaguchi et al., 2006; Tian et al., 2009 ), re-

earchers read all projects in each group and then assigned cate-

ory labels manually. We can take the same approach. However,

s shown in Section 4.2 , since we used software applications with

nown category information to evaluate Lascad ’s categorization ef-

ectiveness, we managed to leverage the applications’ labels to au-

omatically name clusters. In particular, if a group contains three

pplications labeled as “Text Editor”, and one application labeled

s “Web Framework”, Lascad labels the group with the majority

ategory “Text Editor”. 

In future, we would like to investigate two alternative ap-

roaches to automatically label groups if the true labels are un-

nown. First, in each software group cls j , we will identify the

rojects which are most relevant to the topic cluster cls j , and parse

ut the most frequent terms from the projects to label the group.

econd, we will use the most frequent terms in each topic of clus-

er cls j to name the software group cls j . 

.3. Phase III: Detecting similar applications 

In the application pool, when users select an application to

earch for similar applications, Lascad reuses the project-topic PT

atrix computed in Phase II to calculate the similarity between

rojects. Specifically, in the PT matrix, each project corresponds

o a vector S = [ s 1 , s 2 , . . . , s t _ num 

] , which is considered a probabil-

ty distribution of generating the project from these topics. Las-

ad computes the similarity between every two projects based

n Jensen-Shannon Divergence ( Lin, 1991 ), a metric used to mea-

ure the similarity between two probability distributions. Finally,

hen users choose an application in the pool, we query the appli-

ation’s precomputed similarity scores with all other applications,

ank those applications accordingly, and return the top results in

escending order by similarity scores. 

.4. Implementation 

Our tool is implemented in Python. We leveraged the NLTK

 Bird et al., 2009 ) natural language processing library, applied

cikit-learn ( Buitinck et al., 2013 ) for LDA modeling and hierarchi-

al clustering implementations, and used Pandas ( McKinney, 2011 )

nd Scipy ( Jones et al., 2001 ) to process and analyze data. 

We ran Lascad for the 103 projects on a machine with an In-

el Core i7 processor. The preprocessing for all open source projects

ook around 2 hours, the LDA algorithm extracted topics in 34 min-

tes, while the hierarchical clustering to create software categories

ook only 3 seconds. 

. Evaluation 

In this section, we first present the four data sets used in our

xperiments ( Section 4.1 ). Then we discuss our evaluations of Las-

ad for software categorization ( Section 4.2, 4.3 , and 4.4 ) and sim-

lar application detection ( Section 3.3 ). Finally, we discuss our case

tudies to understand why Lascad failed to categorize some appli-

ations or wrongly suggested similar applications ( Section 4.6 ). 

.1. Data sets 

There are four data sets used in our experiments: one labeled

et borrowed from prior work MUDABlue ( Kawaguchi et al., 2006 ),
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one labeled set from prior work LACT ( Tian et al., 2009 ), one newly

created labeled data set, and one created unlabeled data set. The

first three data sets were used for software categorization evalua-

tion, while the last two sets were used for similar software detec-

tion evaluation. 

Although there is a publicly available data set with man-

ual classification of the most popular 50 0 0 GitHub repositories

( Borges and Valente, 2017 ), we chose not to use the data set in

our evaluation. The reason is that their categorization is too broad

while our labels are functionality based. The category labels like

“Application software” and “Software tools” do not mention or in-

dicate any software functionality and can contain diverse applica-

tions. 

The MUDABlue labeled data set includes 41 C programs se-

lected from SourceForge by the MUDABlue authors. These pro-

grams belong to 13 SourceForge categories provided by LACT

( Tian et al., 2009 ): xterm, Gnome, Conversion, Board Games, Arti-

ficial Intelligence, Database Engines, Turn Based Strategy, Text Edi-

tors, Software Development, Internet, Compilers, Interpreters, and

Cross Compilers. Each application can belong to multiple cate-

gories. 

To fairly compare with prior approaches MUDABlue and LACT,

we need to execute these tools and Lascad on the same data set.

Since MUDABlue is not available (after contacting the authors) and

the paper ( Kawaguchi et al., 2006 ) does not include enough tech-

nical detail for us to reimplement the tool, we decided to reuse

MUDABlue’s data set, and to compare our results against MUD-

ABlue’s results that are reported in their paper. 

The LACT labeled data set includes 43 programs implemented

in 6 languages. These programs belong to six categories: Game,

Editor, Database, Terminal, E-mail, and Chat. Although LACT is not

available (after contacting the authors), we were able to reimple-

ment it according to their paper ( Tian et al., 2009 ), and experi-

mented with LACT and Lascad on the same data sets. 

The New labeled data set was created by us to contain 103

open source projects in 19 different languages. To avoid any bias

in favor of our approach when labeling applications, we did not la-

bel applications ourselves. Instead, we collected labeled data from

GitHub Showcases ( GitHub, 2016 )—a website organizing popular

repositories by categories. The GitHub developers manually la-

beled some projects with category information, and then grouped

those projects based on the labels. For our experiment, we ran-

domly selected the following six categories of software: Data Vi-

sualization, Game Engines, Machine Learning, Text Editor, Web
Table 1 

The category-labeled data set of 103 projects. 

Machine Data Gam

Learning (26) Visualization (22) Eng

JavaScript (33) 2 16 - 

C + + (15) 7 - 7 

Python (14) 6 2 - 

Java (8) 5 - 2 

Ruby (5) 2 - - 

C# (4) - - 4 

PHP (4) - - - 

CoffeeScript (3) - 1 - 

C (3) - - 2 

HTML (3) - 2 1 

Objective-C (2) 1 1 - 

TypeScript (2) - - 2 

CSS (1) - - - 

Clojure (1) - - - 

R (1) 1 - - 

Go (1) 1 - - 

Scala (1) 1 - - 

D (1) - - 1 

ActionScript (1) - - 1 
ramework, and Web Games. We got 103 labeled applications in

his way, and present them in Table 1 . In the table, JavaScript

s the mostly used language, while Machine Learning contains

he most applications. Each application belongs to only one

ategory. 

New unlabeled data set was built by us to contain 5220

rojects implemented in 17 languages. To evaluate Lascad ’s effec-

iveness of detecting similar applications, we need a large number

f applications to prepare Lascad ’s application pool. We want to

nsure that for any query application, Lascad can retrieve a suffi-

ient number of relevant applications from the pool. To prepare the

ata set, we sampled GitHub projects using nine keyword queries:

eb Framework, Text Editor, Compiler, Machine Learning, Chatting,

atabase, Game Engine, Mobile App, and Visualization. For each

uery, we leveraged the GitHub APIs ( GitHub, 2018 ) to download

he top 10 0 0 retrieved projects obtaining 90 0 0 projects in total as

he initial raw data. Notice that not all these sampled projects im-

lement the functionalities indicated by the keywords. We inten-

ionally sampled projects in this way to create a noisy data set,

hich contain applications relevant or irrelevant to certain func-

ionality focuses. To facilitate our evaluation, we further refined the

aw data with three filters: 

1. Each included programming language should correspond to at

least 40 programs. We believe that if a language is not well rep-

resented by a reasonable number of applications in the pool,

it is not quite useful to evaluate the language-agnostic search

effectiveness. Therefore, if an included language covered fewer

than 40 program \ s, we removed the programs from the raw

data. 

2. The storage size of each included project is at least 250 KB. Al-

ternatively, we can also filter out small projects based on the

lines of code (LOC) they contain. 

3. Each included project has received at least 10 stars. A poorly

maintained project may lack comments and have confusing

identifiers. In GitHub, users star the projects they appreciate

or keep track of GitHub (2017) , making the number of stars a

good indicator of project quality. Therefore, we set a threshold

(i.e. 10) to the number of stars to filter out possibly low-quality

projects. 

After refining the raw data, we derive 5220 projects which cor-

espond to 17 languages. 
e Web Text Web 

ine (20) Framework (16) Editor (12) Game (7) 

4 5 6 

- 1 - 

4 2 - 

1 - - 

3 - - 

- - - 

4 - - 

- 2 - 

- 1 - 

- - - 

- - - 

- - - 

- - 1 

- 1 - 

- - - 

- - - 

- - - 

- - - 

- - - 
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Fig. 3. Heat maps of Lascad ’s categorization results. 

4

 

s  

g  

w  

[  

c  

c  

b  

t  

fi

 

c  

c  

T  

d  

c  

o  

t  

D  

m

 

c  

S  

c

.2. Software categorization effectiveness 

Fig. 3 includes six heat maps to show the categorization re-

ults of Lascad on the 103-application labeled data set. A heat map

raphically visualizes a matrix by representing each digital value

ith a color ( Wilkinson and Friendly, 2009 ). The values are within

0, 1]. The greater a value is, the darker its corresponding cell is

olored. In Fig. 3 , every heat map corresponds to one known Show-

ase (or ideal ) category. The rows in each heat map are the projects

elonging to the ideal category, while the columns are the 20 iden-

ified categories. The more relevant the i th project is to an identi-

ed category cls j , the darker color cell ( i, j ) has. 

Each heat map has 2–3 darker columns marked with red cir-

les, indicating the mapping relationship between the identified
ategories and the ideal ones. For instance, in the heat map of

ext Editor, categories 11 and 12 (C11 and C12) have more cells

arkened, meaning that both identified categories characterize the

ommon semantics of text editors. In comparison, the heat map

f Web Framework has C11, C12, and C13 darkened. It means

hat some of these applications have text editor components (e.g.,

erby Derby, 2018 ) as their C11 and C12 cells are dark, while C13

ainly captures the web framework characteristics. 

For the 103 projects, Lascad categorized software with 67% pre-

ision, 85% recall, 75% F-score, and 2.33 relDiff. Our case study in

ection 4.6 will further discuss our investigation about why Lascad

ould not always correctly categorize software. 
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Fig. 4. Lascad ’s F-scores with cat _ num = 20 and t _ num varying from 20 to 100. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 5. Lascad ’s F-scores with t _ num = 50 and cat _ num varying from 6 to 50. 

Table 2 

Tool comparison based on MUDABlue’s 41 C programs of 13 ideal categories. 

Tool # of categories Precision Recall F-score RelDiff

MudaBlue 40 - - 72% 5.67 

LACT 23 76% 65% 70% 2.83 

Lascad 20 83% 67% 74% 2.33 
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Finding 1. Lascad categorized software with 67% precision, 85% 

recall, 75% F-score, and 2.33 relDiff. For each ideal category, Las- 

cad identified two or three categories, with each of which spe- 

cially characterizing certain functionality semantics. 

4.3. Categorization sensitivity to parameter settings 

One well known challenge for LDA-based approaches is to tune

the LDA parameter t _ num ( Binkley et al., 2014; Grant et al., 2013 ).

By default, we set t _ num = 50 in Lascad to eliminate users’ effort

to tune the hard-to-use parameter. Lascad has one parameter for

the user to choose which is the number of categories: cat _ num .

Number of categories cat _ num is different from number of latent

topics of LDA t _ num in two aspects: 

1. cat _ num is a high level parameter corresponds to an estimated

upper bound on the desired categories. In contrast, t _ num is

number of latent (hidden or abstract) topics in the data which

is not easy to guess or estimate according to the literature. 

2. t _ num is known to be a difficult to tune parameter because the

accuracy of the results is sensitive to its value. On the other

hand, we show that Lascad is not sensitive to cat _ num thus

easier to guess without compromising accuracy. For instance in

Section 4.2 , we set the guess for cat _ num to 20 (as an upper

bound) while the true number of categories is 6 and still got

better performance than other tools. 

To investigate Lascad ’s sensitivity to these parameters, we con-

ducted the following two experiments. 

In the first experiment, as shown in Fig. 4 , we fixed cat _ num to

20, changed t _ num from 20 to 100 with 5 increment, and checked

how overall effectiveness varied. The relDiff remained unchanged

as cat _ num was fixed to 20, so we only compared F-scores. We

found that the F-score did not vary greatly with t _ num . The mean

value was 71%, while the standard deviation was as low as 2.9%.

This indicates that Lascad is not sensitive to t _ num when we fixed

cat _ num . Therefore, it is reasonable to set a default t _ num value

and make this hard-to-configure parameter transparent to users.

The insensitivity may be due to our usage of hierarchical cluster-

ing, which considerably reduces the impact of t _ num on the cate-

gorization effectiveness. 

For our second experiment, we fixed t _ num to 50, and changed

cat _ num from 5 to 50, with 5 increment. We did not try any num-

ber greater than 50. As there are 103 applications, cat _ num = 50

indicates that applications may be distributed among so many cat-

egories that interpreting the meaning of each identified category is

challenging. Therefore, for N applications to classify, we intention-

ally set � N 2 � as the upper bound of our exploration for cat _ num . As

shown in Fig. 5 , the F-score increases significantly with cat _ num

when cat _ num ≤ 15 . When cat _ num > 15 , F-score becomes stable.
or generality, we chose cat _ num = 20 as the default setting in all

ur following experiments, because the setting achieves a reason-

ble trade-off between F-score and relDiff in this experiment. 

Finding 2. Lascad ’s categorization capability is not sensitive to 

t _ num, and only varies considerably when cat _ num ≤ 15 . We 

thus set t _ num = 50 and cat _ num = 20 by default for generality. 

.4. Comparison with prior categorization tools 

We conducted several experiments to compare Lascad with two

rior approaches: MUDABlue ( Kawaguchi et al., 2006 ) and LACT

 Tian et al., 2009 ), because both tools leverage topic modeling to

ategorize software based on source code. Neither tool is available

we contacted the authors, but were unable to obtain the tools),

o we tried to reimplement them. However, the MUDABlue pa-

er lacks implementation details, so we could not reimplement the

ool, and simply reused MUDABlue’s results reported in the paper .

dditionally, the LACT paper contains enough technical details. We

eimplemented the tool, used the best parameter setting mentioned in

he paper, and executed LACT on the same benchmarks as Lascad .

ACT requires users to specify t _ num, which we set as 40 based

n their paper. 

Table 2 shows the comparison results on MUDABlue’s data set.

e bolded Lascad ’s results. According to the table, Lascad worked

est by obtaining the highest F-score and the relDiff closest to

. Notice that although MUDABlue’s reported F-score is close to

ascad ’s (72% vs. 74%), it is doubtful if the two approaches have

omparable F-scores because MUDABlue’s authors manually la-

eled clusters while Lascad labels them automatically. Thus, the

riginal MUDABlue evaluation was subject to human bias. Sec-

nd, MUDABlue classified 41 programs (of 6 actual categories) into

0 categories , which is counterintuitive. According to the paper

 Kawaguchi et al., 2006 ), 14 out of the 40 categories identified

y MUDABlue were difficult to interpret, meaning that MUDABlue

roduced meaningless categories. Third, all programs in their data

et were implemented in one programming language. Therefore,

hey do not evaluate MUDABlue’s capability of categorizing soft-

are across languages. 

Table 3 shows the comparison results between LACT and Lascad

ased on LACT’s data set. We also bolded Lascad ’s results. Lascad

utperformed LACT for both F-score and relDiff. There are three
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Table 3 

Tool comparison based on LACT’s 43 programs of 6 ideal categories. 

Tool # of categories Precision Recall F-score RelDiff

LACT 25 56% 72% 64% 3.17 

Lascad 20 64% 72% 68% 2.33 

Table 4 

Tool comparison based on our 103 applications of 6 ideal categories. 

Tool # of categories Precision Recall F-score RelDiff

LACT 38 57% 91% 70% 5.33 

Lascad 20 67% 85% 75% 2.33 

Table 5 

Previous tool LACT’s categorization results on the 103-application data set 

with t _ num changing from 20 to 100. Pay attention to the great variabil- 

ity in the column # of categories . 

t _ num # of categories Precision Recall F-score RelDiff

20 20 51% 86% 64% 2.33 

30 27 54% 94% 68% 3.50 

40 35 55% 93% 69% 4.83 

50 38 57% 91% 70% 5.33 

60 50 63% 88% 73% 7.33 

70 47 60% 86% 71% 6.83 

80 49 59% 89% 71% 7.17 

90 52 58% 82% 68% 7.67 

100 54 64% 85% 73% 8.00 

Table 6 

Comparing Lascad and LACT’s categorization results on 

the 103-application data set with approximately similar 

cat _ num . 

LACT LASCAD 

# of categories F-score # of categories F-score 

20 64% 20 75% 

27 68% 30 75% 

35 69% 35 72% 

38 70% 40 76% 

47 71% 45 74% 

50 73% 50 76% 

Avg. 68.67% 74.67% 
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arameters to tune in LACT but only one parameter in Lascad . Nev-

rtheless, Lascad performed better with fewer parameters and less

arameter tuning effort. Additionally, we also conducted a simi-

ar comparison experiment on the 103-application labeled data set,

nd observed similar results. As shown in Table 4 , Lascad obtained

oth better F-score and better relDiff. 

Furthermore, we show that the previous tool LACT is sensitive

o t _ num (which has also been shown in their paper ( Tian et al.,

009 )). Using the 103-application data set, we changed LACT’s

 _ num from 20 to 100 with 10 increment, and checked how the

verall effectiveness varied. As shown in Table 5 , as t _ num in-

reased, the number of generated categories varied a lot. With

 _ num = 20 , LACT identified 20 categories—same as the default

alue of cat _ num in Lascad , but obtained a much lower F-score

64%). With t _ num = 60 or 100, LACT achieved its highest F-score

73%), a slightly lower score than Lascad ’s 75%, but generated too

any categories (50 and 54) for the data set of 6 ideal categories. 

Finally, in Table 6 , we compare the F-scores of Lascad and LACT

hen they produced the same number of categories. Since we can-

ot directly control LACT’s cat _ num, we choose the closest possi-

le generated cat _ num in LACT to compare it with LASCAD. Ac-

ording to the table, with 20, 35, and 50 categories produced, Las-

ad ’s F-scores are 75%, 72%, and 76%; however, LACT’s F-scores are

4%, 69%, and 75%. Lascad ’s F-scores are always higher than LACT’s.
ore importantly, LACT does not allow users to directly control the

umber of generated categories. Instead, users can only manipulate

he number of topics ( t _ num ) to indirectly influence the number

f produced categories. In comparison, Lascad is better because it

nables users from directly controlling the number of categories to

dentify. 

Finding 3. Lascad categorized software stably better than prior 

approaches on different data sets. It allows users to flexibly con- 

trol the number of generated categories, without producing over- 

whelming numbers of categories as previous tools do. 

.5. Evaluation of similar application detection 

To assess Lascad ’s similar software detection capability, we

efined a metric relevance to measure how relevant retrieved

pplications are to a given query. With n query applications

 q 1 , q 2 , . . . , q n } provided, Lascad ranks all applications in the pool

or each query based on how similar each application is to the

uery. The higher the score is, the higher rank an application gets.

sing the Top m retrieved applications { a 1 , a 2 , . . . , a m 

} , we calcu-

ated the query relevance r i as 

 i = 

∑ m 

j=1 b j 

m 

, where b j = 

{
1 , if a j is similar, or 
0 , if a j is not similar 

(10) 

orrespondingly, the overall relevance for the n queries is 

ele v ance = 

∑ n 
i =1 r i 
n 

(11) 

We used the unlabeled data set of 5220 projects to initialize

ascad ’s application pool, and randomly selected 38 applications

rom the pool as queries. Then we manually inspected the Top-

 and Top-5 retrieved applications for each query. We read the

ource code and relevant documents to decide whether each in-

pected application had the same major functionality as the query.

n this way, we found that the relevance of the Top-1 and Top-

 applications was 71% and 64% respectively. Furthermore, those

elevant applications belong to various programming languages

emonstrating Lascad ’s capability of finding similar applications

cross languages using only source code. 

We also used the 103-application labeled data set to conduct

 similar experiment. We prepared Lascad ’s pool with these ap-

lications, and tried each of them as a query to search for similar

pplications. For the Top-1 and Top-5 ranked applications of each

uery, we compared their category labels with that of the query.

f the labels were identical, the retrieved application is considered

elevant. In this way, we calculated the relevance of Top-1 and Top-

 applications as 70% and 64% respectively. 

Comparison Experiments. 

We performed three alternative experiments to find similar

oftware to a query application to compare with LASCAD using our

220 large data set. In the first experiment, we conducted a ran-

om search were the results of the query are chosen at random. In

his case, the relevance of the Top-1 (as well as any Top-i) result

as approximately %11. 

The second experiment is a full text search using the title and

he description of applications. We used the applications title as

he query and searched the other projects title and description us-

ng full text search. The relevance of the Top-1 results was %8.3.

learly, this approach is ineffective because the title of similar ap-

lications does not usually appear in the projects description. 

In the third experiment, we used the projects readme files in

n approach similar to RepoPal ( Zhang et al., 2017 ). That is, using

opic modeling on readme files rather than on source code. We
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have not used RepoPal because, in addition to readme files, it uses

Stars history which is specific to GitHub. First, we extracted the

readme files of the 5220 projects using GitHub API. There were 654

repositories without a readme file. Next, we processed the readme

files into terms and ran LDA to generate the document-topic ma-

trix. Finally, we applied similarity search on the LDA output of the

readme files as described in Section 3.3 . The relevance of the Top-1

and Top-5 results were %23 and %19 respectively. 

Finding 4. Lascad effectively detected similar software on dif- 

ferent data sets. The relevance of Top-1 and Top-5 retrieved ap- 

plications was 70–71% and 64% respectively. 

4.6. Case studies 

To understand why Lascad did not work well in some cases,

we conducted a case study to manually examine the applications

which were wrongly classified by Lascad . We also performed an-

other case study to manually check the applications that were

wrongly retrieved as similar applications to a query. 

Case Study I. We found three reasons to explain why Lascad did

not correctly classify all applications. 

First, the ground truth categories were not exclusive to each

other. For instance, some Web Game applications (e.g., clumsy-bird

Leão, 2017 ) contained certain Data Visualization features (e.g., ren-

dering scenes) or Game Engine features (e.g., game logic), so Las-

cad assigned multiple category labels to those Web Games. Since

the ground truth data only had one category label for each applica-

tion , we strictly considered all extra labels as wrong ones, which

can underestimate Lascad ’s categorization precision. 

Second, some ground truth labels provided by GitHub showcases

were not complete . For instance, although the ground truth label

of ruby-warrior ( Bates, 2012 ) was “Machine Learning”, the appli-

cation’s website described the program as “Game written in Ruby

for learning Ruby and artificial intelligence”. Therefore, the label

“Game Engine” created by Lascad also precisely summarized the

software, even though the label does not match the ground truth.

Since the ground truth labels are incomplete, we might underesti-

mate Lascad ’s categorization effectiveness. 

Third, Lascad could not differentiate between some applications

that shared latent topics but had divergent functionality focuses . For

instance, Lascad wrongly put some Game Engine applications and

Text Editor applications into the same category, because all these

programs supported similar interactions with users. This observa-

tion indicates that in future, we also need a more fine-tuned ap-

proach for term extractions for better software categorization. 

Finding 5. The generated category labels by Lascad may be dif- 

ferent from the oracle labels for three reasons. First, the oracle 

labels are incomplete. Second, the oracle categorization contains 

some incorrect labels. Third, few applications may share latent 

topics and features but actually implement different functionali- 

ties. 

Case Study II. We identified two reasons that can explain why Las-

cad may appear to incorrectly retrieve dissimilar applications for

certain queries. 

First, Lascad did not work well for query applications that con-

tained few lines of code. For instance, map-chat ( Cohen, 2017 ) was a

small location-based chat tool with only six program source files,

and Lascad was unable to effectively extract topics or suggest rel-

evant applications for this query. As a result, it wrongly suggested
ther irrelevant applications such as Web Frameworks, Text Edi-

ors, and Mobile apps. 

Second, Lascad could not detect the differences between appli-

ations that had similar topics but different implementation focuses.

or instance, django ( Django, 2017 ) is a high-level Web Framework

pplication that implements templates, authentication, database,

ervers, clients, and connections. With this application as a query,

ascad wrongly suggested ibid ( Google, 2018 )—a multi-protocol

eneral-purpose chat robot, because ibid also includes some im-

lementation of authentication, database, templates, and connec-

ions. The extracted topics were similar, although the two appli-

ations actually implemented different program logic. Despite that

his case is considered a false positive search result with respect

o the ground truth, the two applications are actually function-

lly similar but differ in their goals. Finding such applications with

imilar functionalities can be useful for developers implementing

pecific features, such as authentication or database, regardless of

he main goal of the application. In future, we can leverage pro-

ram analysis to collect more program context information, to bet-

er model the relationship between topics for each program, and

hus to improve similar software detection. 

Finding 6. Lascad may appear to incorrectly retrieve applica- 

tions dissimilar to a query application for two reasons. First, the 

query application has a small codebase. Second, Lascad does not 

differentiate between applications with similar functionalities but 

different implementation focuses. 

. Related work 

This section describes related work on similar application de-

ection, software categorization, code search, and LDA parameter

ettings. 

.1. Similar application detection 

There are various similar software detection approaches

 Linares-Vásquez et al., 2016; McMillan et al., 2012a; Bajracharya

t al., 2010; Tian et al., 2009; Kawaguchi et al., 2006; Michail and

otkin, 1999 ). For instance, Google Play has a “Similar” feature to

ecommend applications similar to a given Android app. To decide

imilarity, it leverages metrics like human-labeled app category in-

ormation, app name, app description, and target country/language.

lthough these metrics are helpful to scope similar applications,

hey are not effective to filter irrelevant applications, and always

roduce false alarms. When approaches are built on top of such

mprecise application suggestion, the approach effectiveness also

uffers ( Lu et al., 2015 ). 

CodeWeb relies on name matching to identify similar classes,

unctions, and relationships in different libraries ( Michail and

otkin, 1999 ). Since it does not check any implementation detail

f program entities, it can mismatch significantly different classes

ith accidentally similar names. SSI ( Bajracharya et al., 2010 ) and

LAN ( McMillan et al., 2012a ) rely on API usage to find similar

pplications such as Java APIs. The basic assumption is that sim-

lar applications may invoke the same library APIs similarly. How-

ver, such approaches are not designed to recommend applications

cross languages or work for other languages because of the de-

endence on specific libraries APIs. CLANDroid detects similar ap-

lications in a specific domain—Android ( Linares-Vásquez et al.,

016 ). It is not directly applicable to programs in other domains. 

RepoPal detects similar GitHub repositories based on the simi-

arity of projects’ readme files, and repositories starred by the same

sers within the same period of time ( Zhang et al., 2017 ). Never-

heless, RepoPal can only detect similar applications implemented
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m  
n the same language, only in GitHub, and with suitable readme

les. In comparison, Lascad automatically detects similar software

cross languages, from any repository, and using only source code.

lthough several tools are proposed for domain-specific similar ap-

lication detection and are successful within their domain, they

re not directly applicable to other or across domains. SimilarTech

s an interesting approach for finding analogical application across

anguages that uses tags from Stack Overflow questions ( Chen

t al., 2016; Chen and Xing, 2016 ). 

.2. Software categorization 

Approaches were proposed to automatically categorize soft-

are ( McMillan et al., 2011; Kawaguchi et al., 2006; Tian et al.,

009 ). For instance, McMillan et al. extracted JDK API invoca-

ions as features to train a machine learning model for auto-

atic software categorization ( McMillan et al., 2011 ). MUDABlue

 Kawaguchi et al., 2006 ) and LACT ( Tian et al., 2009 ) apply topic

odeling methods to categorize software based on the textual rel-

vance of terms extracted from source code. Although these cat-

gorization approaches can be extended to detect similar appli-

ations, such capability extension has not been fully investigated.

cMillian et al. once leveraged MUDABlue to detect similar Java

rograms ( McMillan et al., 2012a ), and found the search relevance

as as low as 33%. They did not explore the cross-language sim-

lar software detection effectiveness of categorization-based ap-

roaches. 

Compared with MUDABlue and LACT, Lascad leverages a novel

pproach to combine LDA with hierarchical clustering for software

ategorization and similar software detection. Lascad is more us-

ble by requiring less configuration effort while providing better

ategorization results. It allows users to manipulate the number of

oftware categories to generate. More importantly, Lascad does not

roduce overwhelming numbers of categories. 

Both Lascad and LACT starts with LDA but proceed differently

fterwards. LACT is a simple idea but with two difficult to tune

arameters. In addition, it produces unpredictable and uncontrol-

able number of categories. LACT starts by LDA without any guid-

nce of how to choose number of latent topics (which is known

o be difficult to tune). Next, LACT does one pass to merge top-

cs whose similarity is above a threshold (yet another difficult to

hoose parameter). Thus, the results can have a quadratic number

f categories. On the other hand, Lascad is a simple but an effec-

ive approach. First we perform a properly processed LDA with a

xed number of latent topics. Next, Lascad iteratively merges the

ost similar pairs of topics into new topics. This process continues

ntil the desired number of categories is obtained. The results in-

lude the desired number of categorization with a high f-score at

he same time. More importantly, there is no parameter tuning for

he LDAs number of latent topics, nor data-dependent thresholds. 

.3. Code search 

There are various commercial and open source search engines

uilt to retrieve code snippets or projects relevant to the keyword

ueries, such as Sourcegraph ( Sourcegraph, 2017 ), Google Code

earch ( Google, 2015 ), and Sourcerer ( Baldi et al., 2008 ). GitHub

nd other repository hosting services also provide search engines

or developers to find projects by topic. However, none of them is

ble to retrieve applications implementing the similar functionality

s a query application based on source code. 

.4. LDA Parameter settings 

LDA is well known to be sensitive to the selected number of la-

ent topics, and tuning this parameter is challenging ( Binkley et al.,
014; Grant et al., 2013; Panichella et al., 2013; Chen et al., 2015 ).

or instance, Binkley et al. conducted an empirical study to un-

erstand how LDA parameter settings affect source code analysis

esults ( Binkley et al., 2014 ). They concluded that there is no uni-

ersal best parameter setting because the appropriate setting de-

ends on the problems being solved and the input corpus. Grant

t al. proposed various heuristics to estimate an appropriate num-

er of latent topics in source code analysis, such as using 300 or

ewer latent topics when analyzing projects with 20,0 0 0 or fewer

ines of code ( Grant et al., 2013 ). However, such heuristics are not

pplicable to data sets of variable-sized projects. This motivated us

o design and implement an approach to make this specific param-

ter transparent, and to eliminate the need for user configuration

or the parameter. 

. Threats to validity 

To evaluate Lascad ’s similar software detection capability on

he unlabeled data set, and since there is no ground truth for ap-

lications relevance, we manually checked the similarity of the

etrieved applications to the query applications using our best

nowledge. We require both the query and the retrieved applica-

ion to strictly implement the same main functionality in order for

hem to be considered relevant. To better decide applications rel-

vance, a user study can be conducted in the future to recruit de-

elopers, ask them to separately compare applications, and then

everage their majority judgments to evaluate Lascad . 

Also in the evaluation of Lascad for similar application detec-

ion, we randomly chose 38 applications as queries to search for

imilar software in the whole pool of 5220 unlabeled applications.

or each query, we manually checked the Top-10 retrieved applica-

ions, inspecting in total 38 + 38 ∗ 10 = 418 applications. We were

nable to further increase the number of queries due to the long

anual effort needed for result verification. However, using the

03 already labeled applications, we were able to use the whole

03 projects as queries (achieving similar relevance as the former

ata set). 

We reimplemented LACT for tool comparison because the orig-

nal tool is not available even after contacting the authors. Our

eimplementation may not exactly reproduce the original tool and

ur parameter configuration may not be optimal. However, we

ried our best to reimplement the tool following the descriptions

n the paper and used the best parameter values reported by the

aper. Furthermore, the results produced by our reimplementation

atch those reported in their paper on their data set. 

In our approach, we eliminated the need for developers to man-

ally configure the hard-to-tune parameter: number of latent top-

cs of LDA, t _ num, by using an algorithm that utilizes both LDA and

ierarchical clustering, and we showed in Section 4.3 the Lascad

s not sensitive to that parameter. Thus, we set a default value to

 _ num in Lascad to save users’ configuration effort. Although such

efault value is not guaranteed to achieve optimal performance,

erfectly configuring parameters has been a challenging problem

or IR researchers. Even though our default setting is not optimal, it

id not affect Lascad ’s effectiveness to categorize and detect simi-

ar software. 

We also mitigate the issue of unbounded number of categories

and also many non-meaningful categories) produced by previous

ools by using an agglomerative clustering approach which requires

uessing number of clusters. Although our experiments showed

hat Lascad is not sensitive to this parameter, and the user can

afely choose an upper bound, it is useful in the future to investi-

ate approaches that can automatically find the correct number of

ategories without producing non-meaningful clusters. 

Within the three labeled data sets, only one dataset assigns

ultiple category labels per application as the ground true. For
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the showcases dataset, we avoided modifying the ground truth la-

bels and left it as presented in GitHub to be objective, although an

application may actually belong to multiple categories simultane-

ously. With such datasets containing partial category ground truth,

we may underestimate the effectiveness of Lascad . In the future,

we plan to create a data set that contains applications with mul-

tiple known category labels. Chen et al. built an approach to mine

for analogical libraries across programming languages ( Chen et al.,

2016; Chen and Xing, 2016 ). With Chen’s approach, we may auto-

matically detect software that can have multiple category labels,

and efficiently build a better and larger data set. 

7. Conclusion 

This paper presents Lascad , an approach to categorize soft-

ware and detect similar applications. Our tool is easy to implement

and to use, language-agnostic and is solely based on the software

source code. Lascad can be particularly useful when no domain-

specific tool exists or when cross-language software categorization

and detection capabilities are needed. 

Furthermore, by combining LDA with hierarchical clustering and

the proper data processing, Lascad is less sensitive to the number

of latent topics of the LDA, t _ num, which is known to be difficult

to tune ( Binkley et al., 2014; Grant et al., 2013 ). Therefore unlike

prior LDA-based approaches, we were able to set a default value to

 _ num and make the parameter transparent to users which makes

Lascad more usable. 

Lascad mitigated another problem in previous tools by pro-

ducing a bounded number of categories. Although previous tools

claimed to automatically generate number of categories, in prac-

tice they generate an excessively large and hard to interpret num-

ber of categories. According to their paper ( Kawaguchi et al., 2006 ),

14 out of the 40 categories identified by MUDABlue were difficult

to interpret in a dataset of only 41 applications and 6 actual cat-

egories. Lascad allows the user to specify an upper bound on the

desired number of categories, and we showed that Lascad is not

sensitive to this parameter permitting a rough estimate from the

user. Although an actual automated approach would be useful, in

some cases users may need a specific (or bounded) number of cat-

egories for the purpose of visualization or software showcases in

app stores or web catalogs. 

We evaluated Lascad for software categorization using three la-

beled data sets, with two data sets from the literature, and one

data set we built. For all three data sets, Lascad consistently out-

performed prior tools by achieving higher F-score accuracy and ob-

taining lower relDiff values without showing sensitivity to param-

eter settings. Our investigation with the 103-application data set

also revealed that Lascad was less sensitive to parameter settings

than LACT, showing that Lascad was easier to configure. We also

evaluated Lascad for similar application detection using two data

sets. For the unlabeled data set of 5220 applications and given 38

queries, the relevance of the Top-1 and Top-5 applications was 71%

and 64% respectively, whereas the relevance of the top-1 results of

the search based on readme files was only 23%. 

In summary, Lascad demonstrates great usability and relia-

bility when categorizing and detecting similar software regard-

less of the application domains or implementation languages

of software. With Lascad ’s better effectiveness than existing

tools, we envision our tool will further facilitate expertise shar-

ing, program comprehension, rapid prototyping, and plagiarism

detection. 

Lascad , and similar source code based categorization and ap-

plication search, can play a big role in transforming source code

search engines such as GitHub. Huge number of open source

projects can be automatically categorized into groups regardless if

they have documentation or not. Each group can be inspected and
abeled based on a sample of the projects it has. This approach

an build large showcases or label projects for better functionality-

ased search. 

By providing high-quality similar software, Lascad will also

oost relevant research areas such as automatic program repair

 Sidiroglou-Douskos et al., 2015 ) and security vulnerability detec-

ion ( Lu et al., 2015 ), which compare similar software for anoma-

ies and reveal potential software defects. 

This paper is our first step to improve existing software cat-

gorization and similar software search techniques by integrating

DA with hierarchical clustering. As the next step, we aim to com-

ine the keywords of the identified latent topics with program

tatic analysis to further establish finer-grained mappings between

ource code files of different applications. In this way, we can fa-

ilitate program comprehension by helping developers more pre-

isely locate the similar code implementation they are looking for,

nd by highlighting the distinct implementation between similar

oftware. 
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