
How Does Execution Information Help with
Information-Retrieval Based Bug Localization?

Tung Dao
Computer Science

Virginia Tech

Blacksburg, VA 24060

tungdm@vt.edu

Lingming Zhang
Computer Science

The University of Texas at Dallas

Dallas, TX 75080

lingming.zhang@utdallas.edu

Na Meng
Computer Science

Virginia Tech

Blacksburg, VA 24060

nm8247@cs.vt.edu

Abstract—Bug localization is challenging and time-consuming.
Given a bug report, a developer may spend tremendous time
comprehending the bug description together with code in order
to locate bugs. To facilitate bug report comprehension, informa-
tion retrieval (IR)-based bug localization techniques have been
proposed to automatically search for and rank potential buggy
code elements (i.e., classes or methods). However, these techniques
do not leverage any dynamic execution information of buggy
programs. In this paper, we perform the first systematic study on
how dynamic execution information can help with static IR-based
bug localization. More specifically, with the fixing patches and
bug reports of 157 real bugs, we investigated the impact of various
execution information (i.e. coverage, slicing, and spectrum) on
three IR-based techniques: the baseline technique, BugLocator,
and BLUiR.

Our experiments demonstrate that both the coverage and
slicing information of failed tests can effectively reduce the
search space and improve IR-based techniques at both class
and method levels. Using additional spectrum information can
further improve bug localization at the method but not the class
level. Some of our investigated ways of augmenting IR-based
bug localization with execution information even outperform a
state-of-the-art technique, which merges spectrum with an IR-
based technique in a complicated way. Different from prior work,
by investigating various easy-to-understand ways to combine
execution information with IR-based techniques, this study shows
for the first time that execution information can generally bring
considerable improvement to IR-based bug localization.

I. INTRODUCTION

Bug localization, or fault localization, is important in soft-

ware maintenance, because effective bug fixing relies on

precise bug location information. However, given a bug report

and a buggy program, developers may spend tremendous time

and effort understanding the bug description and code to

locate bugs. To facilitate bug comprehension and accelerate

bug finding, researchers have proposed various IR-based bug

localization techniques [36], [21], [19], [20]. By treating the

bug report as a query, and the source code files as plain docu-

ments, these techniques rank software entities (i.e., classes or

methods) based on their relevance or similarity to the query.

The more relevant a program entity is, the higher it is ranked

as a potential bug location.

These IR-based techniques can facilitate bug localization

and program comprehension, because they help developers

focus effort on bug-relevant code elements. In particular, Zhou

et al. proposed BugLocator to use a specialized Vector Space

Model (VSM), called rVSM, by considering file lengths and

bug history [36]. They demonstrated that rVSM outperformed

other IR models on real bugs from four open-source projects.

Saha et al. further proposed BLUiR [21] to use another

revised VSM by considering code constructs, such as class

and method names. Their experiments showed that BLUiR

even outperformed BugLocator.

Despite the various IR-based techniques, we are curious

whether the execution information of buggy programs can

further help bug localization and program comprehension. Le

et al. proposed the first tool, AML, to combine IR-based bug

localization with spectrum execution information [13]. They

used a hybrid model to encode both spectrum and textual

information into a specialized VSM. They found that AML

outperforms Learning-to-rank [32] (a state-of-the-art IR-based

bug localization technique), and MULTRIC [30] (a state-of-

the-art spectrum-based bug localization technique). However,

it is still unknown how various types of execution information
can generally help with IR-based bug localization.

To systematically investigate the impact of various execu-

tion information on IR-based techniques, we performed an

extensive study on three kinds of execution information, and

three state-of-the-art IR-based techniques, using an existing

dataset of 157 real bugs. More specifically, we investigated

the following three types of information: (1) coverage—the

classes or methods covered by failed tests, (2) slicing—the

classes or methods in the dynamic slice [29] of each failure

witness statement (i.e., a failure assertion or an exception-

throwing statement), and (3) spectrum—the suspiciousness

score of each executed class or method, which describes the

coverage ratio between passed and failed tests [10]. Hypotheti-

cally, coverage and slicing may help with IR-based techniques

by refining the search space. The reason is if an entity (i.e.,

class or method) is not covered by a failed test or does not

occur in the slice of a failure witness statement, it is unlikely to

be buggy. Spectrum information may further help by ranking

program entities purely based on suspiciousness scores. Its

ranking can complement the ranking by IR-based techniques.

In this study, we experimented with three existing IR-based

techniques: the baseline, BugLocator [36], and BLUiR [21].

To assess the impact of different execution information on

2017 IEEE 25th International Conference on Program Comprehension (ICPC)

978-1-5386-0535-6/17 $31.00 © 2017 IEEE

DOI 10.1109/ICPC.2017.29

241

2017 IEEE 25th International Conference on Program Comprehension (ICPC)

978-1-5386-0535-6/17 $31.00 © 2017 IEEE

DOI 10.1109/ICPC.2017.29

241

2017 IEEE 25th International Conference on Program Comprehension (ICPC)

978-1-5386-0535-6/17 $31.00 © 2017 IEEE

DOI 10.1109/ICPC.2017.29

241

2017 IEEE 25th International Conference on Program Comprehension (ICPC)

978-1-5386-0535-6/17 $31.00 © 2017 IEEE

DOI 10.1109/ICPC.2017.29

241

2017 IEEE 25th International Conference on Program Comprehension (ICPC)

978-1-5386-0535-6/17 $31.00 © 2017 IEEE

DOI 10.1109/ICPC.2017.29

241

2017 IEEE 25th International Conference on Program Comprehension (ICPC)

978-1-5386-0535-6/17 $31.00 © 2017 IEEE

DOI 10.1109/ICPC.2017.29

241

2017 IEEE 25th International Conference on Program Comprehension (ICPC)

978-1-5386-0535-6/17 $31.00 © 2017 IEEE

DOI 10.1109/ICPC.2017.29

241

2017 IEEE 25th International Conference on Program Comprehension (ICPC)

978-1-5386-0535-6/17 $31.00 © 2017 IEEE

DOI 10.1109/ICPC.2017.29

241

IR-based techniques, we combined IR-based techniques and

execution information in four ways: (1) IRc—to combine

coverage with IR, (2) IRs—to combine slicing with IR, (3)

IRcp—to combine coverage and spectrum with IR, and (4)

IRsp—to combine slicing and spectrum with IR.

Our experiments revealed a number of interesting findings.

First, we observed that coverage information can effectively

reduce the search space of IR-based techniques, and thus

significantly improve bug localization at both class and method

levels. In particular, for all three IR-based techniques, the num-

ber of actual bug locations ranked within Top 10 was increased

by 17-33% at class level, and by 62-100% at method level.

This combination strategy even outperformed state-of-the-art

hybrid technique AML [13] in most cases. Second, slicing

information can further improve bug localization. Compared

with coverage, slicing further increased the number of actual

bug locations among Top 10 by 1-43% at class level, and by 9-

30% at method level. Third, the additional usage of spectrum

information further improved bug localization at method level.

Our study shows that dynamic execution information can

generally bring considerable improvement to IR-based bug

localization. Some future approaches that delicately combine

various execution information with IR-based techniques may

further facilitate bug localization and program comprehension.

In summary, this paper makes the following contributions:

• We investigated four ways to combine execution infor-

mation with IR-based bug localization by exploring three

kinds of information, and three IR-based techniques.

• Our quantitative analysis shows that coverage and slicing

information effectively helps with IR-based bug localiza-

tion at both the class and method levels, while spectrum

information further helps at method level.

• This empirical study shows for the first time that exe-

cution information can generally bring considerable im-

provement to IR-based bug localization, even when the

combination strategies are simple and easy to understand.

II. METHODOLOGY

In this section, we first present the background of IR-based

bug localization (Section II-A), and then discuss different exe-

cution information and how we collected them (Section II-B).

Finally, we explain our four ways of combining execution

information with IR-based techniques (Section II-C).

A. IR-Based Bug Localization

Given a bug report, IR-based bug localization [15], [27],

[22], [16] treats the report as a query, and considers source

code elements as a document collection. It ranks elements

according to their textual similarity with the report. There

are several approaches proposed [36], [28], [19], [12], [23],

[15], [21]. In this section, we summarize the baseline IR-based

technique, two widely used IR-based tools (BugLocator [36]

and BLUiR [21]), and AML—a hybrid approach combining

an IR-based technique with spectrum execution information.

The baseline technique applies the IR framework Indri [24]

directly without any optimization. Given a bug report and a

buggy program, it preprocesses the data in three steps. First,

it extracts all words except for stop words (e.g., “a”, “at”, and

“which”), and programming language keywords (e.g., while,

for). Second, it applies camel case splitting (IsSigned →
{“Is”, “Signed”}) and stemming [8] (“Signed” → “sign”) to

split and stem code identifiers. Third, it indexes all documents

(i.e., classes or methods) by terms, and computes the term

frequency (TF) for individual documents. After the preprocess-

ing, Indri takes in the bug report query and document corpus,

retrieves query-relevant documents, and ranks the documents

by relevance. For our study, we used the default VSM (i.e.,

TF-IDF) model of Indri to do experiments.

BugLocator [36] improves the baseline with two special-

izations. First, instead of using the default VSM, BugLocator

builds a revised VSM (rVSM) to calculate the query-document

similarity differently. The specialization is based on the tool

builders’ observation that longer files are more likely to be

buggy than shorter ones. Second, when ranking documents,

BugLocator also considers bug history. Hypothetically, similar

bug reports may indicate similar bug locations. If a new report

is similar to some reports whose bugs are already located, then

BugLocator highly ranks those bug locations. According to the

evaluation with more than 3000 real bugs in prior work [36],

these two customizations enabled BugLocator to outperform

the known baseline techniques [20], [17].

BLUiR [21] improves the baseline by considering structure

information. Different from prior approaches, BLUiR observes

document structures and program structures. Given a bug

report, it assigns more weight to terms in titles than those in

summaries, because report titles usually provide more relevant

information. Given a program, BLUiR assigns more weight

to names of classes and methods, but less to variable names

and comments, because it assumes class and method names

are more important. Prior work [21] showed that BLUiR

outperformed BugLocator and BugScout [19].

AML [13] is a hybrid approach to combine spectrum

execution information (see Section II-B) with an IR-based

technique. It consists of three components: AMLText (the

IR-based tool), AMLSpectra (the spectrum information), and

AMLSuspWord. These components independently calculate sus-

piciousness scores of every program element, and AML then

computes a weighted sum of the scores to rank program

elements. Although AML outperforms the state-of-the-art IR-

based technique, it is still unclear whether the outperformance
is due to the approach design or extra dynamic information.

B. Execution Information and Its Collection

In this section, we overview the three most widely used

types of execution information: coverage, slicing, and spec-

trum. We also explain why they may help bug localization,

and how we collected them.

Coverage information and its collection. Coverage de-

scribes all entities (i.e., classes or methods) covered by a

program execution. This information can help bug localization

because if a test fails, the failure run should cover some buggy

entities. To collect the information, we used ASM bytecode

242242242242242242242242

manipulation framework [1] to instrument the entry and exit

of each method. This allows us to record which methods are

executed at runtime, and to identify the executed classes that

own the executed methods. We used Java Agent to insert code

instrumentation on-the-fly during class loading time.

Slicing information and its collection. Slicing [29] de-

scribes all classes or methods that may affect the state of a

program point. This information can be helpful because when

a test fails, only statements responsible for the failure can be

buggy. In other words, given a failure witness statement (i.e.,

the failed assertion or the statement that threw an uncaught

exception), only statements on which it is transitively control

or data dependent are responsible for the failure.

Slicing information can be collected statically or dynam-

ically [29], [25], [6]. We used JavaSlicer [2], a dynamic

slicing tool, to instrument every instruction for trace collection,

and to perform backward slicing from the failure witness

statement in each trace [25]. We chose the tool for two reasons.

First, we prefer dynamic slicing to static slicing, because

dynamic slicing identifies all code elements that actually affect

the failure state. Second, unlike other dynamic slicing tools,

JavaSlicer is publicly available and widely used [31], [35].

Although it outputs all instructions responsible for a failure

state, in our study, we mapped them to their owner methods or

classes for method-level or class-level slices, because IR-based

bug localization ranks buggy methods or classes. Specifically,

if one method or class has at least one instruction in the failure-

relevant slice, we include the entity into the method-level or

class-level slice.

Spectrum information and its collection. Spectrum de-

scribes how suspicious a program element is when the program

fails. The higher suspiciousness score a code element gets,

the more likely it is buggy. Intuitively, if a code element is

executed solely by failed tests but never by passed tests, the

element may be buggy. Spectrum information can help IR-

based bug localization, because it provides a complementary

approach to localize bugs.

In our study, with the ASM bytecode instrumentation

mentioned above, we got both method-level and class-level

coverage information by passed tests and failed tests. Then

we tried four widely-used formulae to separately compute the

spectrum information: Tarantula [10], Ochiai [3], Jaccard [4],

and Ample [5]. Formally, given a buggy program and a set of

tests, we use nf and np to represent the total number of failed

and passed tests. For each program element e, whether it is

a class or a method, we use ef and ep to denote the number

of failed and passed tests executing e. All four formulae are

shown below:

Tarantula =

ef
ef+nf

ef
ef+nf

+
ep

ep+np

(1)

Ochiai =
ef√

(ef + ep)(ef + nf)
(2)

Jaccard =
ef

ef + ep + nf
(3)

Ample = | ef
ef + nf

− ep
ep + np

| (4)

C. Combining Execution Information with IR-Based Bug Lo-
calization Techniques

Given a bug report, a buggy program, the program’s passed

tests and failed tests, we aim to improve IR-based bug lo-

calization with execution information using two heuristics:

search space reduction and rank tuning. We systematically

investigated four approaches to combine the two types of

information. Intuitively, the combination approaches should

always lead to considerable improvement, since both static and

dynamic information is used. However, we do not know how

effectively execution information can help improve IR-based

techniques.

a) Search space reduction: According to the Propaga-

tion, Infection, and Execution (PIE) model [26], bugs are

triggered when a buggy element is executed. Given a buggy

program and failed tests, we use coverage information of the

failed tests to reduce the search space of IR-based techniques.

If an element is not covered by any failure run, it is always

irrelevant to failures, and gets excluded from the scope.

Similarly, slicing information can also be used to refine the

search space of IR-based techniques, because only elements

affecting the runtime state of a fault witness statement may be

buggy. If an element is not in any failure-relevant slice, it is

unrelated to the reported bug.

b) Rank tuning: Given a ranked list by an IR-based

technique, coverage or slicing information always shortens

the list, but does not change the relative ranking among

covered or sliced elements. If two failure-relevant elements

A and B are ranked in a wrong order, neither coverage nor

slicing can correct the mistake. In comparison, spectrum

information maps each element to a suspiciousness score

based on execution coverage. According to the suspiciousness

scores, spectrum may rank code elements very differently

from IR-based techniques. When combining the two ranked

lists together, we may correct the ordering mistake mentioned

above in an IR-based list. Formally, given a class or method

whose source code is represented as d, if its IR-based score is

denoted as Score(d, q), and spectrum-based score is Susp(d),
we define a combination factor α to control their separate

weights when synthesizing an adjusted score Score′(d, q) as

follows:

Score′(d, q) = (1− α) ∗ Score(d, q) + α ∗ Susp(d) (5)

where α is configured to vary from 0 to 1, with 0.1 incre-

ment. In this way, we are able to experiment with different

configurations to identify the optimal combination.

c) Four variants: We experimented four ways of combin-

ing dynamic execution information with IR-based techniques.

IRc: Coverage information is used to refine the search space

of IR-based techniques by filtering out unexecuted enti-

ties (i.e., classes or methods). Ideally, the filtering can

243243243243243243243243

be applied either before or after IR-based techniques,

namely (1) Filter-then-IR or (2) IR-then-Filter. If fil-

tering is applied first, IR-based techniques only focus

on documents covered by failed tests. Otherwise, IR-

based techniques are applied to the whole codebase, and

then coverage is used to remove entities from the ranked

lists of IR-based techniques. Intuitively, both approaches

should work equally well. However, according to our

experiments (Section V-A), approach (2) is generally

better, so we used IR-then-Filter by default.

IRs: Similar to IRc, slicing information is used to refine the

search space of IR-based bug localization.

IRcp: Coverage information is first used to refine an IR-based

list. Spectrum information is then applied to synthesize a

tuned ranked list.

IRsp: Slicing information is first used to refine an IR-based list.

Spectrum information is then used to tune the ranked list.

To systematically compare different combination ap-

proaches, we evaluated their effectiveness at both class and

method levels. For class-level evaluation, we check whether

an approach localizes the buggy class(es). For method-level

evaluation, we verify whether an approach identifies the buggy

method(s). Note that since IR-based bug localization suggests

buggy classes and methods, our investigated combinations also

rank class- or method-level bug locations.

III. RESEARCH QUESTIONS

In this empirical study, we aim to answer the following

research questions:

Research Question 1: How does coverage information help
with IR-based bug localization?

Intuitively, by refining search space, coverage information

should help. However, it is unclear how effectively coverage

information achieves improvement.

Research Question 2: How does slicing information help
with IR-based bug localization?

We are curious how slicing information helps with IR-based

bug localization by reducing the search space.

Research Question 3: How does spectrum information
further improve bug localization over IRc and IRs?

Hypothetically, by integrating spectrum with IRc and IRs,

we should localize bugs more effectively. The reason is cov-

erage and slice only focus on the execution of failed tests, but

spectrum also takes passed tests into consideration. With more

execution information included, we may achieve improvement

in bug localization effectiveness. However, it is unclear how

much improvement we can get.

Research Question 4: How do our simple combinations
compare with AML?

We are curious how well our combination approaches work

in comparison with the state-of-the-art hybrid technique. If our

approaches work equally well or even better, it means that

dynamic information generally helps IR-based techniques, no

matter how simply the combination is done.

TABLE I: Dataset
Class Method

Project #Bug #Total #Buggy #Total #Buggy

AspectJ 41 4,157 67 14,218 88
Ant 53 1,063 96 9,624 197

Lucene 37 2,737 158 10,220 311
Rhino 26 191 58 4,839 145

Overall 157 8,148 379 38,901 741

IV. EXPERIMENT SETTINGS

We experimented with the existing benchmark suite pub-

lished by Le et al. [13]. As shown in Table I, the dataset

consists of 157 real bugs extracted from 4 open source Java

projects: AspectJ, Ant, Lucene, and Rhino. For each bug, the

dataset includes a bug report, a set of test cases including

passed and failed tests, a buggy program, and a fixed version of

the program. The bug report is used by IR-based techniques to

locate bugs. The test cases are used for execution information

collection. The actual bug fix, which is the textual diff between

the buggy program and its revised version, serves as the ground

truth to evaluate whether a bug is located correctly. As a bug

fix may involve changes to a single or multiple classes or

methods, if we consider all modified code elements as bug

locations, we have 157 bugs mapped to 379 buggy classes, or

741 buggy methods.
We used the following three widely used metrics [36], [21]

to measure the effectiveness of bug localization techniques:
Recall at Top N counts the number of actual buggy entities

included in the top N (= 1, 5, 10) ranked results. Given the

same N, the more buggy entities are included, the better a bug

localization approach works.
Mean Average Precision (MAP) calculates the average

precision values among a set of queries. The higher value,

the better. The Average Precision (AP) of a single query is

defined as:

AP =

M∑

k=1

P (k) ∗ pos(k)
number of positive instances

(6)

Suppose given a query (e.g., a bug report), M documents

are retrieved and only one of them is positive (i.e., buggy).

Then in the formula, the number of positive instances is equal

to 1. k varies from 1 to M . For each value of k, P (k)
is the percentage of positive documents among the top k
documents, and pos(k) is a binary indicator of whether or

not the kth document is positive. For example, if 5 documents

are retrieved, and the 4th and 5th are positive, then AP is

(14 + 2
5)/2 = 0.325.

Mean Reciprocal Rank (MRR) measures precision in a

different way. Given a set of queries, it calculates the mean

of reciprocal rank values for all queries. The higher value, the

better. The Reciprocal Rank (RR) of a single query is defined

as:
RR =

1

rankbest
(7)

where rankbest is the rank of the first relevant document

found. For example, for a given query, if 5 documents are

retrieved, and the 4th and 5th are relevant, then RR is
1
4 = 0.25.

244244244244244244244244

TABLE II: F-I vs. I-F at class level
Metric Project Baseline BugLocator BLUiR

F-I I-F F-I I-F F-I I-F

Top 1

AspectJ 7 6 4 6 4 5
Ant 29 32 31 33 27 31

Lucene 14 14 12 15 11 14
Rhino 3 4 3 9 8 11

Overall 53 56 50 63 50 61

Top 5

AspectJ 18 18 16 16 17 19
Ant 54 59 54 55 59 60

Lucene 45 47 50 48 53 51
Rhino 16 18 20 19 19 20

Overall 133 142 140 138 148 150

Top 10

AspectJ 27 25 21 25 25 28
Ant 63 64 62 63 65 68

Lucene 61 59 67 59 72 68
Rhino 25 26 25 28 26 25

Overall 176 174 175 175 188 189

MAP

AspectJ 0.25 0.23 0.22 0.25 0.22 0.25
Ant 0.63 0.73 0.70 0.71 0.67 0.72

Lucene 0.50 0.49 0.49 0.54 0.50 0.55
Rhino 0.33 0.40 0.34 0.47 0.50 0.55
Mean 0.43 0.46 0.44 0.49 0.47 0.52

MRR

AspectJ 0.28 0.27 0.24 0.29 0.24 0.29
Ant 0.67 0.75 0.73 0.76 0.69 0.75

Lucene 0.60 0.59 0.55 0.61 0.58 0.64
Rhino 0.32 0.40 0.36 0.51 0.51 0.56
Mean 0.47 0.50 0.47 0.54 0.51 0.56

V. RESULTS AND ANALYSIS

In this section, we first show how effectively coverage and

slicing can improve IR-based techniques (Section V-A and

V-B). Then we describe the effectiveness of spectrum (Sec-

tion V-C). Finally, we compare our combination approaches

with AML (Section V-D).

A. RQ1: How does coverage information help with IR-based
bug localization?

We compared IRc with the original IR-based techniques at

both class and method levels. Since coverage can be used

to refine the search space either before or after IR-based

techniques, we first investigated which order always produces

better results.

Filter-then-IR (F-I) vs. IR-then-Filter (I-F). The former

one first uses coverage information to scope a list of entities

(i.e. classes or methods) executed by failed tests, and then

applies IR-based techniques to rank entities relevant to a

given bug report. The latter one takes the two steps in a

reverse order. To understand which option is better, we tried

both options to localize bugs at class and method levels, and

observed that I-F performed better in most cases. Due to the

space limit, we only show the class-level results in Table II.

One possible reason is that I-F leverages the whole codebase

to build corpus for IR techniques, while F-I only uses the

executed classes or methods. With a larger document corpus,

I-F better identifies both important and unimportant words, and

thus ranks executed documents more precisely. Therefore, by

default, we used I-F to integrate coverage or slicing with IR-

based techniques.

Finding 1: Compared with Filter-then-IR, IR-then-
Filter worked better to refine the search space of IR-
based bug localization with execution information.

Class-level bug localization identifies buggy classes. Ta-

ble III (a) shows the comparison between IR-only and IRc for

class-level bug localization. Under each IR-based technique

(Baseline, BugLocator, or BLUiR), there are two columns: IR
and IRc. Each column “IR” shows the original technique’s

results, while column “IRc” presents the results of the hybrid

approach. Surprisingly, coverage information alone greatly

boosted the overall effectiveness for all IR-based techniques.

In particular, the MAP value of BugLocator was significantly

improved from 0.28 to 0.49, while the MRR value was

improved from 0.34 to 0.54. Among the three techniques,

BLUiR had the best effectiveness, which conformed with the

findings in prior work [21]. When augmented with coverage

information, BLUiR outperformed others for all metrics except

for Top 1.

However, the effectiveness improvement by coverage did

not evenly distribute among different projects. For example,

compared with Baseline, IRc improved the Top-1 metric of

AspectJ from 4 to 6 with 50% improvement, but did not

improve the metric for Rhino. We examined Rhino’s source

code, and found that the actual buggy classes were usually

ranked very low (e.g., below Top 100). Therefore, even though

coverage could effectively shorten ranked lists, it was not ca-

pable of removing hundreds of unexecuted classes to promote

any buggy class to Top 1.

Finding 2: At class level, coverage consistently im-
proved all studied IR-based techniques. On average,
MAP was increased from 0.34 to 0.49 with 44%
increment, and MRR was increased from 0.40 to 0.53
with 33% increment.

Method-level bug localization isolates buggy methods for

developers to examine. Compared with class-level bug local-

ization, this approach can save more manual effort, because

it does not leave a whole class body for developers to delve

into [13]. Table III (b) presents the results. Compared with

class level, all three original techniques worked more poorly

at method level, meaning that locating buggy methods is

generally harder than locating classes. Two reasons can explain

the difficulty. First, each method contains fewer terms to index,

and may become less relevant to random queries. Second, there

are many more methods to rank than classes, which makes it

harder to rank the actual buggy methods high.

Compared with class level, the improvement by coverage

was more significant at method level. For BLUiR, the overall

MAP and MRR improvements were 114% (from 0.14 to

0.30) and 84% (from 0.19 to 0.35), while the class-level

improvements in Table III (a) were 30% (from 0.40 to 0.52)

and 24% (from 0.45 to 0.56). Across all subjects, coverage

effectively improved IR-based techniques in most cases.

As shown in Table III (b), among different techniques,

BLUiR performed the worst without coverage information.

This observation complements the findings in prior work [21],

because Saha et al. only evaluated BLUiR’s performance at

class level. The reason why the observations at class level

245245245245245245245245

TABLE III: IR vs. IRc bug localization

Metric Project
(a) Class Level (b) Method Level

Baseline BugLocator BLUiR Baseline BugLocator BLUiR
IR IRc IR IRc IR IRc IR IRc IR IRc IR IRc

Top 1

AspectJ 4 6 2 6 3 5 3 3 2 4 2 3
Ant 27 32 22 33 26 31 9 12 10 13 6 13

Lucene 12 14 6 15 11 14 4 7 3 9 5 7
Rhino 4 4 5 9 11 11 4 6 4 6 5 6

Overall 47 56 35 63 51 61 20 28 19 32 18 29

Top 5

AspectJ 13 18 7 16 12 19 4 8 3 8 4 7
Ant 48 59 44 55 45 60 21 33 20 36 16 36

Lucene 34 47 32 48 41 51 14 30 15 33 16 32
Rhino 15 18 13 19 19 20 7 10 8 14 7 15

Overall 110 142 96 138 117 150 46 81 46 91 43 90

Top 10

AspectJ 18 25 14 25 20 28 5 12 6 16 6 12
Ant 55 64 49 63 59 68 30 47 29 51 25 54

Lucene 53 59 51 59 59 68 24 37 30 44 24 42
Rhino 21 26 18 28 23 25 9 14 10 21 10 22

Overall 147 174 132 175 161 189 68 110 75 129 65 130

MAP

AspectJ 0.15 0.23 0.10 0.25 0.14 0.25 0.08 0.11 0.07 0.14 0.06 0.10
Ant 0.55 0.73 0.50 0.71 0.54 0.72 0.17 0.34 0.23 0.37 0.15 0.36

Lucene 0.34 0.49 0.26 0.54 0.39 0.55 0.13 0.36 0.09 0.32 0.15 0.38
Rhino 0.34 0.40 0.28 0.47 0.51 0.55 0.17 0.29 0.18 0.32 0.19 0.34
Mean 0.35 0.46 0.29 0.49 0.40 0.52 0.14 0.28 0.14 0.29 0.14 0.30

MRR

AspectJ 0.18 0.27 0.12 0.29 0.17 0.29 0.09 0.12 0.07 0.16 0.07 0.12
Ant 0.61 0.75 0.55 0.76 0.59 0.75 0.24 0.40 0.27 0.43 0.19 0.41

Lucene 0.49 0.59 0.35 0.61 0.50 0.64 0.23 0.44 0.20 0.46 0.28 0.48
Rhino 0.35 0.40 0.32 0.51 0.54 0.56 0.20 0.34 0.20 0.36 0.23 0.37
Mean 0.41 0.50 0.34 0.54 0.45 0.56 0.19 0.33 0.19 0.35 0.19 0.35

and method level do not match may be that BLUiR puts

more emphasis on referred program entity names than ordinary

description in bug reports. If a bug report refers to multiple

bug-irrelevant methods, BLUiR is misguided to rank methods

wrongly. However, once augmented with coverage, BLUiR

achieved the highest MAP and MRR values, meaning that cov-

erage improved BLUiR’s effectiveness the most significantly.

Finding 3: Coverage improved IR-based bug lo-
calization more significantly at method level than at
class level. The average method-level MAP and MRR
improvements were 107% and 79%.

B. RQ2: How does slicing information help with IR-based bug
localization?

We experimented with IRs, and compared their results with

those of IRc. Although JavaSlicer [2] is the best dynamic

slicing tool we can use, it has not been maintained for

several years. It may not work well for programs requiring

features newly introduced in recent JDK versions. Among all

the 157 bug fixes, JavaSlicer [2] only ran successfully with

64 examples. For the other examples, JavaSlicer failed for

three reasons. First, it threw an out-of-memory exception even

though we allocated 8GB memory to JVM. Second, it gen-

erated huge traces without termination, violating our 100GB

space limit for each subject. Third, the slicing result did not

include the actual buggy element due to the tool’s limitation

when tracing native methods, standard library classes, and

multithreaded applications1. Therefore, we compared IRs and

IRc on those 64 bugs for fairness.

Table IV (a) and (b) show the comparison between IRc and

IRs at both class and method levels. Slicing was more powerful

1The limitations are also listed on JavaSlicer homepage [2].

than coverage when improving IR-based bug localization. The

reason is slicing removed more irrelevant entities from the IR-

based list, and further upgraded ranks of the relevant ones.

Similar to the observations in Section V-A, we found that

the improvement at method level was more significant than

that at class level. For BLUiR, the average MAP and MRR

improvements of IRs over IRc at method level were 42%

and 35%, while the improvements at class level were both

22%. Again, BLUiR achieved the best MAP and MRR when

augmented with slicing.

Finding 4: Slicing was more helpful than coverage in
improving IR-based techniques. The average MAP and
MRR improvements of IRs over IRc were both 15% at
class level, with 40% and 30% at method level.

C. RQ3: How does spectrum information further improve bug
localization over IRc and IRs?

To evaluate the impact of spectrum on IRc and IRs, we

enumerated all possible combinations between the four kinds

of spectrum information (Section II-B) and IRc or IRs. All

three basic IR-based techniques were explored for complete

comparison. We changed the combination factor α from 0

to 1, with 0.1 increment, to investigate how bug localization

effectiveness varies with α.

For IRcp, as shown in Figure 1, we leveraged both coverage

and spectrum to improve IR-based techniques. We evaluated

MAP and MRR at both class and method levels. X-axis
represents α. Y-axis represents MAP in Figure 1 (a-c) and

(g-i), and represents MRR in Figure 1 (d-f) and (j-l). Both

MAP and MRR vary within [0, 1]. Intuitively, when α = 0,

the values are reported for IRc. When α = 1, the reported

values are purely from spectrum information. We observed that

246246246246246246246246

TABLE IV: IRc vs. IRs bug localization

Metric Project
(a) Class Level (b) Method Level

Baseline BugLocator BLUiR Baseline BugLocator BLUiR
IRc IRs IRc IRs IRc IRs IRc IRs IRc IRs IRc IRs

Top 1

Ant 15 17 14 16 13 17 4 6 3 4 3 6
Lucene 5 6 6 11 2 6 3 5 5 6 3 5
Rhino 3 3 2 3 3 4 0 0 0 0 0 0

Overall 23 26 22 30 18 27 7 11 8 10 6 11

Top 5

Ant 26 26 23 26 23 25 12 17 12 18 10 17
Lucene 27 28 16 28 22 24 13 14 12 15 11 13
Rhino 15 18 7 9 10 13 0 0 0 1 0 0

Overall 68 72 46 63 55 62 25 31 24 34 21 30

Top 10

Ant 27 27 24 28 25 25 16 18 18 24 17 18
Lucene 32 33 19 34 27 28 16 16 15 18 14 15
Rhino 20 20 8 11 13 13 0 1 0 1 0 1

Overall 79 80 51 73 65 66 32 35 33 43 31 34

MAP

Ant 0.71 0.79 0.71 0.75 0.71 0.85 0.37 0.52 0.33 0.34 0.35 0.52
Lucene 0.50 0.58 0.44 0.62 0.44 0.54 0.30 0.45 0.35 0.45 0.34 0.46
Rhino 0.47 0.50 0.50 0.50 0.48 0.58 0.02 0.04 0.02 0.11 0.02 0.04
Mean 0.56 0.62 0.55 0.62 0.54 0.66 0.23 0.34 0.23 0.30 0.24 0.34

MRR

Ant 0.75 0.80 0.75 0.78 0.73 0.86 0.40 0.52 0.38 0.41 0.36 0.52
Lucene 0.53 0.61 0.49 0.68 0.43 0.57 0.37 0.49 0.44 0.51 0.39 0.50
Rhino 0.46 0.49 0.50 0.53 0.48 0.58 0.02 0.03 0.02 0.11 0.02 0.034
Mean 0.58 0.63 0.58 0.66 0.55 0.67 0.26 0.35 0.28 0.34 0.26 0.35

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

(f) BLUiR - Class - MRR

0

0.1

0.2

0.3

0.4

0.5

0.6

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

(c) BLUiR - Class - MAP

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

(e) BugLocator - Class - MRR

0

0.1

0.2

0.3

0.4

0.5

0.6

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

(b) BugLocator - Class -MAP

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

(d) Baseline - Class - MRR

0

0.1

0.2

0.3

0.4

0.5

0.6

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

(a) Baseline - Class - MAP

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

(l) BLUiR - Method - MRR

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

(i) BLUiR - Method - MAP

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

(k) BugLocator - Method - MRR

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

(h) BugLocator - Method - MAP

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

(j) Baseline - Method - MRR

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

(g) Baseline - Method - MAP

Fig. 1: Effectiveness of IRcp at the class level (a-f) and method level (g-l). The x-axis represents α. The y-axis of (a)-(c)
and (g)-(i) represents MAP, while the y-axis in (d)-(f) and (j)-(l) is MRR.

IRc always worked better than spectrum, because IRc utilized both static and dynamic information, while spectrum was only

247247247247247247247247

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Baseline - Class - MAP

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Baseline - Method - MAP

Fig. 2: The MAP of IRsp with the baseline IR technique

dynamic information. The optimal combination between IRc

and spectrum always worked better than either component.

Tarantula worked better than other spectrum information.

At class-level, IRcp at most worked slightly better than IRc.

The reason may be that the class-level spectrum describes

execution too coarsely: A class can contain many methods.

Whenever a method is executed by a test, the whole class is

considered covered. Such class-level spectrum makes suspi-

ciousness scores less helpful.

When using Tarantula with α = 0.7 for method-level bug

localization, IRcp significantly outperformed IRc. As shown

in Figure 1(g-i) and Figure 1(j-l), MAP was increased by 14-

22%, while MRR was increased by 16-21%. In particular,

RHINO-519692 and its corresponding buggy method only

shared one word in common: transformNewExpr(), so IRc

ranked the buggy method as 12th, with a low score of

0.28. However, Tarantula considered the method as the most

suspicious one, because both of the two tests executing it

failed. Therefore, IRcp effectively improved the method’s rank

as Top 1 by properly combining IRc with Tarantula spectrum.

We also experimented with IRsp, and made similar observa-

tions. Due to the space limit, we only show part of the results

in Fig. 2. With the baseline IR-based technique, IRsp did not

improve over IRs at class level (on the left), but achieved

noticeable improvement at method level (on the right).

Finding 5: Spectrum information was effective to
improve IR-based bug localization at method level
instead of at class level. With Tarantula and α = 0.7,
IRcp and IRsp almost always achieved the best effec-
tiveness.

D. RQ4: How do our simple combinations compare with the
state-of-the-art hybrid technique AML?

We directly took the AML results in prior work [13], and did

similar experiments using our hybrid approaches IRc and IRcp.

We experimented with the same dataset of 157 examples as

AML for fair comparison. Since BLUiR always outperformed

other tools when combined with execution information, it was

used as the basic IR-based technique in the comparison. IRcp

was configured to use Tarantula spectrum with α = 0.7,

because the setting was demonstrated the best in Section V-C.

As shown in Table V, we found that AML ranked more Top-

1 entities correctly than IRc (31 vs. 29). Other than that, IRc

worked better in terms of Top-5, Top-10, and MAP metrics.

The overall values of IRcp were better than AML for all

metrics. Although we did not compare IRs and IRsp directly

with AML due to the JavaSlicer limitation, it is reasonable to

expect both of them to perform better than AML. The reason

is compared with coverage, slicing always identifies failure-

relevant entities more precisely, and refines IR-based ranked

lists more effectively. Our experiments with a subset of the

data did demonstrate that IRs worked better than IRc, and

IRsp worked better than IRcp.
The fact that our simple combination approaches worked

better than AML reveals two things. First, all kinds of dynamic

information can effectively improve IR-based bug localization.

Second, a complex combination approach is not always nec-

essary to better localize bugs.

TABLE V: Bug localization comparison with AML at
method level

Metric Project IR IRc IRcp AML

Top 1

AspectJ 2 3 8 7
Ant 6 13 14 9

Lucene 5 7 6 11
Rhino 5 6 8 4

Overall 18 29 36 31

Top 5

AspectJ 4 7 14 13
Ant 16 36 39 22

Lucene 16 32 23 22
Rhino 7 15 22 14

Overall 43 90 98 71

Top 10

AspectJ 6 12 19 13
Ant 25 54 57 31

Lucene 24 42 30 29
Rhino 10 22 27 19

Overall 65 130 133 92

MAP

AspectJ 0.06 0.10 0.22 0.19
Ant 0.15 0.36 0.37 0.23

Lucene 0.15 0.38 0.30 0.28
Rhino 0.19 0.34 0.50 0.24

Overall 0.14 0.30 0.35 0.24

Finding 6: IRc outperformed AML in all metrics but
one, while IRcp outperformed AML. Our simple ap-
proaches worked better than AML’s more complicated
approach, showing that various execution information
can effectively help with IR-based bug localization.

VI. DISCUSSION

Our empirical study demonstrates that various kinds of

execution information can effectively improve IR-based bug

localization, as long as the information usage is proper, but not
necessarily complex. In the study, there are still bug reports

whose bugs are not located by any investigated approach. We

further examined these reports and their bugs.
Among the 157 bug reports, 18 reports contain no clue

about where the bug is, 77 reports mention bug-relevant code

elements, such as fields or methods inside the buggy classes,

and 62 reports have the exact buggy class names explicitly

mentioned. For those reports without any clue of bug locations,

a bug reporter usually describes the bug-triggering input(s) or

bug symptoms, and the execution information does not help

reveal bugs, either. Although such bugs do not count much in

our dataset, they may be prevalent in reality, and require more

advanced novel solutions.

248248248248248248248248

For some reports with either buggy classes explicitly men-

tioned, or bug-relevant information (i.e. fields or methods in

buggy classes) included, the investigated approaches failed for

two reasons. First, some mentioned buggy entity names are

so widely used that they are not distinctive, such as “set”
and “method”. Second, when test cases or call stacks include

many entities to describe the problems, the noisy location

information confuses IR-based techniques.

In future, we will integrate static analysis-based fault predic-

tion [7] techniques to better localize bugs. For example, when

a buggy method has a popular name like “set”, and is covered

by both passed and failed tests, neither the bug report nor

execution information is helpful. We can use fault prediction

to calculate various metrics (e.g., fan-in/fan-out2) to measure

how likely each method is buggy. By ranking methods based

on their fault prediction scores, we will obtain a ranked list,

which can be further combined with the list produced by a

hybrid approach of IR-based bug localization and execution

information.

VII. THREATS TO VALIDITY

We reused an existing dataset of 157 real bugs from 4

open source projects to evaluate different bug localization

techniques. The evaluation results may not generalize to other

bugs or other open source projects. The collected execution in-

formation also strongly depends on the quality and availability

of test cases.

We collected slicing information with JavaSlicer [2], be-

cause the tool is the only publicly available dynamic slicing

tool based on our knowledge. The limitation of the tool may

affect the generalizability of our observations. Besides, we

used four most popular formulae to calculate spectrum, and

used three IR-based bug localization techniques. The limited

number of investigated formulae and IR-based techniques may

also affect the generalizability.

VIII. RELATED WORK

In this section, we will discuss related work in spectrum-

based fault localization, IR-based bug localization, and em-

pirical studies on bug localization techniques. Different from

all prior work, we systematically experimented with three IR-

based techniques, three kinds of execution information, and

investigated four ways to combine them for both class-level

and method-level bug localization. Our study generally reveals

that different kinds of execution information can considerably

improve IR-based bug localization, no matter what particular

technique is integrated or whether the combination algorithm

is simple or complicated.

Spectrum-Based Fault Localization (SBFL) identifies bug

locations using the execution information of buggy code [9],

[18], [33], [4], [5], [30]. Given a buggy program and test cases,

SBFL instruments code to collect the execution information of

passed tests and failed tests, and counts how many passed and

failed tests execute each program element (i.e., class, method,

2Fan-in denotes the number of methods invoking the method, while fan-out
denotes the number of methods invoked by the method.

or statement). SBFL then calculates a suspiciousness score for

each element to find the most suspicious element(s). Different

formulae have been defined to compute suspiciousness scores,

such as Tarantula [9], Ochiai [4], and Ample [5]. Xuan et

al. used machine learning to train a suspiciousness model by

combining multiple existing formulae [30]. Our experiments

with four most popular SBFL techniques showed that merging

SBFL with IR-based bug localization can improve SBFL,

which aligns with prior finding [13].

IR-Based Bug Localization localizes bugs based on bug

reports [36], [21], [32], [12]. A basic technique treats a bug

report as a query and source code as documents, and retrieves

the documents most relevant to the query as bug locations.

More advanced techniques leverage additional information

to better localize bugs. For instance, BugLocator integrates

knowledge of previously fixed similar bugs [36]. BLUiR

integrates knowledge of programs or bug report structures to

assign more weight to class and method names, and bug report

titles [21]. Learning-to-rank integrates domain knowledge of

bug history and API specification to train a model for bug

location prediction [32]. HyLoc leverages Deep Neural Net-

work(DNN) to learn a model, that correlates bug reports with

code tokens (i.e., identifiers, APIs), and textual tokens (i.e.,

comments) in code [12]. However, none of these techniques

integrate program execution information. Our investigation

demonstrates that hybrid approaches can generally work better

than pure IR-based approaches.

Empirical Studies on Bug Localization Techniques have

been done by researchers [14], [34], [27], [11]. Lucia et al. [14]

and Yoo et al. [34] compared various formulae used in SBFL,

and observed that there was no best formula that consistently

outperformed others. Kochhar et al. manually examined bug

reports whose bugs were either fully, partially, or not localized

by IR-based techniques [11]. They found that the quality

of bug reports can substantially impact the effectiveness of

IR-based techniques. If bug reports explicitly contain buggy

file names, IR-based techniques are more likely to locate the

bugs. Wang et al. conducted a user study with developers to

examine whether IR-based techniques actually help developers

localize bugs [27]. The study showed that IR-based techniques

were not always useful. Our empirical study complements

the observations by prior studies. We investigated different

ways to combine various execution information with IR-based

bug localization techniques. We explored whether execution

information generally helps with IR-based techniques, and

whether a complicated combination algorithm is required to

improve IR-based techniques with dynamic information.

IX. CONCLUSIONS

It is challenging to locate bugs given bug reports. In

this empirical study, we investigated how various dynamic

execution information (e.g., coverage, slicing, and spectrum

information) can help with IR-based bug localization. We

found that through refining the ranked list of suspicious loca-

tions produced by IR-based techniques, coverage and slicing

information can effectively help improve bug localization.

249249249249249249249249

Spectrum information can further improve method-level bug

localization by merging its suspicious location list with the

coverage-refined or slicing-refined IR-based list.

Our investigation with the three types of execution informa-

tion demonstrates that dynamic information can effectively im-

prove IR-based bug localization, even though the information

is integrated in simple ways. By comparing our combination

approaches with a state-of-the-art hybrid technique of IR-

based bug localization and spectrum, we observed that our

simple approaches almost always worked better. It means that

a combination approach does not have to be complicated for

effective bug localization. When examining bugs that none of

the investigated techniques can handle, we found it promising

to conduct and combine static analysis-based fault prediction

to further better bug localization.

ACKNOWLEDGMENT

We thank anonymous reviewers for their thorough com-

ments on our earlier version of the paper. This work was

partially supported by NSF Grant No. CCF-1565827 and CCF-

1566589, and Google Faculty Research Award.

REFERENCES

[1] ASM. http://asm.ow2.org.
[2] Javaslicer. https://www.st.cs.uni-saarland.de/javaslicer/.
[3] R. Abreu, P. Zoeteweij, and A. J. C. v. Gemund. An evaluation of sim-

ilarity coefficients for software fault localization. In Proceedings of the
12th Pacific Rim International Symposium on Dependable Computing,
PRDC ’06, pages 39–46, Washington, DC, USA, 2006. IEEE Computer
Society.

[4] R. Abreu, P. Zoeteweij, and A. van Gemund. On the accuracy of
spectrum-based fault localization. In Testing: Academic and Industrial
Conference Practice and Research Techniques - MUTATION, 2007.
TAICPART-MUTATION 2007, pages 89–98, Sept 2007.

[5] V. Dallmeier, C. Lindig, and A. Zeller. Lightweight bug localization
with ample. In Proceedings of the Sixth International Symposium on
Automated Analysis-driven Debugging, 2005.

[6] M. A. Francel and S. Rugaber. The value of slicing while debugging.
Sci. Comput. Program., 40(2-3):151–169, July 2001.

[7] T. Hall, S. Beecham, D. Bowes, D. Gray, and S. Counsell. A systematic
literature review on fault prediction performance in software engineer-
ing. Software Engineering, IEEE Transactions on, 38(6):1276–1304,
2012.

[8] D. A. Hull. Stemming algorithms: A case study for detailed evaluation.
J. Am. Soc. Inf. Sci., 47(1):70–84, Jan. 1996.

[9] J. A. Jones and M. J. Harrold. Empirical evaluation of the tarantula auto-
matic fault-localization technique. In Proceedings of the 20th IEEE/ACM
International Conference on Automated Software Engineering, ASE ’05,
pages 273–282, New York, NY, USA, 2005. ACM.

[10] J. A. Jones, M. J. Harrold, and J. Stasko. Visualization of test
information to assist fault localization. In Proceedings of the 24th
International Conference on Software Engineering, 2002.

[11] P. S. Kochhar, Y. Tian, and D. Lo. Potential biases in bug localization:
Do they matter? In Proceedings of the 29th ACM/IEEE International
Conference on Automated Software Engineering, ASE ’14, pages 803–
814, New York, NY, USA, 2014. ACM.

[12] A. N. Lam, A. T. Nguyen, H. A. Nguyen, and T. N. Nguyen. Combining
deep learning with information retrieval to localize buggy files for bug
reports (n). In M. B. Cohen, L. Grunske, and M. Whalen, editors, ASE,
pages 476–481. IEEE, 2015.

[13] T.-D. B. Le, R. J. Oentaryo, and D. Lo. Information retrieval and
spectrum based bug localization: Better together. In Proceedings of
the 2015 10th Joint Meeting on Foundations of Software Engineering,
ESEC/FSE 2015, pages 579–590, New York, NY, USA, 2015. ACM.

[14] Lucia, D. Lo, L. Jiang, and A. Budi. Comprehensive evaluation of
association measures for fault localization. In Software Maintenance
(ICSM), 2010 IEEE International Conference on, pages 1–10, Sept 2010.

[15] S. K. Lukins, N. A. Kraft, and L. H. Etzkorn. Bug localization
using latent dirichlet allocation. Information and Software Technology,
52(9):972 – 990, 2010.

[16] C. D. Manning, P. Raghavan, and H. Schütze. Introduction to Infor-
mation Retrieval. Cambridge University Press, New York, NY, USA,
2008.

[17] A. Marcus and J. I. Maletic. Recovering documentation-to-source-code
traceability links using latent semantic indexing. In Proceedings of the
25th International Conference on Software Engineering, 2003.

[18] L. Naish, H. J. Lee, and K. Ramamohanarao. A model for spectra-based
software diagnosis. ACM Trans. Softw. Eng. Methodol., 20(3):11:1–
11:32, Aug. 2011.

[19] A. T. Nguyen, T. T. Nguyen, J. M. Al-Kofahi, H. V. Nguyen, and T. N.
Nguyen. A topic-based approach for narrowing the search space of
buggy files from a bug report. In P. Alexander, C. S. Pasareanu, and
J. G. Hosking, editors, ASE, pages 263–272. IEEE Computer Society,
2011.

[20] S. Rao and A. Kak. Retrieval from software libraries for bug localization:
A comparative study of generic and composite text models. In Proceed-
ings of the 8th Working Conference on Mining Software Repositories,
MSR ’11, pages 43–52, New York, NY, USA, 2011. ACM.

[21] R. Saha, M. Lease, S. Khurshid, and D. Perry. Improving bug local-
ization using structured information retrieval. In Automated Software
Engineering (ASE), 2013 IEEE/ACM 28th International Conference on,
pages 345–355, Nov 2013.

[22] G. Salton, A. Wong, and C. S. Yang. A vector space model for automatic
indexing. Commun. ACM, 18(11):613–620, Nov. 1975.

[23] B. Sisman and A. C. Kak. Incorporating version histories in information
retrieval based bug localization. In Proceedings of the 9th IEEE Working
Conference on Mining Software Repositories, MSR ’12, pages 50–59,
Piscataway, NJ, USA, 2012. IEEE Press.

[24] T. Strohman, D. Metzler, H. Turtle, and W. B. Croft. Indri: A language
model-based search engine for complex queries. Proceedings of the
International Conference on Intelligence Analysis, 2004.

[25] F. Tip. A survey of program slicing techniques. Technical report,
Amsterdam, The Netherlands, The Netherlands, 1994.

[26] J. M. Voas. Pie: a dynamic failure-based technique. IEEE Transactions
on Software Engineering, 18(8):717–727, Aug 1992.

[27] Q. Wang, C. Parnin, and A. Orso. Evaluating the usefulness of ir-based
fault localization techniques. In Proceedings of the 2015 International
Symposium on Software Testing and Analysis, ISSTA 2015, pages 1–11,
New York, NY, USA, 2015. ACM.

[28] S. Wang and D. Lo. Version history, similar report, and structure: Putting
them together for improved bug localization. In Proceedings of the
22Nd International Conference on Program Comprehension, ICPC 2014,
pages 53–63, New York, NY, USA, 2014. ACM.

[29] M. Weiser. Program slicing. In Proceedings of the 5th International
Conference on Software Engineering, 1981.

[30] J. Xuan and M. Monperrus. Learning to combine multiple ranking
metrics for fault localization. In Software Maintenance and Evolution
(ICSME), 2014 IEEE International Conference on, pages 191–200, Sept
2014.

[31] J. Xuan and M. Monperrus. Test case purification for improving fault
localization. In Proceedings of the 22nd ACM SIGSOFT International
Symposium on Foundations of Software Engineering, pages 52–63, 2014.

[32] X. Ye, R. Bunescu, and C. Liu. Learning to rank relevant files for
bug reports using domain knowledge. In Proceedings of the 22Nd
ACM SIGSOFT International Symposium on Foundations of Software
Engineering, FSE 2014, pages 689–699, New York, NY, USA, 2014.
ACM.

[33] S. Yoo. Evolving human competitive spectra-based fault localisation
techniques. In Proceedings of the 4th International Conference on
Search Based Software Engineering, SSBSE’12, pages 244–258, Berlin,
Heidelberg, 2012. Springer-Verlag.

[34] S. Yoo, X. Xie, F.-C. Kuo, T. Y. Chen, and M. Harman. No pot of
gold at the end of program spectrum rainbow: Greatest risk evaluation
formula does not exist. Technical report, University College London
and Swinburn University, 2014.

[35] Y. Zhang and A. Mesbah. Assertions are strongly correlated with test
suite effectiveness. In Proceedings of the 2015 10th Joint Meeting on
Foundations of Software Engineering, ESEC/FSE, pages 214–224, 2015.

[36] J. Zhou, H. Zhang, and D. Lo. Where should the bugs be fixed?
more accurate information retrieval-based bug localization based on
bug reports. In Software Engineering (ICSE), 2012 34th International
Conference on, pages 14–24, June 2012.

250250250250250250250250

