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Abstract—Programmers always fix bugs when maintaining
software. Previous studies showed that developers apply repeated
bug fixes—similar or identical code changes—to multiple loca-
tions. Based on the observation, researchers built tools to identify
code locations in need of similar changes, or to suggest similar
bug fixes to multiple code fragments. However, some fundamental
research questions, such as what are the characteristics of
repeated bug fixes, are still unexplored. In this paper, we present
a comprehensive empirical study with 341,856 bug fixes from 3
open source projects to investigate repeated fixes in terms of their
frequency, edit locations, and semantic meanings. Specifically,
we sampled bug reports and retrieved the corresponding fixing
patches in version history. Then we chopped patches into smaller
fixes (edit fragments). Among all the fixes related to a bug, we
identified repeated fixes using clone detection, and put a fix and
its repeated ones into one repeated-fix group. With these groups,
we characterized the edit locations, and investigated the common
bug patterns as well as common fixes.

Our study on Eclipse JDT, Mozilla Firefox, and LibreOffice
shows that (1) 15-20% of bugs involved repeated fixes; (2) 73-92%
of repeated-fix groups were applied purely to code clones; and
(3) 39% of manually examined groups focused on bugs relevant
to additions or deletions of whole if-structures. These results
deepened our understanding of repeated fixes. They enabled us to
assess the effectiveness of existing tools, and will further provide
insights for future research directions in automatic software
maintenance and program repair.

I. INTRODUCTION

Bug fixing is a crucially important task in software main-
tenance. Repeated bug fixes are similar or identical fixes
repetitively applied to multiple code locations. Prior studies
showed that developers apply repeated bug fixes [16], [28],
[32], [34]. For instance, Nguyen et al. found that 17-45% bug
fixes were recurring, because the fixes modified API usage
in similar ways [28]. Ray et al. conducted a case study of
BSD products, and observed that 11-16% patches were copied
between OpenBSD, FreeBSD, and NetBSD [34].

Based on the observation that developers apply repetitive
bug fixes, various tools have been built to help fix the same
bug in multiple locations [29], [26], [24], [23], [14], [21]. For
instance, Clever detects and tracks code clones [29]. Each time
when a clone is updated to fix a bug, Clever automatically
recognizes the clone peers to apply similar edits. SYDIT
generalizes program transformation from one code change
example, customizes the transformation for user-selected code
locations, and then applies the result [24]. LASE generalizes
program transformation from two or more similarly changed
examples, and leverages the transformation to both find other

edit locations, and to suggest similar edits accordingly [23].
PAR exploits 10 manually found common fix patterns to gen-
erate candidate program patches, and then tentatively applies
each patch to automatically fix bugs [14]. Although repeated
fixes have been used to detect or fix bugs, some fundamental
characterization questions are still left unanswered, such as
when, where, and how repeated fixes are applied. These
questions are important for two reasons. First, they help us
understand how useful existing repetition-based tools can be,
and thus suggest new ways to automatically find or fix bugs.
Second, they highlight the common mistakes developers are
more likely to make, drawing more developer attention to the
pitfalls when building software.

To detect repeated bug fixes, we sampled 1,077, 8,427,
and 2,455 bugs in the bug database (i.e., Bugzilla [1]) of
Eclipse JDT, Mozilla Firefox, and LibreOffice. In each bug
database, every bug has an assigned ID. Similar to prior
work [32], [40], we leveraged the bug IDs to retrieve the
corresponding commits or patches in the project’s version
history, and considered the commits as bug fixing patches.
We identified in total 19,275 fixing patches in this way. To
flexibly detect any repetition within a patch or across patches,
as with prior work [16], we considered each contiguous block
of changed lines in a patch as an individual bug fix, and
extracted bug fixes from fixing patches accordingly. Next, we
leveraged a clone detection tool, CCFinder [13], to identify
repeated bug fixes for each bug. Finally, we put a fix and its
repeated ones into the same repeated-fix group.

With all identified repeated-fix groups, we investigated the
frequency of repeated fixes, their edit locations, and the
semantic meanings. This characterization study addresses the
following research questions:
• What is the frequency of repeated bug fixes? Overall, a

considerable amount of repeated bug fixes were applied in
all three projects. At the bug level, 20%, 15%, and 16%
of sampled bugs in Eclipse JDT, Mozilla Firefox, and
LibreOffice, involved repeated fixes. However, among the
different groups of repeated fixes, 57%, 70%, and 48%
of groups contained only two repeated fixes, meaning
that repeated fixes did not reoccur a lot. 91%, 29%, and
36% of repeated fixes were applied in single patches.
Only 30%, 2%, and 6% of repeated-fix groups had
fixes repeating among multiple bugs. It indicates that the
feasibility of resolving new bugs with past fixes is limited.

• Where are repeated fixes usually applied? Repeated



bug fixes were mainly applied to code either in the same
package or same file, but not always to code clones. In
particular, 86%, 99%, and 91% of repeated-fix groups
were purely applied to code within the same package,
while 70%, 94%, and 86% of groups were applied to
the same file. Both above observations demonstrate the
significant spatial locality of repeated fixes. On the other
hand, at most 73%, 92%, and 83% of repeated-fix groups
were applied purely to code clones. It indicates that
repeated fixes are not confined to code clones. When
clone detection techniques are not sufficient to reveal
all locations in need of similar edits, we may need
new approaches that also leverage the spatial locality
characteristics to suggest edit locations.

• What are the common bugs and fix patterns of
repeated fixes? Statistically, 72-82% of repeated fixes
required for 3 or more lines of change in Eclipse JDT,
Mozilla Firefox and LibreOffice. It means that we need
more automatic program repair tools to suggest compli-
cated edits beyond single-line patches. To understand the
semantics of repeated bug fixes, we sampled 150 groups
of repeated fixes, and manually analyzed the bug patterns
and common fixes. Based on our observation, edits to if-
statements (including statement additions and deletions)
and if-conditions (including condition additions, dele-
tions, and updates) separately accounted for 39% and
33% of the 150 groups, indicating that developers are
more likely to make mistakes when coding if-structures.
The usual bug-fixing strategies applied to fix such bugs
were to add, alter, or delete if-conditions or the whole
if-structures.

These results provide the following three insights for future
directions of IDE support, code search, and automatic program
repair. First, since many repeated bug fixes are applied within
one patch, it is important for IDE to recognize the intent
of repetition as early as possible in order to provide helpful
coding suggestion in time. Second, when codebase is large
and tool response time is critical, code search tools should
prioritize search based on spatial locality, since repeated bug
fixes are more likely to cooccur within the same package or
same file. Third, more advanced automatic repair tools should
focus on bugs requiring for additions or deletions of whole if-
structures and bugs in need of multi-line code changes, since
they account for the majority of repeated bug fixes.

II. CONCEPTS

In this section, we define and explain the terminologies used
in the paper.

When maintaining software, developers modify code and
then commit those changes together with some textual de-
scription to version control systems like SVN and Git. In our
paper, each code change commit is a patch. The corresponding
textual description is called commit message.

Fig. 1 shows a patch example, which represents code
changes as textual diff s. Each textual diff describes changes
applied to one file. When developers modify multiple files,

the patch can contain multiple textual diffs. Each textual diff
consists of header information and a sequence of hunks [35].
In the figure, lines 1-4 show the header information, while
lines 5-18, and lines 19-34 correspond to two separate hunks.

Each hunk is a code region, including context lines (i.e.,
unchanged code), and edited lines, such as deleted lines
(marked with “−”) and/or added lines (marked with “+”). To
facilitate illustration, Fig. 1 uses the black color for context
lines, colors deleted lines with red, and colors added lines with
bold blue. A hunk consists of a line delimited by “@@”, and
a code snippet. The @@-delimited line describes the starting
line and line range of a code change in before- and after-
versions, while the code snippet shows edits. A hunk usually
contains one edit fragment (i.e., a contiguous block of changed
lines), three context lines above the first changed line, and
three context lines below the last changed line, as shown in
lines 20-34. However, when two edit fragments are very close
to each other and have overlapping context lines, they are
merged into one single hunk, as shown in lines 6-18. The
edits are noncontiguous (lines 9-10 and line 15), with context
lines standing between the two edit fragments.
1. diff --git a/org.eclipse.jdt.core/search/org/eclipse/jdt/

core/search/SearchParticipant.java b/org.eclipse.jdt.core/
search/org/eclipse/jdt/core/search/SearchParticipant.java

2. index ee39ea4..8d2f5c8 100644
3. --- a/org.eclipse.jdt.core/search/org/eclipse/jdt/core/

search/SearchParticipant.java
4. +++ b/org.eclipse.jdt.core/search/org/eclipse/jdt/core/

search/SearchParticipant.java
5. @@ -10,10 +10,13 @@
6. *****************************************************/
7. package org.eclipse.jdt.core.search;
8.
9. + import java.io.File;
10.+
11. import org.eclipse.core.resources.IResource;
12. import org.eclipse.core.resources.IWorkspaceRoot;
13. import org.eclipse.core.resources.ResourcesPlugin;
14. import org.eclipse.core.runtime.*;
15.+ import org.eclipse.jdt.internal.core.JavaModel;
16. import org.eclipse.jdt.internal.core.JavaModelManager;
17. import org.eclipse.jdt.internal.core.search.indexing.

IndexManager;
18.
19.@@ -173,8 +176,13 @@
20. public final void scheduleDocumentIndexing(SearchDocument

document, IPath indexLocation) {
21. IPath documentPath = new Path(document.getPath());
22. IWorkspaceRoot root = ResourcesPlugin.getWorkspace()

.getRoot();
23.− IResource resource = root.findMember(documentPath);
24.− IPath containerPath = resource == null ? documentPath :

resource.getProject().getFullPath();
25.+ Object file = JavaModel.getTarget(root, documentPath,

true);
26.+ IPath containerPath = documentPath;
27.+ if (file instanceof IResource) {
28.+ containerPath = ((IResource)file).getProject()

.getFullPath();
29.+ } else if (file == null) {
30.+ containerPath = documentPath.removeLastSegments(

documentPath.segmentCount()-1);
31.+ }
32. IndexManager manager = JavaModelManager

.getJavaModelManager().getIndexManager();
33. String osIndexLocation = indexLocation.toOSString();
34. // TODO (jerome) should not have to create index

manually, should expose API that recreates index instead

Fig. 1: An exemplar patch applied to Eclipse JDT Core.

In our research, a fixing patch is a patch applied to fix a



bug. Similar to prior work [16], we considered a bug fix as any
edit fragment extracted from a fixing patch without including
any context line. We defined buggy snippet to describe the
edit location where a bug fix was applied. Given a bug fix (or
an edit fragment), the buggy snippet includes the context lines
above the bug fix, the deleted lines in the fix, and the context
lines below the fix. A bug fix f is a repeated fix of another one
f ′ if f and f ′ are identical or similar. A repeated-fix group
consists of a fix and its repeated ones.

III. RESEARCH QUESTIONS

In this characterization study, we aim to address the follow-
ing research questions:

RQ1: What is the frequency of repeated bug fixes?
Prior studies show that developers apply repeated bug

fixes [16], [28], [32], [34]. However, it is still unclear how
repeated fixes distribute across different bugs, different patch-
es, and different hunks. If many repeated fixes can resolve
different bugs, we may leverage the observation to maintain a
bug fix database which stores all repeated fixes applied in the
past, expecting them to help construct valid fixes for future
bugs. Le et al. recently created a such tool to conduct history-
driven program repair [17].

If many repeated fixes are applied in different patches for
the same bug, we can conclude that existing patch-based tools,
such as LASE [23], are very useful, because developers forget
to apply all repeated fixes at once in many cases. The patch-
based tools will significantly reduce later patching burden
by inferring program transformation from the initial patch,
locating other code in need of similar fixes, and suggesting
customized changes. By investigating this research question,
we aim to evaluate the effectiveness of existing repetition-
based tools, and to identify future directions of tool design.

RQ2: Where are repeated fixes usually applied?
When fixes are repetitively applied, we are curious why the

repetition happens, and what are the common characteristics
of the edit locations. Some tools suggest repeated edits by
assuming that fixes always repeat themselves among code
clones [29], or among overridden methods in the same class
hierarchy [36]. However, no empirical study has been done
to validate these assumptions. With this research question, we
aim to check them empirically, and may identify some new
characteristics if the known assumptions do not always hold.

RQ3: What are the common bugs and fix patterns of
repeated fixes?

When repeated fixes are applied, we are also curious what
are the semantic meanings of repeated fixes, and what are
the common problems they try to solve. There are automatic
program repair tools built to generate candidate bug fixes
based on manually identified common bug fix patterns, such
as adding or modifying if-conditions, and altering method
parameters [14], [7], [21], [17]. All these fix patterns involve
single-line changes. By exploring this research question, we
aim to better understand what are the common bugs resolved
by repeated fixes, and whether repeated fixes demonstrate any
principled way to solve problems.

IV. METHODOLOGY

This section describes our approach to identify repeated bug
fixes. There are mainly three phases in our approach. Given a
subject project, we first leveraged a bug ID-based approach to
identify fixing patches (Section IV-A). Next, we filtered hunks
and extracted bug fixes from these patches (Section IV-B).
Finally, we mined repeated fixes and identified repeated-fix
groups (Section IV-C).

A. Identifying Fixing Patches

As with prior work [32], [41], [6], to identify fixing patches
in subject projects, we adopted the traditional heuristics [9].
Given a subject project, we first found all reported and
resolved bugs in the project’s bug database (i.e., Bugzilla [1]).
Since each bug has an assigned unique ID, we recorded all
IDs of the resolved bugs. Meanwhile, for each commit in the
project’s version history, we extracted any number mentioned
in the commit message, and checked whether the extracted
number(s) matched any known bug ID. If so, the commit was
considered as a fixing patch for the corresponding bug.

B. Filtering Hunks and Extracting Bug Fixes

From each fixing patch, we extracted hunks to identify
bug fixes. We excluded hunks in the files which were less
important to program implementation, such as documentation
and configuration files. Similar to prior work [25], we also
removed hunks that were not inside the implementation of any
method or function, such as import statements and comments,
since most of these changes did not affect program behaviors.

To identify fixes applied to methods or functions, we took
three steps. First, based on the @@-delimited line in each hunk,
we computed the code range of each bug fix in both old and
new versions, namely, (FRangeo, FRangen). Second, we
used an Abstract Syntax Tree (AST) parser to form a syntax
tree for each compilation unit (i.e. source file), and to identify
the code range of each method in both old and new versions,
namely, (MRangeo, MRangen). Finally, for each bug fix,
we checked whether its range was inside any known method
range. In other words, suppose a compilation unit cu has n
methods: m1, m2, . . . , mn. For each bug fix fi applied to cu,
we checked whether there exists j ∈ [1, n], such that

(FRangeio ⊂MRangejo) ∧ (FRangein ⊂MRangejn) (1)

If so, fi is considered as a fix applied to mj . Otherwise, if no
such method mj exists, fi is discarded.

C. Mining Repeated Fixes

With the raw data of bug fixes, we mined for repeated fixes
using CCFinder [13]. This mining process takes two steps:

1) Identifying clone regions among fixes: We formatted
bug fixes by removing edit operation symbols, such as “+”
for added lines and “−” for deleted lines, and then used C-
CFinder to identify clone regions. In particular, given multiple
formatted fixes, CCFinder first converted each of them to a
token sequence by replacing all identifiers of variables, literals,
methods, and types with standardized tokens like “$p”. It



then detected any common subsequence between the token
sequences. As shown in Fig. 2, after the removal of “+” in
both fixes, lines 1-3 of f1 and lines 1-3 of f2 are converted
to the same token sequence, and thus considered clones.

f1 f2

1.+ if (currentLine != null) {
2.+ parseTags(true);
3.+ }

1.+ if (line != null) {
2.+ parseOptions(false);
3.+ }

Fig. 2: An example of repeated fixes

2) Matching edit operation sequences for cloned region-
s: We retrieved edit operation symbols for identified clone
regions to check whether they matched. In Fig. 2, the edit
operation sequence in f1 consists of three “+” symbols, which
perfectly matches the edit operation sequence in f2. Therefore,
the two fixes are considered repetitive. To retrieve as many
clones as possible, we configured CCFinder to treat two code
snippets as clones if the snippets shared at least 15 tokens.

To better handle the repetitive bug fixes with slight differ-
ences, we also defined a similarity metric called Reflection
Ratio (RR). The intuition is that if two fixes share a large
portion of their code changes, the fixes should be considered
similar and thus repetitive. Formally, given two fixes f1 and
f2, if their line numbers are separately n1 and n2, and the line
number of their overlapping part (the code clone) is noverlap,
we calculated their separate RR values in the following way:

RRi =
noverlap

ni
, where i ∈ [1, 2] (2)

If any of the RR values is above a certain threshold, we
say that the two fixes are similar. To ensure that we collect
enough repeated fixes, the threshold should not be too high.
Meanwhile, the majority parts of similar fixes should overlap.
Thus, the threshold is set to 60% in our approach.

With the above process, we extracted fixes (edit fragments),
identified repeated fixes applied for each bug, and then orga-
nized them as repeated-fix groups.

V. EXPERIMENTS

In this section, we first introduce the subject projects used in
our study (Section V-A), and then explain the experiment de-
sign and findings for each research question (Section V-B, V-C,
and V-D).

A. Subject Projects

We experimented with three open source projects: Eclipse
JDT [2], Mozilla Firefox [4], and LibreOffice [3]. Since
these projects are popular and widely used, they have well-
maintained bug databases and code repositories. The bug
reports and commit messages usually have high quality. There-
fore, when we identified fixing patches using bug IDs, we
almost always retrieved the exact patches corresponding to the
bugs. Eclipse JDT consists of five components: Core, Debug,
UI, APT, and Text. We chose its main component—Core—
for our study. Similarly, our study focused on the mozilla-
central component of Mozilla Firefox, and the libreoffice-core

component of LibreOffice. To facilitate representation, we still
use “Eclipse JDT”, “Mozilla Firefox”, and “LibreOffice” to
label their separate data sets.

TABLE I: Subject projects

Property Eclipse JDT Mozilla Firefox LibreOffice

Programming language Java C/C++ C++
LOC of selected component 1,322,334 8,571,183 4,625,297

Resolved period of bugs 2005 2014-2015 2014
# of bugs 1,077 8,427 2,455
# of fixing patches 1,378 10,051 7,846
# of fixes 27,725 183,051 131,080

Table I shows detailed information of our datasets. Pro-
gramming language shows the main language used to im-
plement each project. For example, Eclipse JDT is mainly
implemented in Java, while Mozilla Firefox is implemented in
C and C++. LOC shows the size of each selected component
under study. For instance, there are 1,322,334 lines of code in
the Core component of Eclipse JDT.

Since each subject project has a huge number of resolved
bugs and commits, we defined a time range to sample a subset
of data. All information about the subsets is shown in rows 3-
6. Resolved period of bugs describes the time period used to
sample each project. # of bugs illustrates the number of bugs
sampled in this way. We obtained 1,077 bugs from Eclipse
JDT, 8,427 bugs from Mozilla Firefox, and 2,455 bugs from
LibreOffice. With these collected bugs, we used the approach
described in Section IV-A to identify corresponding fixing
patches. The # of fixes row shows the number of fixes extracted
from fixing patches.

TABLE II: Refined dataset after filtering

Property Eclipse JDT Mozilla Firefox LibreOffice

# of refined bugs 870 380 1,563
# of refined fixing patches 1,116 569 3,804
# of refined fixes 16,289 3,451 33,057

We further refined the extracted fixes based on the hunks
from which the fixes were extracted (as described in Sec-
tion IV-B). In this way, we obtained 16,289 fixes for Eclipse
JDT, 3,451 fixes for Mozilla Firefox, and 33,057 fixes for
LibreOffice. As shown in Table II, these fixes separately
resolved 870 bugs, 380 bugs, and 1,563 bugs. Comparing
Table I and II, we notice that although Mozilla Firefox has
more bugs sampled than the other two projects, its number
of refined fixes—3,451—is much smaller. The reason is that
many fixes in Mozilla Firefox were not applied to function
implementation. Instead, they were applied to web scripts,
configuration files, and other documents.

With the refined dataset in Table II, we detected repeated
fixes using CCFinder, finding 589 repeated-fix groups for
Eclipse JDT, 206 groups for Mozilla Firefox, and 1,317 groups
for LibreOffice. All these repeated fixes and groups were used
in our characterization study.



B. RQ1: What is the frequency of repeated bug fixes?

This research question examines the prevalence of repeated
fixes, and further assesses how useful existing repetition-based
tools can be when suggesting code changes. In particular, we
clustered repeated fixes in various ways, and evaluated the
frequency of repeated bug fixes in four dimensions:
D1: How frequently do repeated fixes occur in code reposito-

ries?
D2: How dense is fix repetition when it occurs?
D3: How many times do developers usually try to fully apply

repeated fixes?
D4: Are there any repeated fixes across bugs?

For D1, we clustered repeated fixes based on the entities
(i.e. bugs, patches, and hunks) they were related to. Next, we
computed their occurrence rates as the ratios of repeated fix-
involved entities to all entities, which are shown below:

Bug ratio (Br) =
# of bugs resolved by repeated fixes

Total # of bugs
(3)

Patch ratio (Pr) =
# of patches with repeated fixes

Total # of patches
(4)

Hunk ratio (Hr) =
# of hunks with repeated fixes

Total # of hunks
(5)

As shown in Table III, there were repeated fixes in all three
projects, which corroborates the community’s understanding
that developers apply repeated fixes. For instance, at bug
level, the occurrence rates in Eclipse JDT, Mozilla Firefox and
LibreOffice were 20%, 15% and 16%, respectively. However,
at patch level, the occurrence rates became 17%, 22%, and
16%. At hunk level, the occurrence rates changed to 12%,
18%, and 21%. Compared with prior studies, our observed
numbers are different for two reasons. First, we experimented
with a different data set. Second, prior studies [25], [28]
measured repetitiveness as the ratio of the total occurrence
of repeated fixes to all fixes, while our computation is based
on entities like bugs, patches, and hunks. Our study confirms
prior findings from three different perspectives.

TABLE III: Occurrence Rates of Repeated Fixes

Eclipse JDT Mozilla Firefox LibreOffice

# of bugs with repeated fixes 172 58 243
Total # of refined bugs 870 380 1,563
Br 20% 15% 16%

# of patches with repeated fixes 193 123 621
Total # of refined patches 1,116 569 3,804
Pr 17% 22% 16%

# of hunks with repeated fixes 388 192 1,376
Total # of refined hunks 3,221 1,051 6,637
Hr 12% 18% 21%

Finding 1: A considerable amount of repetitive fixes
were found in all three projects. Specifically, 15-20%
bugs involved repeated fixes, which corresponded to
16-22% patches, or 12-21% hunks.

For D2, we counted the instances inside each repeated-
fix group, and classified repeated-fix groups based on their
instance counts. As shown in Fig. 3, 48-70% of repeated-
fix groups contained only 2 fix instances, and 15-19% groups
contained 3 repeated fixes. Although in some cases of Eclipse
JDT and LibreOffice, a fix repeated more than 30 times to
resolve a bug, the cases were really rare.

Some existing tools, such as LASE [23], require developers
to provide at least two code change examples to demonstrate
a program transformation pattern. Based on the examples,
the tool automatically finds other edit locations and suggests
similar edits. According to the distribution of repeated-fix
groups, we estimate that LASE can help in at most 30-52%
cases, because it expects fixes to repeat for at least 3 times. In
comparison, tools like SYDIT [24] and LibSync [26], which
solely require one edit example to demonstrate the fix pattern,
may be more helpful. The reason is when a fix repeats twice,
these tools may save half of programming effort by inferring
the pattern from one fix, and then suggesting the other fix.

Finding 2: 48-70% of repeated-fix groups contained
only 2 fix instances, meaning that for most bugs,
repeated fixes did not occur many times.

For D3, within each repeated-fix group, we identified the
patches from which the fixes were extracted, counted the
patches, and categorized repeated-fix groups based on the
patch counts. As shown in Fig. 4, 73-100% of repeated-fix
groups spanned at most 3 patches, meaning that developers
usually tried at most 3 times to fully apply all repeated fixes.
Especially, 91% of repeated-fix groups in Eclipse JDT have
all fixes applied in single patches. It indicates that developers
always remembered to apply all repeated fixes in one commit
to fix a bug. However, Mozilla Firefox and LibreOffice have
many fewer fixes repeating in single patches, which accounted
for only 29% and 36% of repeated-fix groups. This observation
indicates that for some projects, developers did commit errors
of omission, and failed to consistently apply all repeated fixes
in one trial.

Researchers proposed approaches to suggest repeated edits
based on exemplar edits [23], [24], [26]. However, they have
not investigated how to integrate the example-based tools
into the software lifecycle. There can be two potential places
to introduce automatic edit suggestion: integrated develop-
ment environment (IDE), and version control system (VCS).
When integrated to IDE, edit suggestion tools can monitor
developers’ edits at runtime, and provide immediate coding
assistance once it infers a change pattern and generates some
suggestion. When integrated to VCS, edit suggestion tools
can analyze each code commit to infer change patterns and
suggest edits for next commit. Based on our observations, the
former approach of IDE integration seems more promising
because the earlier edits are suggested, the more likely they
can save developers’ editing effort. After the initial patch of
repeated fixes, developers may be done with the task, leaving
little opportunity for tools to locate and create missing edits.
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Fig. 4: Distribution of repeated-fix groups based on patch counts

Finding 3: 91%, 29%, and 36% of groups in Eclipse
JDT, Mozilla Firefox, and LibreOffice have fixes re-
peating in single patches. It indicates that coding as-
sistance tools should generate precise edit suggestion
as early as possible to effectively help developers.

For D4, we compared repeated-fix groups to check whether
there is any group-level repetition. As each repeated-fix group
corresponds to one bug, by identifying repetition between
groups, we simulated the experiment to investigate any com-
mon fix shared between bugs. As shown in Table IV, we
observed group-level repetition in all three projects, although
the repetition did not occur very often. In particular, Eclipse
JDT has 13% of groups repeated between 2 bugs, meaning
that each of these 74 repeated-fix groups could resolve two
bugs. In comparison, Mozilla Firefox has only 2% of groups
repeated between 2 bugs. It indicates that bugs in Mozilla
Firefox are so unique that even if a bug needs repeated fixes,
the fixes always have not occurred before.

TABLE IV: Group-level repetition across bugs

Project Eclipse JDT Mozilla Firefox LibreOffice

# of groups 589 206 1,317
# of groups repeated across 2
bugs

74 (13%) 5 (2%) 68 (5%)

# of groups repeated across 3
bugs

51 (9%) 0 12 (1%)

# of groups repeated across 4
or more bugs

42 (8%) 0 5 (0%)

Some automatic program repair tools like Prophet [21],
PAR [14], and the tool built by Le et al. [17], generate
candidate fixes either based on prior bug fixes mined from

open source projects or manually identified bug fix patterns.
Our study shows that these tools can help fix bugs to some
extent. However, the effectiveness varies from project to
project, depending on how unique the bugs are.

Finding 4: 30%, 2%, and 6% of groups in Eclipse
JDT, Mozilla Firefox, and LibreOffice have fixes re-
peated among multiple bugs. It indicates that the
feasibility of resolving new bugs with fix patterns
derived from past fixes is confined to a small number
of bugs.

C. RQ2: Where are repeated fixes usually applied?

When repeated fixes are applied, we are curious where
they usually occur, and what are the common features of
their edit locations. Existing tools suggest edit locations for
repeated fixes based on similar dependency constraints [23],
[24], [36], similar API usage [26], or similar code content
(code clones) [19], [29]. For this RQ, we investigated two
aspects:
• What is the spatial distribution of repeated fixes?
• Are repeated fixes always applied to code clones?

With the investigation, we aimed to check whether the spatial
distribution information can help suggest edit locations, and
how effectively clone detection tools can locate buggy code.

To investigate the spatial distribution of repeated fixes, we
examined where the fixes were applied for each repeated-fix
group. We also checked whether the edited code co-located
within the same package, same file, or same method. Then
we classified repeated-fix groups accordingly. As shown in
Table V, repeated fixes displayed significant spatial locality.



86-99% of groups had all fixes applied in the same package,
while 70-94% of groups were applied to the same file. The
observation indicates that when codebase is large, and short
response time of edit suggestion tools is desired, we can
prioritize search scopes based on how probably each scope
contains repeated fixes. This investigation shows promising
ways to prioritize code search for efficient edit suggestion.

TABLE V: Distribution of repeated-fix groups based on co-
location relationship of fixes

Project Eclipse JDT Mozilla Firefox LibreOffice

# of groups 589 206 1,317
# of groups with all fixes in
the same package

505 (86%) 203 (99%) 1,200 (91%)

# of groups with all fixes in
the same file

412 (70%) 193 (94%) 1,133 (86%)

# of groups with all fixes in
the same method

116 (20%) 175 (85%) 912 (69%)

Finding 5: 86-99% of groups consisted of fixes within
the same package, and 70-94% of groups were applied
to the same file. These distributions demonstrate the
strong spatial locality of repeated fixes.

To estimate how effectively clone detection tools can sug-
gest edit locations for repeated fixes, we started with our
repeated-fix groups, and leveraged CCFinder to detect clones
in the old version before fixes were applied. Hypothetically,
if we observe many repeated fixes occurring purely in code
clones, we can conclude that clone detection is always ef-
fective to locate bugs for repeated fixes. In order to detect
clones surrounding repeated fixes, we first extracted the edit
context of each fix as a buggy snippet, which includes three
context lines before the fix, deleted lines, and three context
lines after the fix. Then for each group of repeated fixes, we
used CCFinder to find clones between the buggy snippets.

TABLE VI: Distribution of repeated-fix groups whose fixes
are purely applied to code clones

Minimum
Clone Length

Eclipse JDT Mozilla Firefox LibreOffice

(# of tokens) (589 groups) (206 groups) (1317 groups)

5 432 (73%) 190 (92%) 1,091 (83%)
10 415 (70%) 190 (92%) 1,078 (82%)
15 411 (70%) 187 (91%) 1,063 (81%)
20 402 (68%) 184 (89%) 1,044 (79%)
25 383 (65%) 173 (84%) 998 (76%)
30 368 (62%) 170 (83%) 967 (73%)
35 352 (60%) 161 (78%) 932 (71%)
40 335 (57%) 158 (77%) 903 (69%)
45 317 (54%) 158 (77%) 879 (67%)
50 305 (52%) 156 (76%) 846 (64%)

Our clone detection results are shown in Table VI. We varied
the minimum clone length (MCL) parameter in CCFinder
from 5 to 50 tokens, with 5 increment, to comprehensively
investigate the distribution of repeated-fix groups. Intuitively,
the smaller MCL we set, the more clones we can retrieve.

According to the data, if we set MCL to 5 tokens, at most
73-92% of groups have fixes solely applied to clones. If
we set MCL to 50 tokens, only 52-76% repeated-fix groups
are applied to clones. We manually checked the cases when
repeated fixes were applied but no clones were detected in the
corresponding buggy snippets. There are mainly two reasons
to explain that. First, some buggy snippets contained different
numbers of deleted lines. Although the overall fixes (inserted
and deleted lines) were similar, the original buggy code was
not similar enough to compose clones. Second, some repeated
fixes only inserted new code and their context lines were
totally different.

Our observations indicate that repeated fixes are not limited
to clones, and clone detection cannot always successfully
identify all edit locations of repeated fixes. To better search
for candidate edit locations, we may need new approaches
which incorporate the clone information, the spatial locality,
and other possible common characteristics shared between the
code snippets requiring for similar edits.

Finding 6: At most 73-92% of repeated-fix groups
were purely applied to code clones, meaning that clone
detection alone is not sufficient to identify all edit
locations for repeated fixes.

D. RQ3: What are the common bugs and fix patterns of
repeated fixes?

We are curious about the semantic meaning of repeated fixes
for two reasons. First, if developers always commit mistakes
when writing certain types of code, such code is error-prone,
and we may improve existing fault prediction tools [10] to
notify developers of potential errors. Second, if developers
always apply the same strategy to fix certain types of bugs,
it means that there is common fixing practice conducted by
developers. If we can leverage such common practice, we
may help improve the patches generated by existing automatic
program repair tools [21], [14], [37], [18], [22], [7], [27].

Since semantic meanings of fixes are hard to reason about
by tools, we manually analyzed fixes. We randomly selected
150 repeated-fix groups, with 50 groups chosen from each
project. The manual analysis of these repeated-fix groups was
performed by the first author. When analyzing each repeated-
fix group, we characterized two things: bug component, and
fix pattern. In most cases, a bug fix always focuses on one
program syntax component, whether it is a block, a statement,
an expression, or a variable. The component manifests the bug
in terms of program logic or data usage. We call the program
syntax component under fix as bug component. It characterizes
the bug. When fixes are applied, there are three types of
operations involved: insertion, deletion, and modification. De-
pending on which bug component a fix handles, and how the
semantic meaning is modified, we consider the fix pattern as
updating an if-statement, deleting a variable, etc. Notice that
each fix pattern characterizes a type of bug fixes. We defined
fix patterns by correlating as many lines of changes as possible,



instead of literally reporting changes line-by-line. As shown in
Fig. 5, three lines are deleted and seven lines are added. After
inspecting the code and correlating changes based on program
control and data dependency relationship, we found that the
fix aims to modify the assignment to currFrame under specific
conditions. Therefore, we characterize the fix by identifying
the bug component as the currFrame assignment statement,
and the fix pattern as modifying the assigned value.

In our manual characterization, line changes are correlat-
ed either based on the program dependency relationship
(control or data dependence), and/or the textual similarity
between inserted and deleted lines. In Fig. 6, the changes are
connected based on the textual similarity between insertion
and deletion. We therefore summarize the fix as follows:
variable substitutedWildcardBound is the bug component,
and modifying the variable name is the fix pattern. Similarly,
in Fig. 7, one inserted line (line 3) is control dependent on the
inserted if-condition (line 2), while the deleted line (line 1)
is similar to that inserted line. Therefore, we summarize the
fix to have an if-condition bug component, and a fix pattern
of adding the condition. Different from above examples, the
fix shown in Fig. 8 includes two bug components and two
fix patterns. Since line 1 and 4 are similar, we conclude that
rv’s assignment is a bug component, and the fix pattern is
modifying the assigned value. Meanwhile, lines 1-2 and 4-
6 are also similar, and the statements in lines 4-6 control
depend on the inserted if-condition (line 3). Therefore, the
if-condition is another bug component, whose corresponding
fix pattern is adding the condition.
1. − if (aStart)
2. − currFrame = aStart->GetNextSibling();
3. − else
4. + if (aStart) {
5. + if (aStart->GetNextSibling())
6. + currFrame = aStart->GetNextSibling();
7. + else if (aStart->GetParent()->GetContent()

->IsXUL(nsGkAtoms::menugroup))
8. + currFrame = aStart->GetParent()->GetNextSibling();
9. + }
10.+ else

Fig. 5: The bug component is currFrame’s assignment in line
2, and the fix pattern is modifying the assigned value.

1. − this.lowerBound = substitutedWildcardBound;
2. − if ((substitutedWildcardBound.tagBits

& HasTypeVariable) == 0)
3. + this.lowerBound = originalWildcardBound;
4. + if ((originalWildcardBound.tagBits )

& HasTypeVariable) == 0

Fig. 6: The bug component is substitutedWildcardBound,
and the fix pattern is modifying the variable name.

1. − CreateAndDispatchEvent(OwnerDoc(),
NS_LITERAL_STRING("DOMLinkChanged"));

2. + if (IsInUncomposedDoc()) {
3. + CreateAndDispatchEvent(OwnerDoc(),

NS_LITERAL_STRING("DOMLinkChanged"));
4. + }

Fig. 7: The bug component is if-condition in line 2, and the
fix pattern is adding the condition.

Table VII illustrates our manual inspection results. As
shown in the table, for each repeated-fix group, we identified

1. − nsresult rv = RegisterDOMNames();
2. − NS_ENSURE_SUCCESS(rv, nullptr);
3. + if (!nsDOMClassInfo::sIsInitialized) {
4. + nsresult rv = nsDOMClassInfo::Init();
5. +
6. + NS_ENSURE_SUCCESS(rv, nullptr);
7. + }

Fig. 8: The bug components are rv’s assignment in line 1 and
if-condition in line 3, and the fix patterns are modifying the
assigned value and adding the condition.

the bug component(s) and fix pattern(s), clustered groups
accordingly, and counted the number of groups in each cluster
for each project. Among 146 out of the 150 groups, there was
one bug component and one fix pattern in each fix. However,
within the remaining four groups of Mozilla Firefox, each
fix contained two bug components and two fix patterns. In
Table VII, “-” is used to represent empty entries for simplicity.
We ranked bug components based on the number of groups
to which they corresponded. From the table, we made the
following three observations.

TABLE VII: Manual inspection of 150 repeated-fix groups

Bug Fix Eclipse Mozilla
Component Pattern JDT Firefox LibreOffice

if-statement
add if-statement 13 14 12
delete if-statement 5 9 5

if-condition

modify if-condition 4 9 16
add if-condition 9 7 4
delete if-condition 1 - -

return-
statement

modify returned value 2 3 3

assignment
statement

modify assigned value 5 8 3

case-branch
add case-branch 1 1 2
delete case-branch 1 - -

for-
statement

add for-statement 1 - 1

try-
statement

add try-statement 2 - -

method modify callee 1 - -
invocation modify parameter 1 1 2

variable name modify variable name 2 2 -

switch-
statement

add switch-
statement

1 - -

else-branch add else-branch 1 - 2

Observation 1: if-statement and if-condition were the
most prevalent bug components. Among the identified 11
bug components, if-statement and if-condition separately
accounted for 39% and 33% of all groups. Among the ob-
served 16 fix patterns, adding if-statement and modifying
if-condition were applied the most frequently, separately
accounting for 26% and 19%. Among the three fix pattern-
s for if-condition, modifying if-condition was the most
frequently applied one, and developers seldom deleted if-
conditions. This observation indicates that program repair tools
like Prophet [21], Angelix [22], Nopol [7], SemFix [27], and
SPR [20] can be useful, because they focus on repairing
buggy or missing if-conditions. However, we still lack tools
to automate if-statement additions or deletions, whose edit



operations involve not only changes to if-conditions, but also
additions or deletions of statements either in the then-branches
and/or else-branches.

Observation 2: Many bugs required control-statement
changes or multi-line fixes. By further classifying fix patterns
into two categories: control-statement changes and data-value
changes, we found the following six components belonging to
control-statement changes: if-statement, case-branch, for-
statement, try-statement, switch-statement, and else-
branch. The other five components correspond to data-value
changes. We observed that data-value changes occurred more
often than control-statement changes, which was 83 vs. 71.
It means that developers are more likely to commit mistakes
when defining, checking, or using data. However, they are
slightly less likely to make mistakes about control flows.

Existing automatic repair tools like GenProg [18], RSRe-
pair [33], and PAR [14] were built to create single-line patches
and correct data values. Angelix can synthesize multi-line
patches to correct multiple data values in one fix [22]. Al-
though our manual inspection corroborates that these tools can
help fix important data-value bugs, we still see a strong need
for tools to create control-statement changes, such as adding
or deleting case-branches, try-statements, etc., because these
changes are also important.

Furthermore, we quantified the complexity of repeated bug
fixes by computing the LOC of each repeated fix. Surprisingly,
only 5%, 1% and 2% of repeated fixes in Eclipse JDT, Mozilla
Firefox, and LibreOffice involved single-line additions or
deletions. Since a single-line update is often represented as two
lines in textual diff—one inserted line plus one deleted line, we
also counted all two-line changes to assess the upper bound of
single-line fix prevalence. At most 17-23% of repeated fixes
were covered in this way. In comparison, 77-83% repeated
fixes involved 3 or more lines of change. This demonstrates
that single-line fixes do not dominate repeated fixes. Program
repair tools can be more helpful if they propose multi-line
fixes. Le et al. recently created a tool to repair programs
by leveraging bug history data [17]. Although the tool could
create multi-line fixes, among the 357 bugs in Defects4J [12],
the tool can only fix 23 bugs, meaning that more advanced
approaches are still needed to automatically fix many bugs.

Observation 3: There were 8 fix patterns applying
control-statement changes, and 8 patterns applying data-
value changes. Kim et al. once manually inspected human-
written patches, and identified the top 8 popular fix patterns
that covered almost 30% of all patches they observed [14].
None of their patterns involved control-statement changes.
By comparing our pattern set with theirs, we found two
overlapping patterns: modifying if-condition, and adding if-
condition. This overlap means programs always contain errors
relevant to if-statements, which corroborate the previous
finding that if-condition changes are the most frequently
applied bug fixes [31].

We found two reasons to explain the observed pattern
divergence. First, Kim et al. focused on the top 8 common
fix patterns of more than 60,000 human-written patches, while

we reported all observed patterns in 150 repeated-fix groups,
which correspond to 435 fixes from 213 patches. Second,
their manual inspection was based on groums—a graph-based
model for representing object API usage [30]. They discovered
similar patches based on the similarity of object API usage.
Therefore, if two similar patches involve different APIs, their
groums are dissimlar. This limitation can affect Kim et al.’s
manual inspection results.

Finding 7: 72% of manually inspected repeated-fix
groups focused on bugs in if-statements or if-
conditions, meaning that if-statement is the biggest
software pitfall. 50% of observed patterns involved
control-statement changes, indicating a desperate need
for tools to suggest control structure change patches.

VI. RELATED WORK

This section describes related work on empirical studies of
repeated code changes, change recommendation systems, and
automatic program repair.
Empirical Studies on Repeated Code Changes. Re-
searchers have observed that developers apply repeated code
changes [34], [32], [28], [15], [16]. For instance, Pan et
al. found 27 automatically extractable bug fix patterns from 7
open source projects, and observed that if-condition changes
are the most frequently applied bug fixes [31]. Zhong et
al. found that about 3% of bug fixes can be constructed
from past fixes based on their similarity or overlap in terms
of code names and/or structures [39]. Nguyen et al. found
that 17-45% of bug fixes were recurring [28]. They extracted
related objects’ API usage in modified code before and after
each bug fix, and clustered bug fixes based on the graphical
representation of API usage modification. Kim et al. observed
that on average, 75% of structural changes to mature software
involved repeated and consistent changes [15]. Ray et al. ap-
plied CCFinder to detect similar patches applied to different
BSD products: OpenBSD, FreeBSD, and NetBSD [34]. They
observed that developers copied 11-16% patches across the
BSD products. Although we used the same tool to mine re-
peated fixes, our focus is not just to demonstrate the existence
of repeated fixes. Instead, compared with all prior studies,
we further investigate the edit context where repeated fixes
always occur, and what is the semantic meaning of repeated
fixes. With such further investigation, we managed to provide
relevant guidelines to change recommendation systems and
automatic program repair tools.
Change Recommendation Systems. Based on the insight
that developers write duplicated code and apply repeated
code changes, researchers have proposed various tools to
recommend code changes [23], [24], [26], [29], [11], [19].
For instance, CP-Miner [19] and Deckard [11] mine code
clones, and further detect copy-paste related bugs based on
identifier mappings or context mappings among clones. Clever
keeps track of all clone groups in software and monitor for
edits applied to any clone. If one clone is detected to be



updated, Clever lists all its clone peers, and recommends
relevant changes. LibSync focuses on API usage adaptation
edits. It represents API usage adaptation changes as a graph,
extracts a feature vector from the graph, and then leverages
the feature vector to search for similar code involving similar
API usage. SYDIT and LASE take another approach to model
and suggest changes [23], [24]. Given an exemplar edit, they
leverage program static analysis to identify all dependency
relationship between the edit and unchanged code, and extract
code from the version before-edit to capture the dependency
constraints. The extracted code is then generalized and lever-
aged to suggest similar edits to other code locations. Instead of
proposing another tool, the focus of this paper is to investigate
(1) how helpful clone-based tools can be when locating code
to apply repeated fixes, and (2) whether there is any missing
feature of repeated fixes that can be leveraged to help improve
existing tools.
Automatic Program Repair. Researchers have proposed
tools to generate candidate patches for certain bugs, and
automatically check patch correctness using compilation and
testing [21], [33], [7], [14], [18]. For example, GenProg [18]
and RSRepair [33] generated candidate patches by replicat-
ing, mutating, or deleting code randomly from the existing
program. Since the random search usually involves a huge
search space, other researchers leveraged repeated fixes to
improve the search efficiency. For instance, Kim et al. built
PAR to prioritize patch generation for the most popular fix
patterns [14], while Long et al. built Prophet to focus patch
generation on statistically most possible fix patterns [21]. In
terms of patch generation capability, all above tools mainly
generate single-line bug fixes. In our study, we roughly esti-
mated how helpful such patches can be to automatically fix
bugs. Compared with above search-based and pattern-based
tools, Nopol takes a different approach to compare the path
conditions of successful runs and failing runs for any condition
difference, and then leverages an SMT solver to synthesize
the path condition leading to a bug fix [7]. In our study,
we confirmed that if-conditions are places where developers
always make mistakes, and further identify other pitfalls in
software development.

VII. THREATS TO VALIDITY

Our observations are based on subsets of bugs and fixes
mined from three open source projects, and may not generalize
well to other bugs and projects. In the future, we plan to
include more open source projects into our study, and crowd-
source the workload of manually checking bugs and fixes. By
asking developers to independently observe the bugs and fixes,
we will identify the bug components and fix patterns which the
majority developers agree on. We will also explore advanced
approaches to automatically detect the bug components and
fix patterns. For instance, we can use GumTree [8]—a finer-
grained source code differencing tool—to precisely extract and
represent code changes, and use WALA [5]—a program static
analysis framework—to reason about the relationship between
changes, and to further infer developers’ change intention.

When identifying fixing patches, we reused an existing
approach [6] based on the resolved issues in bug databases,
assuming that each issue mentions a bug. However, some
issues might be actually irrelevant to bugs; instead, they might
focus on new requirements or code refactoring. In future, we
plan to leverage more advanced approaches [38], [35] to better
identify fixing patches.

We used the clone detection tool CCFinder to identify re-
peated fixes. CCFinder can detect simple clones with different
line breaks or different identifier names. However, it cannot
detect clones with further variations like statement additions or
deletions. Although we leveraged a similarity metric Reflection
Ratio (RR) to alleviate the limitation by flexibly matching
syntactically different repetitive fixes, the threshold setting of
RR could be a potential threat to internal validity.

As with prior work [16], we defined a fix as a contiguous
block of edits. A limitation of this definition is that developers
may apply multiple noncontiguous edits as a whole to fix
one bug. However, the goal of this study is not to count
the exact number of fixes developers applied for a bug.
Instead, we focused on estimating the repetitive coding effort
of developers, and characterizing the frequency, context, and
meaning of the repetition.

VIII. CONCLUSION

Prior empirical studies showed that developers applied re-
peated bug fixes. Many tools were built to suggest repeated
fixes to save coding effort and reduce omission errors. In
this characterization study, we revisited repeated fixes, and
characterized them thoroughly from three perspectives: fre-
quency, edit context, and semantic meaning. Different from
prior studies, we not only reported and analyzed numbers,
but also correlated every observation with existing tools to
investigate how well the tools automated repetitive fixes.

Our study on Eclipse JDT, Mozilla Firefox and LibreOffice
shows that 15-20% of bugs involved repeated fixes, but many
repeated fixes were applied in the same patch to fix the
same bug. At most 73-92% of repeated-fix groups consisted
of fixes reoccurring among code clones, but many more
repeated fixes demonstrated significant spatial locality. 39%
of repeated-fix groups resolved bugs by adding or deleting
whole if-structures. The observations indicate we need better
edit suggestion tools by appropriately incorporating the tools
into software lifecycle, by prioritizing code search scopes for
efficiency, and by designing more advanced techniques to
better reuse past bug fixes to resolve new bugs in future.
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