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Abstract: NAMD is a parallel molecular dynamics code designed for high-performance simulation of large biomo-
lecular systems. NAMD scales to hundreds of processors on high-end parallel platforms, as well as tens of processors
on low-cost commodity clusters, and also runs on individual desktop and laptop computers. NAMD works with AMBER
and CHARMM potential functions, parameters, and file formats. This article, directed to novices as well as experts, first
introduces concepts and methods used in the NAMD program, describing the classical molecular dynamics force field,
equations of motion, and integration methods along with the efficient electrostatics evaluation algorithms employed and
temperature and pressure controls used. Features for steering the simulation across barriers and for calculating both
alchemical and conformational free energy differences are presented. The motivations for and a roadmap to the internal
design of NAMD, implemented in C�� and based on Charm�� parallel objects, are outlined. The factors affecting
the serial and parallel performance of a simulation are discussed. Finally, typical NAMD use is illustrated with
representative applications to a small, a medium, and a large biomolecular system, highlighting particular features of
NAMD, for example, the Tcl scripting language. The article also provides a list of the key features of NAMD and
discusses the benefits of combining NAMD with the molecular graphics/sequence analysis software VMD and the grid
computing/collaboratory software BioCoRE. NAMD is distributed free of charge with source code at www.ks.uiuc.edu.
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Introduction

The life sciences enjoy today an ever-increasing wealth of infor-
mation on the molecular foundation of living cells as new se-
quences and atomic resolution structures are deposited in data-
bases. Although originally the domain of experts, sequence data
can now be mined with relative ease through advanced bioinfor-
matics and analysis tools. Likewise, the molecular dynamics pro-
gram NAMD,1 together with its sister molecular graphics program
VMD,2 seeks to bring easy-to-use tools that mine structure infor-
mation to all who may benefit, from the computational expert to
the laboratory experimentalist.

The increase in our knowledge of structures is not as dramatic
as that of sequences, yet the number of newly deposited structures
reached a record 5000 last year. For example, the structures of
pharmacologically crucial membrane proteins, which were essen-
tially unknown 10 years ago, are being resolved today at a rapid

pace. Structures yield static information that can be viewed with
molecular graphics software such as VMD. However, structures
also hold the key to dynamic information that leads to understand-
ing function and mechanism, intellectual guideposts for basic
medical research. With NAMD we want to simplify access to
dynamic information extrapolated from structures and provide a
molecular modeling tool that can be used productively by a wide
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group of biomedical researchers, including particularly experimen-
talists.

On a molecular scale, the fundamental processing units in
the living cell are often huge in size and function in an even
larger complex environment. Striking progress has been
achieved in characterizing the immense machines of the cell,
such as the ribosome, at the atomic level. Advances in biomed-
icine demand tools to model these machines to understand their
function and their role in maintaining the health of cells. Ac-
cordingly, the purpose of NAMD is to enable high-performance
classical simulation of biomolecules in realistic environments
of 100,000 atoms or more. The progress made in this regard is
illustrated in Figure 1. A decade ago in its first release,3,4

NAMD permitted simulation of a protein–DNA complex en-
compassing 36,000 atoms,5 one of the largest simulations car-
ried out at the time. The most recent release permitted the
simulation of a protein–DNA complex of 314,000 atoms.6 To
probe the behavior of this 10-fold larger system, the simulated
period actually increased 100-fold as well.

The following article on NAMD is directed to novices and
experts alike. It explains the concepts and algorithms underlying
modern molecular dynamics (MD) simulations as realized in
NAMD, for example, the efficient numerical integration of the
Newtonian equations of motion, the use of statistical mechanics
methods for simulations that control temperature and pressure, the
efficient evaluation of electrostatic forces through the particle-
mesh Ewald method, the use of steered and interactive MD to
manipulate and probe biomolecular systems and to speed up reac-
tion processes, and the calculation of alchemical and conforma-
tional free energy differences.

The article describes the design of NAMD and the motivation
behind the design, that is, to permit continuous software develop-
ment in view of ever-changing technologies, to utilize parallel
computers of any size effectively via message driven computation,
to run well on platforms from laptops and desktops—where
NAMD is actually used most—to parallel computers with thou-

sands of processors. The article also demonstrates how the user can
readily extend NAMD through the Tcl scripting language and
elaborates on the strengths of NAMD in steered and interactive
MD.

To demonstrate the broad utility of NAMD, the article intro-
duces three typical applications as they are encountered in modern
research, involving a small, an intermediate, and a large biomo-
lecular system. We emphasize which features of NAMD were used
and which were most helpful in completing the three modeling
projects expeditiously. We also refer readers to tutorial material
(available at http://www.ks.uiuc.edu/Training/Tutorials/) that has
been proven helpful in NAMD training workshops and university
courses. In fact, the first application presented below ubiquitin
stems directly from the introductory NAMD tutorial. Other tuto-
rials—for which a laptop provides sufficient computational
power—introduce steered MD and simulations of membrane chan-
nels, as well as the use of VMD in trajectory analysis.

Finally, a conclusion section summarizes the features of
NAMD that have proven to be most relevant to nonexpert as well
as expert users and describes the great benefits that NAMD gains
from its close link to the widely used molecular graphics program
VMD, which permits model building as well as trajectory analysis.
The integration of NAMD into the grid software BioCoRE is also
mentioned.

Molecular Dynamics Concepts and Algorithms

In this section we outline concepts and algorithms of classical MD
simulations. In these simulations the atoms of a biopolymer move
according to the Newtonian equations of motion

m�r�̈� � �
�

�r��

Utotal�r�1, r�2, . . . , r�N�, � � 1, 2 . . . N, (1)

where m� is the mass of atom �, r�� is its position, and Utotal is the
total potential energy that depends on all atomic positions and,
thereby, couples the motion of atoms. The potential energy, rep-
resented through the MD “force field,” is the most crucial part of
the simulation because it must faithfully represent the interaction
between atoms, yet be cast in the form of a simple mathematical
function that can be calculated quickly.

Below we introduce first the functional form of the force field
utilized in NAMD. We then comment on the special problem of
calculating the Coulomb potential and forces efficiently. The nu-
merical integration of (1) is then explained, followed by an outline
of simulation strategies for controlling temperature and pressure.
In the case of such simulations, frictional and fluctuating forces are
added to (1) following the principles of nonequilibrium statistical
mechanics. Finally, we describe how external, user-defined forces
are added to simulations to manipulate and probe biomolecular
systems.

Force Field Functions

For an all-atom MD simulation, one assumes that every atom
experiences a force specified by a model force field accounting for

Figure 1. Growth in practical simulation size illustrated by compar-
ison of estrogen receptor DNA-binding domain simulation of ref. 5,
left, 36,000 atoms simulated over 100 ps, published in 1997, with
multiscale LacI–DNA complex simulation of ref. 6, right, 314,000
atoms simulated over 10 ns, published in 2005 and described in the
exemplary applications section. [Color figure can be viewed in the
online issue, which is available at www.interscience.wiley.com.]
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the interaction of that atom with the rest of the system. Today, such
force fields present a good compromise between accuracy and
computational efficiency. NAMD employs a common potential
energy function that has the following contributions:

Utotal � Ubond � Uangle � Udihedral � UvdW � UCoulomb. (2)

The first three terms describe the stretching, bending, and torsional
bonded interactions,

Ubond � �
bonds i

ki
bond�ri � r0i�

2, (3)

Uangle � �
angles i

ki
angle��i � �0i�

2, (4)

Udihedral � �
dihedral i

�ki
dihe�1 � cos�ni�i � �i��, ni 	 0

ki
dihe�0i � �i�

2 n � 0, (5)

where bonds counts each covalent bond in the system, angles are
the angles between each pair of covalent bonds sharing a single
atom at the vertex, and dihedral describes atom pairs separated by
exactly three covalent bonds with the central bond subject to the
torsion angle � (Fig. 2). An “improper” dihedral term governing
the geometry of four planar, covalently bonded atoms is also
included as depicted in Figure 2.

The final two terms in eq. (2) describe interactions between
nonbonded atom pairs:

UvdW � �
i

�
j�i

4
ij���ij

rij
�12

� ��ij

rij
�6�, (6)

UCoulomb � �
i

�
j�i

qiqj

4�
0rij
, (7)

which correspond to the van der Waal’s forces (approximated by
a Lennard–Jones 6–12 potential) and electrostatic interactions,
respectively.

In addition to the intrinsic potential described by the force field,
NAMD also provides the user with the ability to apply external
forces to the system. These forces may be used to guide the system
into configurations of interest, as in steered and interactive MD
(described below).

For every particle in a given context of bonds, the parameters
ki

bond, r0i, etc., for the interactions given in eqs. (3)–(5) are laid out
in force field parameter files. The determination of these parame-
ters is a significant undertaking generally accomplished through a
combination of empirical techniques and quantum mechanical
calculations;7–9 the force field is then tested for fidelity in repro-
ducing the structural, dynamic, and thermodynamic properties of
small molecules that have been well-characterized experimentally,
as well as for fidelity in reproducing bulk properties. NAMD is
able to use the parameterizations from both CHARMM7 and
AMBER10 force field specifications.

To avoid surface effects at the boundary of the simulated
system, periodic boundary conditions are often used in MD sim-
ulations; the particles are enclosed in a cell that is replicated to
infinity by periodic translations. A particle that leaves the cell on
one side is replaced by a copy entering the cell on the opposite
side, and each particle is subject to the potential from all other
particles in the system including images in the surrounding cells,
thus entirely eliminating surface effects (but not finite-size effects).
Because every cell is an identical copy of all the others, all the
image particles move together and need only be represented once
inside the molecular dynamics code.

However, because the van der Waals and electrostatic interac-
tions [eqs. (6) and (7)] exist between every nonbonded pair of
atoms in the system (including those in neighboring cells) com-
puting the long-range interaction exactly is unfeasible. To perform
this computation in NAMD, the van der Waals interaction is
spatially truncated at a user-specified cutoff distance. For a simu-
lation using periodic boundary conditions, the system periodicity is
exploited to compute the full (nontruncated) electrostatic interac-
tion with minimal additional cost using the particle-mesh Ewald
(PME) method described in the next section.

Full Electrostatic Computation

Ewald summation11 is a description of the long-range electrostatic
interactions for a spatially limited system with periodic boundary

Figure 2. Internal coordinates for bonded interactions: r governs bond
stretching; � represents the bond angle term; � gives the dihedral
angle; the small out-of-plane angle � is governed by the so-called
“improper” dihedral angle .
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conditions. The infinite sum of charge-charge interactions for a
charge-neutral system is conditionally convergent, meaning that
the result of the summation depends on the order in which it is
taken. Ewald summation specifies the order as follows:12 sum over
each box first, then sum over spheres of boxes of increasingly
larger radii. Ewald summation is considered more reliable than a
cutoff scheme,13–15 although it is noted that the artificial period-
icity can lead to bias in free energy,16,17 and can artificially
stabilize a protein that should have unfolded quickly.18

Dropping the prefactor 1/4�
, the Ewald sum involves the
following terms:

EEwald � Edir � Erec � Eself � Esurface, (8)

Edir �
1

2 �
i, j�1

N

qiqj �
n� r

	 erfc���r�i � r�j � n�r��
�r�i � r�j � n�r�

� �
�i, j��Excluded

qiqj

�r�i � r�j � �� ij�
, (9)

Erec �
1

2�V �
m� 
0

exp���2�m� �2/�2�

�m� �2 ��
i�1

N

qiexp(2�im� � r�i)�2

, (10)

Eself � �
�

	�
�
i�1

N

qi
2, (11)

Esurface �
2�

�2
s � 1�V ��
i�1

N

qir�i�2

. (12)

Here, qi and r�i are the charge and position of atom i, respectively,
and n� r is the lattice vector. For an arbitrary simulation box defined
by three independent base vectors a�1, a�2, a�3, one defines n� r �
n1a�1 � n2a�2 � n3a�3, where n1, n2, and n3 are integers. ¥	
denotes a summation over n� r that excludes the n� r � 0 term in the
case i � j; “excluded” denotes the set of atom pairs whose direct
electrostatic interaction should be excluded. �� ij denotes the lattice
vector for the (i, j) pair that minimizes �r�i � r�j � �� ij�. � is a
parameter adjusting the workload distribution for direct and recip-
rocal sums. 
s is the dielectric constant of the surroundings of the
simulation box, which is water for most biomolecular systems. V
is the volume of the simulation box. m� is the reciprocal vector
defined as m� � m1b�1 � m2b�2 � m3b�3, where m1, m2, m3 are
integers, and the reciprocal base vectors b�1, b�2, b�3 are defined so
that

a� � � b� � � ���, �, � � 1, 2, 3. (13)

The complementary error function erfc( x) in eq. (9) is

erfc�x� �
2

	� 

x

�

e�t2
dt. (14)

The Ewald sum in eq. (8) has four terms: direct sum Edir,
reciprocal sum Erec, self-energy Eself, and surface energy Esurface.
The self-energy term is a trivial constant, while the surface term is
usually neglected by assuming the “tin-foil” boundary condition

s � �, which is partly due to the dielectric constant of water
(
s � 80) being much larger than 1. The Ewald sum has a freely
chosen parameter �, which can shift the computational load be-
tween the direct sum and the reciprocal sum. For a given accuracy,
the computationally optimal choice of the parameter leads to a cost
proportional to N3/ 2 in the standard computation, where N is the
number of charges in the system.19

The particle–mesh Ewald (PME)20 method is a fast numerical
method to compute the Ewald sum. NAMD uses the smooth PME
(SPME)21 method for full electrostatic computations. The cost of
PME is proportional to N log N and the time reduction is signif-
icant even for a small system of several hundred atoms. In PME,
the parameter � is chosen so that the major work load is put into
the reciprocal sum while the direct sum is computed by a cost
proportional to N only. The reciprocal sum is then computed via
fast Fourier transform (FFT) after an approximation is made to
delegate the computation to a grid scheme. For this purpose, PME
uses an interpolation scheme to distribute the charges, sitting
anywhere in real space, to the nodes of a uniform grid as illustrated
in Figure 3. SPME uses B-spline functions as the basis functions
for the interpolation. The continuity of B-spline functions and their
derivatives makes the analytical expression of forces easy to
obtain, and reduces the number of FFTs by half compared to the
original PME method. In SPME, approximations are made to the
potential only; the force is still the exact derivative of the approx-
imated potential. The strict conservation of energy resulting from
the computed force is crucial and is strongly assisted by maintain-
ing the symplecticness of the integrator,22 as discussed further
below.

The PME method can be adopted to compute the electrostatic
potential in real space and has been implemented in VMD (see Fig.
4). The feature has been used recently in a ground-breaking sim-
ulation to compute transmembrane electrostatic potentials aver-
aged over an MD trajectory.23 This feature makes it possible today
to compute average electrostatic potentials from first principles
and to replace previously used heuristic potentials like those de-
rived from Poisson–Boltzmann theory.

The PME method does not conserve energy and momentum
simultaneously, but neither does the particle-particle/particle-mesh
method24 or the multilevel summation method.25,26 Momentum
conservation can be enforced by subtracting the net force from the
reciprocal sum computation, albeit at the cost of a small long-time
energy drift.

Numerical Integration

Biomolecular simulations often require millions of time steps.
Furthermore, biological systems are chaotic; trajectories start-
ing from slightly different initial conditions diverge exponen-
tially fast and after a few picoseconds are completely uncorre-
lated. However, highly accurate trajectories is not normally a
goal for biomolecular simulations; more important is a proper
sampling of phase space. Therefore, for constant energy (NVE
ensemble) simulations, the key features of an integrator are not
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only how accurate it is locally, but also how efficient it is, and
how well it preserves the fundamental dynamical properties,
such as energy, momentum, time-reversibility, and symplectic-
ness.

The time evolution of a strict Hamiltonian system is symplec-
tic.22 A consequence of this is the conservation of phase space
volume along the trajectory, that is, the enforcement of the Li-
ouville theorem (ref. 27, p. 69). To a large extent, the trajectories
computed by numerical integrators observing symplecticness rep-
resent the solution of a closely related problem that is still Ham-
iltonian.28 Because of this, the errors, unavoidably generated by an
integrator at each time step, accumulate imperceptibly slowly,
resulting in a very small long-time energy drift, if there is any at
all (ref. 22, theorem IX.8.1). Artificial measures to conserve en-
ergy, for example, scaling the velocity at each time step so that the
total energy is constant, lead to biased phase space sampling of the
constant energy surface;29 in contrast, there has been no evidence
that symplectic integrators have this problem.

A simple example demonstrates the merit of a symplectic
integrator. For this purpose, the one-dimensional harmonic oscil-
lator problem has been numerically integrated, the resulting tra-
jectory being shown in Figure 5. We note that the comparison is
“unfair” to the symplectic method with respect to both accuracy
(t2 local error for the symplectic method vs. t5 for the Runge–
Kutta method, where t is the time step), and computational effort
(single force evaluation per time step for the symplectic method vs.
four force evaluations for the Runge–Kutta method). Nevertheless,
the symplectic method shows superior long-time stability.

NAMD uses the Verlet method (ref. 31, section 4.2.3) for NVE
ensemble simulations. The “velocity-Verlet” method obtains the
position and velocity at the next time step (rn�1, vn�1) from the
current one (rn, vn), assuming the force Fn � F(rn) is already
computed, in the following way:

“half-kick” vn�1/ 2 � vn � M�1Fn � t/2,

“drift” rn�1 � rn � vn�1/ 2t,

“compute force” Fn�1 � F�rn�1�,

“half-kick” vn�1 � vn�1/ 2 � M�1Fn�1 � t/2.

Here, M is the mass. The Verlet method is symplectic and time
reversible, conserves linear and angular momentum, and requires
only one force evaluation for each time step. For a fixed time
period, the method exhibits a (global) error proportional to t2.

More accurate (higher order) methods are desirable if they can
increase the time step per force evaluation. Higher order Runge–
Kutta type methods, symplectic or not, are not suitable for biomo-
lecular simulations because they require several force evaluations
for each time step and force evaluation is by far the most time-
consuming task in molecular dynamics simulations. Gear type
predictor–corrector methods,32 or linear multistep methods in gen-
eral, are not symplectic (ref. 22, theorem XIV.3.1). No symplectic
method has been found as yet that is both more accurate than the
Verlet method and as practical for biomolecular simulations.

NAMD employs a multiple-time-stepping13,33,34 method to
improve integration efficiency. Because the biomolecular interac-
tions collected in eq. (2) generally give rise to several different
time scales characteristic for biomolecular dynamics, it is natural
to compute the slower-varying forces less frequently than faster
varying ones in molecular dynamics simulations. This idea is
implemented in NAMD by three levels of integration loops. The
inner loop uses only bonded forces to advance the system, the
middle loop uses Lennard–Jones and short-range electrostatic
forces, and the outer loop uses long-range electrostatic forces. We
note that the method implemented in NAMD is symplectic and
time reversible.

The longest time step for the multiple time-stepping method is
limited by resonance.35 When good energy conservation is needed
for NVE ensemble simulations we recommend choosing 2 fs, 2 fs,
and 4 fs as the inner, middle, and outer time steps if rigid bonds to
hydrogen atoms are used; or 1 fs, 1 fs, and 3 fs if bonds to

Figure 3. In PME, a charge (denoted by an empty circle with label
“q” in the figure) is distributed over grid (here a mesh in two dimen-
sions) points with weighting functions chosen according to the dis-
tance of the respective grid points to the location of the charge.
Positioning all charges on a grid enables the application of the FFT
method and significantly reduces the computation time. In real appli-
cations, the grid is three-dimensional.

Figure 4. Smoothed electrostatic potential of decalanine in vacuum as
calculated with the PME plugin of VMD. Atoms are colored by charge
(blue is positive, red is negative). The helix dipole is clearly visible
from the two potential isosurfaces �20kBT/e (blue, left lobe) and
�20kBT/e (red, right lobe). [Color figure can be viewed in the online
issue, which is available at www.interscience.wiley.com.]
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hydrogen are flexible.36 More aggressive time steps may be
used for NVT or NPT ensemble simulations, for example, 2 fs,
2 fs, and 6 fs with rigid bonds and 1 fs, 2 fs, and 4 fs without.
Using multiple time stepping can increase computational effi-
ciency by a factor of 2.

NVT and NPT Ensemble Simulations

A fundamental requirement for an integrator is to generate the
correct ensemble distribution for the specified temperature and
pressure in an appropriate way. For this purpose the Newtonian
equations of motion (1) should be modified “mildly” so that the
computed short-time trajectory can still be interpreted in a con-
ventional way. To generate the correct ensemble distribution, the
system is coupled to a reservoir, with the coupling being either
deterministic or stochastic. Deterministic couplings generally have
some conserved quantities (similar to total energy), the monitoring
of which can provide some confidence in the simulation. NAMD
uses a stochastic coupling approach because it is easier to imple-
ment and the friction terms tend to enhance the dynamical stability.

The (stochastic) Langevin equation37 is used in NAMD to
generate the Boltzmann distribution for canonical (NVT) ensemble
simulations. The generic Langevin equation is

Mv̇ � F�r� � �v � 	2�kBT

M
R�t�, (15)

where M is the mass, v � ṙ is the velocity, F is the force, r is the
position, � is the friction coefficient, kB is the Boltzmann constant,
T is the temperature, and R(t) is a univariate Gaussian random
process. Coupling to the reservoir is modeled by adding the fluc-
tuating (the last term) and dissipative (��v term) forces to the

Newtonian equations of motion (1). To integrate the Langevin
equation, NAMD uses the Brünger–Brooks–Karplus (BBK) meth-
od,38 a natural extension of the Verlet method for the Langevin
equation. The position recurrence relation of the BBK method is

rn�1 � rn �
1 � �t/ 2

1 � �t/ 2
�rn � rn�1�

�
1

1 � �t/ 2
t2�M�1F(rn) � 	2�kBT

M
Zn� , (16)

where Zn is a set of Gaussian random variables of zero mean and
variance 1. The BBK integrator requires only one random number
for each degree of freedom. The steady-state distribution generated
by the BBK method has an error proportional to t2,39 although
the error in the time correlation function can have an error pro-
portional to t.40

For stochastic equations of motion, position and velocity be-
come random variables while the time evolution of the correspond-
ing probability distribution function is described by the Fokker–
Planck equation (ref. 37, section 2.4), a deterministic partial
differential equation. The stochastic equations of motion are de-
signed so that the time-independent solution to the Fokker–Planck
equation is the targeted ensemble distribution. The relationship
between the Langevin equation and the associated Fokker–Planck
equation has been invoked, for example, in ref. 41. The theory
behind deterministic coupling methods is similar, with the Li-
ouville equation playing the pivotal role.42

For NPT ensemble simulations, one of the authors (J.P.) pro-
posed a new set of equations of motion and implemented a nu-
merical integrator in NAMD (ref. 43, pressure control section). It
was inspired by the Langevin-piston method44 and Hoover’s meth-
od45–47 for constant pressure simulations. A recent work proposed
essentially the same set of equations [the “Langevin–Hoover”
method given by eqs. (5a)–(5d) in ref. 48], and proved that they
generate the correct ensemble distribution. The only difference
between the two is the term 1 � d/Nf in eq. (5b) and (5d) of ref.
48, where d is the dimension (generally 3), and Nf is the number
of degrees of freedom. The term d/Nf is negligible for most
purposes.

Steered and Interactive Molecular Dynamics

Biologically important events often involve transitions from one
equilibrium state to another, such as the binding or dissociation of
a ligand. However, processes involving the rare event of barrier
crossing are difficult to reproduce on MD time scales, which today
are still confined to the order of tens of nanoseconds. To address
this issue, the application of external forces may be used to guide
the system from one state to another, enhancing sampling along the
pathway of interest. Recent applications of single-molecule exper-
imental techniques (such as atomic force microscopy and optical
tweezers) have enhanced our understanding of the mechanical
properties of biopolymers. Steered molecular dynamics (SMD) is
the in silico complement of such studies, in which external forces
are applied to molecules in a simulation to probe their mechanical
properties as well as to accelerate processes that are otherwise too
slow to model. This method has been reviewed in refs. 49–51.

Figure 5. A symplectic method demonstrates superior long-time sta-
bility: the symplectic method used here is the symplectic Euler method
([22], Theorem 3.3), whose local error is proportional to t2; the
nonsymplectic method used is the Runge–Kutta method ([30], sect.
8.3.3) whose local error is proportional to t5. The system described
is a one-dimension harmonic oscillator. The equation of motion is mẍ
� �m�2x, with m � � � 1, and initial conditions x � 1, v � 0.
The exact trajectory is the unit circle. The chosen time step is t �
0.5 and 10,000 steps were integrated. The trajectory of the Runge–
Kutta method collapses toward the center while the symplectic Euler
method maintains a stable orbit even though its trajectory is deformed
into an ellipse by a larger local error.
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With advances in available computer power, steering forces can
also be applied interactively, instead of in batch mode; we call this
technique Interactive Molecular Dynamics (IMD).52,53 External
forces have been applied using NAMD in a variety of ways to a
diverse set of systems, yielding new information about the me-
chanics of proteins,54 for instance in refs. 6, 55–67 and other
studies reviewed in ref. 51. We expect that most molecular dy-
namics simulations in the future will be of the steered type. This
expectation stems from an analogy to experimental biophysics:
although many experiments provide unaltered images of biological
systems, more experiments investigate systems through well-de-
signed perturbations by physical or chemical means.

SMD

Steered MD may be carried out with either a constant force applied
to an atom (or set of atoms) or by attaching a harmonic (spring-
like) restraint to one or more atoms in the system and then varying
either the stiffness of the restraint67 or the position of the re-
straint68–70 to pull the atoms along. Other external forces or
potentials can also be used, such as constant forces or torques
applied to parts of the system to induce rotational motion of its
domains. NAMD provides built-in facilities for applying a variety
of external forces, including the automated application of moving
constraints. In SMD, the direction of the applied force is chosen in
advance, specified through a few simple lines in an NAMD con-
figuration file. More flexible force schemes can be realized within
NAMD through scripting.

As a computational technique, SMD bears similarities to the
method of umbrella sampling,71,72 which also seeks to improve the
sampling of a particular degree of freedom in a biomolecular
system; however, while umbrella sampling requires a series of
equilibrium simulations, SMD simulations apply a constant or
time-varying force that results in significant deviations from equi-
librium. In consequence, the results of the SMD dynamics have to
be analyzed from an explicitly nonequilibrium viewpoint.54 SMD
also permits new types of simulations that are more naturally
performed and understood as out-of-equilibrium processes.

In constant-force SMD, the atoms to which the force is applied
are subject to a fixed, constant force in addition to the force field
potential. The affected atoms are specified through a flag in the
molecular coordinates (PDB) file, and the force vector is specified
in the NAMD configuration. Intermediates found through con-
stant-force SMD simulations may be modeled using the theory of
mean first passage times for a barrier-crossing event.73,74 Typical
applied forces range from tens to a thousand picoNewtons (pN).75

Constant velocity SMD simulates the action of a moving AFM
cantilever on a protein. An atom of the protein, or the center of
mass of a group of atoms, is harmonically restrained to a point in
space that is then shifted in a chosen direction at a predetermined
constant velocity, forcing the restrained atoms to follow (Fig. 6).
By default, the SMD harmonic restraint in NAMD only applies
along the direction of motion of the restraint point, such that the
atoms are unrestrained along orthogonal vectors; it is possible,
however, to apply additional restraints. As with constant force
SMD, the affected atoms are specified through a flag in the PDB
file; the force constant of the restraint and the velocity of the
restraint point are specified in the NAMD configuration file. For a

group of atoms harmonically restrained with a force constant k
moving with velocity v in the direction n� , the additional potential

U�r�1, r�2, . . . , t� �
1

2
k�vt � �R� �t� � R� 0� � n� �2 (17)

is applied, where R� (t) is the current center of mass of the SMD
atoms and R� 0 is their initial center of mass. n� is a unit vector. In
AFM experiments, the spring constants k of the cantilevers are
typically of the order of 1 pN/Å, so that thermal fluctuations in the
position of an attached ligand, (kBT/k)1/ 2, are large on the atomic
scale, for example, 6 Å. However, in SMD simulations stiffer
springs (k � 70 pN/Å) are employed, leading to more detailed
information about interaction energies as well as finer spatial
resolution. However, due to limitations in attainable computational
speeds, simulations cover time scales that are typically 105 times
shorter than those of AFM experiments, necessitating high pulling
velocities on the order of 1 Å/ps. As a result, a large amount of
irreversible work is performed during SMD simulations, which
needs to be discounted to obtain equilibrium information.

A proof that equilibrium properties of a system can be deduced
from nonequilibrium simulations was given by Jarzynski.76,77 The
second law of thermodynamics states that the average work �W�
done through a nonequilibrium process that changes a parameter �
of a system from �0 at time zero to �t at time t is greater than or
equal to the equilibrium free energy difference between the two
states specified through the final and initial values of �:

F � F��t� � F��0� � �W�, (18)

where the equality holds only if the process is quasi-static. Jar-
zynski76 discovered an equality that holds regardless of the speed
of the process:

e��F � �e��W�, (19)

where � � (kBT)�1. The Jarzynski equality provides a way to
extract equilibrium information, such as free energy differences,
from averaging over nonequilibrium processes,76 a method that
has been tested against computer simulations77 and experiments.78

A major difficulty that arises with the application of eq. (19) is
that the average of exponential work appearing in Jarzynski’s
equality is dominated by trajectories corresponding to small work
values that arise only rarely. Hence, an accurate estimate of free
energy requires suitable sampling of such rare trajectories, and
thus the accuracy of the method is limited by statistical error.
Cumulant expansions41,62,76,79 are an effective approximation for
the exponential average; because the lower order terms of the
expansion are less influenced by statistical error, the systematic
error introduced by truncating the higher order terms may be
considerably smaller than the statistical error that which would be
introduced by including them. It can be shown41 that in the
relevant regime of steering by means of stiff springs, the work on
the system is Gaussian-distributed regardless of the speed of the
process simulated and the cumulant expansion of Jarzynski’s
equality can safely be terminated at second order.80
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Application of the Jarzynski identity is comparable in effi-
ciency to the umbrella sampling method.81 However, the analysis
involved in the SMD method is simpler than that involved in
umbrella sampling in which one needs to solve coupled nonlinear
equations for the weighted histogram analysis method.31,54,82,83 In
addition, the application of the Jarzynski identity has the advantage
of uniform sampling of a reaction coordinate. Whereas in umbrella
sampling a reaction coordinate is locally sampled nonuniformly
proportional to the Boltzmann weight, in SMD a reaction coordi-
nate follows a guiding potential that moves with a constant veloc-
ity and, hence, is sampled almost uniformly (computing time is
uniformly distributed over the given region of the reaction coor-
dinate). This is particularly beneficial when the potential of mean
force (essentially, the free energy profile along the reaction coor-
dinate) contains narrow barrier regions as in ref. 62. In such cases,
a successful application of umbrella sampling depends on an
optimal choice of biasing potentials, whereas nonequilibrium ther-
modynamic integration appears to be more robust.31 However,
umbrella sampling is a general method that can be applied to a
variety of reaction coordinates, including complex ones like those
involved in large conformational changes in proteins.84

NAMD also provides the facility for the user to apply other
types of external forces to a system. In a technique related to SMD,
torques may be applied to induce the rotation of a protein domain.
As with SMD, this is implemented in NAMD through a simple
specification in the configuration file and does not require addi-
tional programming on the part of the researcher. This technique
has already been successfully used to study the rotation of the Fo

domain of ATPase.85 The application of more sophisticated exter-
nal forces are readily implemented through the NAMD “Tcl
forces” interface, which allows the user to specify position- and
time-dependent forces to be computed at each time step. This
technique has recently been used to mimic the effect of membrane
surface tension on a mechanosensitive channel59 and to model the
interaction of the lac repressor protein (modeled in atomic-level
detail) with DNA described by an elastic rod that exerts forces on
the protein.6,86

IMD

By using NAMD in conjunction with the molecular graphics
software VMD, steering forces can be applied in an interactive
manner, rather than only in batch mode.52 For this purpose, VMD
is linked to a NAMD simulation running on the same machine or
a remote cluster. This arrangement permits an investigator to view
a running simulation and to apply forces based on real-time infor-
mation about the progress of the simulation (such as visual infor-
mation or force feedback through a haptic device). The researcher
is then able to explore the mechanical properties of the system in
a direct, hands-on manner, using her scientific intuition to guide
the simulation via a mouse or haptic device. This method has
already been used in biomolecular research, for instance, to study
the selectivity and regulation of the membrane channel protein
GlpF and the enzyme glycerol kinase.53 Setting up an IMD sim-
ulation is a straight-forward process that can be done on any
computer.

The IMD haptic interface52 consists of three primary compo-
nents: a haptic device to provide translational and orientational
input as well as force feedback to the user’s hand; NAMD to
calculate the effect of applied forces via molecular dynamics; and
VMD to display results (Fig. 7). VMD communicates with the
haptic device via a server87 that controls the haptic environment
experienced by the user, as described in ref. 52. The scheme of
splitting the haptic, visualization, and simulation components into
three communicating, asynchronous processes has been employed
successfully,52,88 and permits all three components to run at top
speed, maximizing the responsiveness of the system. IMD requires

Figure 6. Constant velocity pulling in a one-dimensional case. The
dummy atom is colored red, and the SMD atom blue. As the dummy
atom moves at constant velocity, the SMD atom experiences a force
that depends linearly on the distance between both atoms. [Color figure
can be viewed in the online issue, which is available at www.
interscience.wiley.com.]

Figure 7. In IMD, the user applies forces to atoms in the simulation
via a force-feedback haptic device.
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efficient network communication between the visualization front-
end and the MD back-end. Although the network bandwidth re-
quirements for performing IMD are quite low relative to the
computational demands, latency is a major concern as it has a
direct impact on the responsiveness of the system. IMD uses
custom networking code in NAMD and VMD to transfer atomic
coordinates and steering forces efficiently.

To make molecular motion as described by MD perceptible to
the IMD user through the haptic device, the quantities arising in
the generic equation of motion governing the molecular response
(represented below by Roman characters) and the haptic response
(denoted by Greek characters),

m
d2x

dt2 � f, �
d2�

d�2 � � (20)

must be related through suitable scaling factors. Molecular motion
probed is typically extended over distances of x � 1 Å, molecular
time scales covered are typically t � 1 ps, and external forces
acting on molecular moieties should not exceed f � 1 nN so as not
to overwhelm inherent molecular forces. By contrast, the haptic
device is characterized by length resolution of � � 1 cm and can
generate a force of � � 1 N or more; t � 1 ps of dynamics
requires � � 1 s or more to compute. The interface between the
haptic device and NAMD thus introduces the scaling factors

Sx � �/x � 108, St � � /t � 1012, Sf � �/f � 109, (21)

Multiplying the molecular equation of motion in eq. (20) by the
factor SfSx/St

2 gives

SfSx

St
2 m

d2x

dt2 � Sfm
d2�

d�2 �
SfSx

St
2 f �

Sx

St
2 �. (22)

From this we can conclude

SfSt
2

Sx
m

d2�

d�2 � �. (23)

Comparison with the haptic equation of motion in eq. (20) suggests
that the effective mass felt by the haptic device, and hence, by the
user is

� �
SfSt

2

Sx
m. (24)

The molecular moieties to be moved through external forces have
typical masses of (e.g., for glycerol moved through a membrane
channel53) of m � 180 amu or m � 3 � 10�25 kg. From eq. (21)
we conclude then that the effective mass felt by the user through
the haptic device is 3 kg; the user does not sense strong inertial
effects, and can readily manipulate the biomolecular system. IMD
can also be carried out without force feedback, using a standard
mouse to steer the simulated system.

To assist users of NAMD with IMD, AutoIMD89 has been
developed. AutoIMD permits the researcher to use the graphical

interface provided by VMD to run an MD simulation based on a
selection of atoms. The simulation can then be visualized in real
time in the VMD graphics window. Forces may be applied with
either a mouse or a haptic device by the user (as described above),
or statically as in traditional SMD. Rather than carrying out a
simulation of the entire molecule, AutoIMD performs a rapid MD
simulation by dividing the system into three parts: a “molten
zone,” where the atoms are allowed to move freely; a surrounding
“fixed zone,” in which the atoms are included in the simulation
(and exert forces on the molten zone), but are held fixed; and an
“excluded zone,” which is entirely disregarded in the AutoIMD
simulation. In this way, AutoIMD may be used to inspect and
perform energy minimizations on parts of the system that have
been manipulated (e.g., through mutations or IMD), giving the
researcher real-time feedback on the simulation.

SMD and IMD simulations differ in fundamental ways, and
may be fruitfully combined. In SMD, the specification of the
external forces is developed based on the researcher’s understand-
ing of the biological and structural properties of the system. The
SMD simulation is carried out with the weakest force possible to
induce the necessary change in an affordable length of simulation
time, and the analysis of the simulation data relates the force
applied to the progress of the system along the chosen reaction
path. In contrast, IMD simulations are unplanned, allowing the
researcher to toy with the system, exploring the degrees of free-
dom. Because the simulations need to be rapid—completed in
minutes rather than days or weeks—the applied forces are ex-
tremely large, and the simulations are too rough to produce data
suitable for an accurate analysis of molecular properties. The
techniques can be combined: in the first stage, the researcher uses
IMD to generate and test hypotheses for reaction mechanisms or to
accelerate substrate transport, docking, and other mechanisms that
are difficult to cast into numerical descriptions; in the second stage,
the researcher carries out further MD or SMD simulations building
on the hypothesized mechanisms or configurations from the IMD
investigation.

Free Energy Calculations

In addition to propagating the motion of atoms in time, MD can
also be used to generate an ensemble of configurations, from which
thermodynamic quantities like free energy differences, F, can be
computed. In a nutshell, there are three possible routes for the
calculation of F: (1) estimate the relevant probability distribu-
tion, �[U(r�1, . . . , r�N)], from which a free energy difference may
be inferred via �1/� ln �[U(r�1, . . . , r�N)]/�0, where �0 denotes a
normalization term: (2) compute the free energy difference di-
rectly; and (3) calculate the free energy derivative, dF(�)/d�,
along some order parameter (collective coordinate), �, consistent
with an average force,90 and integrate the latter to obtain F.

The popular umbrella sampling method,71,72 whereby the prob-
ability to find the system along a given reaction coordinate is
sought, falls evidently into the first category. One blatant short-
coming of this scheme, however, lies in the need to guess the
external potential or bias that is necessary to overcome the barriers
of the free energy landscape—an issue that may rapidly become
intricate in the case of qualitatively new problems. In this section,
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we shall focus on the second and the third classes of approaches
for determining free energy differences.

The first approach, available in NAMD since version 2.4, is
free energy perturbation (FEP),91 an exact method for the direct
computation of relative free energies. FEP offers a convenient
framework for performing “alchemical transformations,” or in
silico site-directed mutagenesis of one chemical species into an-
other.

Description of intermolecular association or intramolecular de-
formation in complex molecular assemblies requires an efficient
computational tool, capable of rapidly providing precise free en-
ergy profiles along some ordering parameter, �, in particular when
little is known about the underlying free energy behavior of the
process. A fast and accurate scheme, pertaining to the third cate-
gory of methods, is introduced in NAMD version 2.6 to determine
such free energy profiles, F(�). This scheme relies upon the
evaluation of the average force acting along the chosen order
parameter, �, in such a way that no apparent free energy barrier
impedes the progress of the system along the latter.92,93

The efficiency of the free energy algorithm represents only one
facet of the overall performance of the free energy calculation,
which to a large extent, relies on the ability of the core MD
program to supply configurations and forces in rigorous thermo-
dynamic ensembles and in a time-bound fashion. The methodology
described hereafter has been implemented in NAMD and operates
with nearly no extra cost compared to a standard MD simulation.

Alchemical Transformations

Contrary to the worthless piece of lead in the hands of the pro-
verbial alchemist, the potential energy function of the computa-
tional chemist is sufficiently malleable to be altered seamlessly,
thereby allowing the thermodynamic properties of a system to be
related to those of a slightly modified one, such as a chemically
modified protein or ligand, through the difference in the corre-
sponding intermolecular potentials.

The free energy difference between a reference state, a, and a
target state, b, can be expressed in terms of the ratio of their
corresponding partition functions. Using the well-known relation-
ship between partition function Z and free energy F, Z � exp[�F/
k8T], along with the property Z � ZkinZpot where Zkin and Zpot are
the partition functions for kinetic and potential energy, respec-
tively, one can express Fa3b � Fb � Fa as:

Fa3b � �
1

�
ln

� exp���Ub�r�1, . . . , r�N��dr�1 . . . dr�N

� exp���Ua�r�1, . . . , r�N��dr�1 . . . dr�N
. (25)

Here Ua and Ub are the potential energy functions for states a and
b, respectively. One can write eq. (25) Fa3b ��(1/�)ln{�
exp[��(Ub(�)�Ua(�))]exp[��Ua(�)]dx/�exp[��Ua(�)]dx} where
� � r�1, . . . , r�N . Defining the average, Boltzmann-weighted relative to
the potential Ua, that is, weighted over configurations representa-
tive of the reference state a, �f�a � �f(�)exp[��Ua(�)]dx/�
exp[��Ua(�)]dx, one can state:

Fa3b � �
1

�
ln�exp����Ub�r�1, . . . , r�N� � Ua�r�1, . . . , r�N����a.

(26)

This is the celebrated FEP equation.91 In principle, eq. (26) is
exact in the limit of infinite sampling. In practice, however, on the
basis of finite-length simulations, it only provides accurate esti-
mates for small changes between a and b. This condition does not
imply that the free energies characteristic of a and b be sufficiently
close, but rather that the corresponding configurational ensembles
overlap to a large degree to guarantee the desired accuracy. For
example, although the hydration free energy of benzene is only
�0.4 kcal/mol, insertion of a benzene molecule in bulk water
constitutes too large a perturbation to fulfill the latter requirement
in a single-step transformation. If such is not the case, the pathway
connecting state a to state b is broken down into N intermediate,
not necessarily physical states, �k (a � �1 � 0 and b � �N �
1), so that the Helmholtz free energy difference reads:

Fa3b � �
1

� �
k�1

N�1

ln�exp����U�r�1, . . . , r�N; �k�1�

� U�r�1, . . . , r�N; �k�����k. (27)

Here the potential energy is not only a function of the spatial
coordinates, but also of the parameter � that connects the reference
and the target states. Perturbation of the chemical system by means
of �k may be achieved by scaling the relevant nonbonded force
field parameters of appearing, vanishing, or changing atoms, in the
spirit of turning lead into gold.

In NAMD, the topologies characteristic of the initial state, a,
and the final state, b, coexist, yet without interacting. This implies
that, as a preamble to the free energy calculation, a hybrid topol-
ogy has to be defined with an appropriate exclusion list to prevent
interactions between those atoms unique to state a and those
unique to state b. In lieu of altering the nonbonded parameters, the
interaction of the perturbed molecular fragments with their envi-
ronment is scaled as a function of �k:

U�r�1, . . . , r�N; �k� � �kUb�r�1, . . . , r�N�

� �1 � �k�Ua�r�1, . . . , r�N�. (28)

This scheme is referred to as the dual-topology paradigm.94

In a number of MD programs, FEP is implemented as an extra
layer, implying that free energy differences are computed a pos-
teriori by looping over a previously generated trajectory. In
NAMD, the potential energies representative of the reference state,
�k, and the target state, �k�1, are evaluated concurrently “on the
fly” at little additional cost and the ensemble average of eq. (27) is
updated continuously.

“Alchemical transformations” may be applied to a variety of
chemically and biologically relevant systems, offering, in ad-
dition to a free energy difference, atomic-level insight into the
structural modifications entailed by the perturbation. In Figure
8, in silico site-directed mutagenesis experiments are proposed
for the transmembrane domain of glycophorin A (GpA) in an
attempt to pinpoint those residues responsible for �-helix
dimerization. Leu75 and Ile76 are perturbed into alanine follow-
ing the depicted thermodynamic cycle. The first point mutation,
L75A, yields a free energy change of �13.9 � 0.3 and �28.8 �
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0.5 kcal/mol in the free and in the bound state, respectively,
which, put together, corresponds to a net free energy change of
�1.0 � 0.6 kcal/mol (experimental estimate:95 �1.1 � 0.1
kcal/mol). The second point mutation, I76A, led to a free
energy change of �4.9 � 0.3 and �8.4 � 0.4 kcal/mol, in the
single helix and in the dimer, respectively, that is, a net change
of �1.4 � 0.5 kcal/mol (experimental estimate:95 �1.7 � 0.1
kcal/mol). Aside from the remarkable agreement between the-
ory and experiment, these free energy calculations confirm that
replacement of bulky nonpolar side chains like leucine or
isoleucine by alanine disrupts the �-helical dimer through a loss
of van der Waals interactions.96

Overcoming Free Energy Barriers Using an Adaptive
Biasing Force

The sizeable number of degrees of freedom described explicitly in
statistical simulations of large molecular assemblies, in particular
those of both chemical and biological interest, rationalizes the need

for a compact description of thermodynamic properties. Free en-
ergy profiles offer a suitable framework that fulfills this require-
ment by providing the dependence of the free energy on the chosen
degrees of freedom �. Determination of such free energy profiles,
under the sine qua non condition that some key degree of freedom
�, for example, a reaction coordinate, can be defined, however,
remains a daunting task from the perspective of numerical simu-
lations. In the context of Boltzmann sampling of the phase space,
overcoming the high free energy barriers that separate thermody-
namic states of interest is a rare event that is unlikely to occur on
the time scales amenable to MD simulation.

An important step forward on the road towards an optimal
sampling of the phase space along a chosen collective coordinate,
�, has been made recently. In a nutshell, this new method relies on
the continuous application of a dynamically adapted biasing force
that compensates the current estimate of the free energy, thus
virtually erasing the roughness of the free energy landscape as the
system progresses along �.92 To reach this goal, the average force

Figure 8. Homodimerization of the transmembrane (TM) domain of glycophorin A (GpA): (a) Contact
surface of the two �-helices forming the TM domain of GpA. The strongest contacts are observed in the
heptad of amino acids, Leu75, Ile76, Gly79, Val80, Gly83, Val84, and Thr87. Residue Leu75, which
participates in the association of the two �-helices through dispersive interactions, is featured as
transparent van der Waals spheres. (b) Free energy profile delineating the reversible dissociation of the
two �-helices, obtained using an adaptive biasing force. The ordering parameter, �, corresponds to the
distance separating the center of mass of the TM segments. The entire pathway was broken down into 10
windows, in which up to 15 ns of MD sampling was performed, corresponding to a total simulation time
of 125 ns. (c) Thermodynamic cycle utilized to perform the “alchemical transformation” of residues Leu75

and Ile76 into alanine, demonstrating the participation of these amino acids in the homodimerization of the
two �-helices. The left vertical leg of the cycle represents the transformation in a single �-helix from the
wild-type (WT) to the mutant form. The right vertical leg denotes a simultaneous point mutation in the
two interacting �-helices. Using the notation of the figure, the free energy difference arising from this
perturbation is equal to G2

mutation � 2G1
mutation. Each leg of the thermodynamic cycle consists of 50

intermediate states and a total MD sampling of 6 ns. For clarity, the environment of the �-helical dimer,
formed by a dodecane slab in equilibrium between two lamellae of water, is not shown. [Color figure can
be viewed in the online issue, which is available at www.interscience.wiley.com.]
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acting on �, �F���, is evaluated from an unconstrained MD simu-
lation:93

dA���

d�
� ��U(r�1, . . . , r�N)

��
�

1

�

� ln�J�
��

�
�

� ��F���, (29)

where �J� denotes the determinant of the Jacobian for the trans-
formation from Cartesian to generalized coordinates, which is a
necessary modification of metric, given that {r�1, . . . , r�N} and �
are not independent variables. The specific form of �J� is an
inherent function of the coordinate, �, chosen to advance the
system.

In the course of the simulation in NAMD, the force, F�, acting
along the ordering parameter, �, is accrued in small bins, thereby
supplying an estimate of the derivative dA(�)/d�. The so called
adaptive biasing force (ABF), F� ABF � ��F�����r�, is determined
in such a way that, when applied to the system, it yields a
Hamiltonian in which no average force is exerted along �. As a
result, all values of � are sampled with an equal probability, which
in turn, dramatically improves the accuracy of the calculated free
energies. The approach further entails that progression of the
system along � is fully reversible and limited solely by its self-
diffusion properties. At this stage, it should be clearly understood
that whereas the ABF method enhances sampling along �, its
ability to supply a perfectly uniform probability distribution of the
system over the entire range of � values may be impeded by
possible orthogonal degrees of freedom.

We have chosen to introduce the average force method in NAMD
within the convenient framework of unconstrained MD,93 in which
the coordinate, � is unconstrained, but other degrees of freedom, such
as bond lengths, can be constrained. Either constraint forces must be
taken into account in F�, as they are in NAMD version 2.6, or it will
be crucial to ascertain that no Cartesian coordinate appears simulta-
neously in a constrained degree of freedom and in the derivative
�U(r�1, . . . , r�N)/�� of eq. (29).

The implementation of the ABF scheme in NAMD provides
reaction coordinates such as a distance between subgroups of atoms or
length along a specified direction in cartesian space. Previous appli-
cations include, the intramolecular folding of a short peptide, the
partitioning of small solutes across an aqueous interface, and the
intermolecular association of neutral and ionic species.92,93

The �-helical dimerization of GpA represents an interesting
application of the method, whereby the reversible dissociation—
rather than the association, for obvious cost-effectiveness rea-
sons—is carried out, using the distance separating the center of
mass of the trans-membrane segments as the reaction coordinate.
The free energy profile characterizing this process is shown in
Figure 8, and features a deep minimum at 8.2 Å, which corre-
sponds to the native, close packing of the �-helices.

As the trans-membrane segments move away from each
other, helix– helix interactions are progressively disrupted, in
particular in the crossing region, thus causing an abrupt in-
crease of the free energy, accompanied by a tilt of the two
�-helices towards an upright orientation. As the distance be-
tween the two trans-membrane segments further increases, the
free energy profile levels off at 21 Å, a separation beyond which
the dimer is fully dissociated.

A valuable feature offered by NAMD lies in the possibility
to evaluate a posteriori electrostatic and van der Waals forces
from an ensemble of configurations. Projection of these forces
onto the coordinate �, and subsequent integration of the former
provides a deconvolution of the complete free energy profile in
terms of helix– helix and helix–solvent contributions.

Analysis of these contributions reveals two regimes in the
association process, driven at large separation by the solvent,
which pushes the �-helices together, and at short separation by van
der Waals interactions that favor native contacts.96

NAMD Software Design

Just as the intelligent car buyer looks under the hood to understand
the performance and longevity of a particular vehicle, we now
direct the attention of the reader and potential NAMD user to a few
design and implementation details that contribute to the flexibility
and performance of NAMD.

Goals, Design, and Implementation

NAMD was developed to enable ambitious MD simulations of
biomolecular systems, employing the best technology available to
provide the maximum performance possible to researchers. In the
past decade simulation size and duration have increased dramati-
cally. Ten years ago a simulation of 36,000 atoms over 100 ps as
reported in ref. 5 was considered very advanced. Today, this status
is reserved for simulations of systems with more than 300,000
atoms for up to 100 ns as reported in refs. 6, 23, and 55. The
progress made is illustrated in Figure 1, comparing the sizes of
systems reported in refs. 5 and 6. This 1000-fold increase in
capability (10-fold in atom count and over 100-fold in simulation
length) has been partially enabled by advances in processor per-
formance, with clock rate increases leading the way. However,
substantial progress has also resulted from exploiting the factor of
100 or more in performance available through the use of massively
parallel computing, coordinating the efforts of numerous proces-
sors to address a single computation.

Looking forward, scientific ambition remains unchecked while
increases in processor clock rates are constrained by limits on power
consumption and heat dissipation. This stagnation in CPU speed has
inspired system vendors such as Cray and SGI to incorporate field-
programmable gate arrays (FPGAs) into their offerings, promising
great performance increases, but only for suitable algorithms that are
subjected to heroic porting efforts (as have been initiated for the force
evaluations used by NAMD). Advances in semiconductor technology
will surpass the limits encountered today, but in the meantime, indus-
try has turned to offering greater concurrency to performance-hungry
applications, scaling systems to more processors, and processors to
more cores, rather than to higher clock rates. Indeed, the highest-
performance component of a modern desktop is often the 3D graphics
accelerator, which inexpensively provides an order of magnitude
greater floating point capability than the main processor at a fraction
of the clock rate by automatically distributing independent calcula-
tions to tens of pipelines, and even across multiple boards. Therefore,
high performance and parallel computing will become even more
synonymous than today, with greater industry acceptance and support.
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Scientific computing is also facing the perennial “software
crisis” that has stalked business information systems for decades.
The seminal book by Allen and Tildesley97 could dedicate a few
pages of an appendix to writing efficient FORTRAN-77 code and
consider the reader adequately informed. Developing modern
high-performance software, however, requires knowledge of ev-
erything from parallel decomposition and coordination libraries to
the relative cost of accessing different levels of cache memory.
The design of more complex algorithms and numerical methods
has ensured that any useful and successful program is likely to
outlive the machine for which it is originally written, making
portability a necessity. Software is also likely to be used and
extended by persons other than the original author, making code
readability and modifiability vital.

Software maintenance activities such as porting and modifica-
tion account for the majority of the cost and effort associated with
a program during its lifetime. These issues have been addressed in
the development of object-oriented software design, in which the
programmer breaks the program into “objects” comprising closely-
related data (such as the x, y, and z components of a vector) and
the operations that act on it (addition, dot product, cross product,
etc.). The objects may be arranged into hierarchies of classes, and
an object may contain or refer to other objects of the same or
different classes. In this manner, large and complex programs can
be broken down into smaller components with defined interfaces
that can be implemented independently. NAMD is implemented in
C��, the most popular and widely supported programming lan-
guage providing efficient support for these methods.

Methodology for the development of parallel programs is far
from mature, with automatically parallelizing compilers and lan-
guages still quite limited and most programmers using the Mes-
sage Passing Interface (MPI) libraries in combination with C,
C��, or Fortran. Although the acceptance of MPI as a crossplat-
form standard for parallel software has been of great benefit, the
burden on the programmer remains. The first task is to decompose
the problem, which is often simplified by assuming that the pro-
cessor count is a power of two or has factors corresponding to the
dimensions of a large three-dimensional array. MPI programming
then requires the explicit sending and receiving of arrays between
processors, much like directing a large and complex game of catch.

NAMD is based on the Charm�� parallel programming sys-
tem and runtime library.98 In Charm��, the computation is de-
composed into objects that interact by sending messages to other
objects on either the same or remote processors. These messages
are asynchronous and one sided, that is, a particular method is
invoked on an object whenever a message arrives for it rather than
having the object waste resources while waiting for incoming data.
This message-driven object programming style effectively hides
communication latency and is naturally tolerant of the system
noise that is found on workstation clusters. Charm�� also sup-
ports processor virtualization,99 allowing each algorithm to be
written for an ideal, maximum number of parallel objects that are
then dynamically distributed among the actual number of proces-
sors on which the program is run. Charm�� provides these
benefits even when it is implemented on top of MPI, an option that
allows NAMD to be easily ported to new platforms.

The parallel decomposition strategy used by NAMD is to treat
the simulation cell (the volume of space containing the atoms) as

a three-dimensional patchwork quilt, with each patch of sufficient
size that only the 26 nearest-neighboring patches are involved in
bonded, van der Waals, and short-range electrostatic interactions.
More precisely, the patches fill the simulation space in a regular
grid and atoms in any pair of non-neighboring patches are sepa-
rated by at least the cutoff distance at all times during the simu-
lation. Each hydrogen atom is stored on the same patch as the atom
to which it is bonded, and atoms are reassigned to patches at
regular intervals. The number of patches varies from one to several
hundred and is determined by the size of the simulation indepen-
dently of the number of processors. Additional parallelism may be
generated through options that double the number (and have the
size) of patches in one or more dimensions.

When NAMD is run, patches are distributed as evenly as
possible, keeping nearby patches on the same processor when there
are more patches than processors, or spreading them across the
machine when there are not. Then, a (roughly 14 times) larger
number of compute objects responsible for calculating atomic
interactions either within a single patch or between neighboring
patches is distributed across the processors, minimizing commu-
nication by grouping compute objects responsible for the same
patch together on the same processors. At the beginning of the
simulation, the actual processor time consumed by each compute
object is measured, and this data is used to redistribute compute
objects to balance the workload between processors. This mea-
surement-based load balancing100 contributes greatly to the paral-
lel efficiency of NAMD.

Using forces calculated by compute objects, each patch is
responsible for integrating the equations of motion for the atoms it
contains. This can be done independently of other patches, but
occasionally requires global data affecting all atoms, such as a
change in the size of the periodic cell due to a constant pressure
algorithm. Although the integration algorithm is the clearly visible
“outer loop” in a serial program, NAMD’s message-driven design
could have resulted in much obfuscation (as was experienced even
in the simpler NAMD 1.X4). This was averted by using Charm��
threads to write a top-level function that is called once for each
patch at program start and does not complete until the end of the
simulation.10 This design has allowed pressure and temperature
control methods and even a conjugate gradient minimizer to be
implemented in NAMD without writing any new code for parallel
communication.

Tcl Scripting Interface

NAMD has been designed to be extensible by the end user in those
areas that have required the most modification in the past and that
are least likely to affect performance or harbor hard-to-detect
programming errors. The critical force evaluation and integration
routines that are the core of any molecular dynamics simulation
have remained consistent in implementation as NAMD has
evolved, occasionally introducing improved methods for pressure
and temperature control. The greatest demand for modification has
been in high-level protocols, such as equilibration and simulated
annealing schedules. An additional demand has been for the im-
plementation of experimental and often highly specialized steering
and analysis methods, such as those used to study the rotational
motion of ATP synthase.85
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Flexibility requirements could, in theory, be met by having the
end user modify NAMD’s C�� source code, but this is undesir-
able for several reasons. Any users with special needs would have
to maintain their own “hacked” version of the source code, which
would need to be updated whenever a new version of NAMD was
released. These unfortunate users would also need to maintain a
full compiler environment and any external libraries for every
platform on which they wanted to run NAMD. Finally, an under-
standing of both C�� and NAMD’s internal structure would be
required for any modification, and bugs introduced by the end user
would be difficult for a novice programmer to fix. These problems
can be eliminated by providing a scripting interface that is inter-
preted at run time by NAMD binaries that can be compiled once
for each platform and installed centrally for all users on a machine.

Tcl (Tool Command Language)102 is a popular interpreted
language intended to provide a ready-made scripting interface to
high-performance code written in a “systems programming lan-
guage” such as C or C��. The Tcl programmer is supported by
online documentation (at www.tcl.tk) and by books targeting all
levels of experience. Tcl is used extensively in the popular mo-
lecular graphics program VMD, and therefore even novice users
are likely to have experience with the language. In NAMD, Tcl is
used to parse the simulation configuration file, allowing variables
and expressions to be used in initially defining options, and then to
change certain options during a running simulation.

Tcl scripting has been used to implement the replica exchange
method103 using NAMD, without modifying or adding a single
line of C��. A master program, running in a Tcl shell outside of
NAMD, is used to spawn a separate NAMD slave process for each
replica needed. Each NAMD instance is started with a special
configuration file that uses the standard networking capabilities of
Tcl to connect to the master program via a TCP socket. At this
point, the master program sends commands to each slave to load a
molecule, simulate dynamics for a few hundred steps, report
average energies, and change temperatures based on the relative
temperatures of the other replicas. This work would have been
much more difficult without a standard and fully featured scripting
language such as Tcl.

NAMD provides a variety of standard steering forces and
protocols, but an additional Tcl force interface provides the ulti-
mate in flexibility. The user specifies the atoms to which steering
forces will be applied; the coordinates of these atoms are then
passed to a Tcl procedure, also provided by the user, at every time
step. The Tcl steering procedure may use these atomic coordinates
to calculate steering forces, possibly modifying them based on
elapsed time or progress of the atoms along a chosen path. This
minimal but complete interface has been used to implement com-
plex features such as the adaptive biasing force method93 de-
scribed above.

Serial and Parallel Performance

Although the NAMD developers have strived to make the software
as fast as possible,104 decisions made by the user can greatly
influence the serial performance and parallel efficiency of a par-
ticular simulation. For example, the computational effort required
for a simulation is dominated by the nonbonded force evaluation,
which scales as NRcut

3 �, where N is the number of simulated atoms,

Rcut is the cutoff distance, and � � N/V is the number of atoms per
unit volume. From this formula one can see that, for example, a
five-point water model compared to a three-point water model
increases both the number and density of simulated points (real
and dummy atoms) and would therefore run up to (5/3)2 � 2.8
times as long.

The processor type and clock rate of the machine on which
NAMD is run, of course, will affect performance. Unlike many
scientific codes, NAMD is usually limited by processor speed
rather than memory size, bandwidth, or latency; the patch structure
described above leads to naturally cache-friendly data layout and
force routines. However, the nonbonded pair lists used by NAMD,
while distributed across nodes in a parallel run, can result in paging
to disk for large simulations on small memory machines, for
example, 100,000 atoms on a single 128 MB workstation; in this
case disabling pair lists will greatly improve performance.

The limits of NAMD’s parallel scalability are mainly deter-
mined by atom count, with one processor per 1000 atoms being a
conservative estimate for good efficiency on recent platforms.
Increased cutoff distances will result in additional work to distrib-
ute, but also in fewer patches, and hence, one is confronted with a
hard-to-predict effect on scaling. Finally, dynamics features that
require global communication or even synchronization, such as
minimization, constant pressure, or steering, may adversely affect
parallel efficiency.

When procuring a parallel computer, great attention is normally
paid to individual node performance, network bandwidth, and
network latency. Although NAMD transfers relatively little data
and is designed to be latency tolerant, scaling beyond a few tens of
processors will benefit from the use of more expensive technolo-
gies than commodity gigabit ethernet. A major drain on parallel
performance will come from interference by other processes run-
ning on the machine. A cluster should never be time shared, with
two parallel jobs running on the same nodes at the same time, and
care should be taken to ensure that orphaned processes from
previous runs do not remain. On larger machines, even occasional
interruptions for normal operating system functions have been
shown to degrade the performance of tightly coordinated parallel
applications running on hundreds of processors.105

The particle-mesh Ewald (PME) method for full electrostatics
evaluation, neglected in the performance discussion thus far, de-
serves special attention. The most expensive parts of the PME
calculation are the gridding of each atomic charge onto (typically)
4 � 4 � 4 points of a regular mesh and the corresponding
extraction of atomic forces from the grid; both scale linearly with
atom count. The actual calculation of the (approximately) 100 �
100 � 100 element fast Fourier transform (FFT) is negligible, but
requires many messages for its parallel implementation. While this
presents a serious impediment to other programs, NAMD’s mes-
sage-driven architecture is able to automatically interleave the
latency-sensitive FFT algorithm with the dominant and latency-
tolerant short-range nonbonded calculation.106 In conclusion, a
simulation with PME will run slightly slower than a non-PME
simulation using the same cutoff, but PME is the clear winner
because it provides physically correct electrostatics (without arti-
facts due to truncation) and allows a smaller short-range cutoff to
be used.
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When running on a parallel computer, it is important to mea-
sure the parallel efficiency of NAMD for the specific combination
of hardware, molecular system, and algorithms of interest. This is
correctly done by measuring the asymptotic cost of the simulation,
that is, the additional runtime of a 2000 step run vs. a 1000 step
run, thereby discounting startup and shutdown times. By measur-
ing performance at a variety of processor counts, a decision can be
made between, for example, running two jobs on 64 processors
each vs. one job 60% faster (and 20% less efficiently) on 128
processors.

Dynamic load balancing makes NAMD’s startup sequence
longer than that of other parallel programs, requiring special
attention to benchmarking. Initial load balancing in an NAMD
run begins by default after five atom migration “cycles” of
simulation. Compute object execution times are measured for
five cycles, followed by a major load balancing in which work
is reassigned to processors from scratch. Next is five cycles of
measurement followed by a load balance refinement in which
only minor changes are attempted. This is repeated immedi-
ately, and then periodically between 200-cycle stretches of
simulation with measurement disabled (for maximum perfor-
mance). After the second refinement, NAMD will print several
explicitly labeled “benchmark” timings, which are a good esti-
mate of performance for a long production simulation. The
results of such benchmarking on a variety of platforms for a
typical simulation are presented in Figure 9.

Although every researcher’s situation is different, the compu-
tational resource decisions made by the authors’ group provide a
useful example. The main local resources are six independent,
24-node, 48-processor Linux clusters using commodity gigabit
ethernet cards and switches. Each cluster is used for at most one
simulation at a time, and therefore, only the six head nodes are
connected to the building network, which provides access to cen-
tral file and administrative servers. A queueing system manages a
single queue, dispatching jobs to the next free cluster for up to
24 h, yielding full utilization as long as jobs are available to run.
In addition, the Clustermatic Linux distribution allows a running
simulation to be easily suspended by the queueing system, allow-
ing short “express” jobs to run, which are used for simulation setup
and testing, as well as for on-demand IMD. These cost-efficient
local resources are supplemented by grants of computer time from
NSF-funded centers, which provide access to larger, more scalable
machines for large, intensive simulations and other special cases.

In conclusion, a basic understanding of NAMD’s performance
characteristics combined with specific benchmarks provides more
science in less time. Conversely, the most common ways to waste
computer time with NAMD are to include too much water in the
simulation cell, to use an unnecessarily large cutoff with PME, to run
on more processors than the simulation efficiency scales to, to blindly
continue a simulation without checking the output for anomalies, and
finally, to simulate a molecule without a clear understanding of what
scientific questions are to be answered based on the results.

Three Exemplary Applications

In the following, we describe three exemplary applications of
NAMD. The applications are chosen to illustrate the use of NAMD

in studies of small (ubiquitin), intermediate (aquaporin channel),
and large (lac repressor) systems. We emphasize in particular the
features of NAMD that were most useful and how they allowed us
to surmount methodological hurdles quickly.

Ubiquitin

One first application of the NAMD program involves a rather
routine modeling project on a small protein system that grew into
a more extensive one over time. The reader will learn from this
first brief case study mainly how NAMD is used under common
circumstances in which any other modeling program would have
performed just as well, although we will emphasize the particular
features that made NAMD a very suitable choice. The protein
investigated is ubiquitin, which recently acquired considerable
notice as the main subject of study by the 2004 Nobel laureates in
Chemistry.107,108 Ubiquitin is a small globular protein of about 80
amino acids that is highly conserved throughout the eukaryotes.
The proteins, usually in the form of multimers, function as tags for
the destination of cellular proteins in cell trafficking, for example,
for protein degradation.109 The modeling task in the present case
was to explain atomic force microscopy experiments that mea-
sured forces and extensions that arise when monomeric or tet-
rameric ubiquitin is stretched with pN forces.110,111 The project
was vastly simplified through the availability of tutorials that
explained how VMD and NAMD are used to set up a simulation
of the solvated protein, to stretch it, and to analyze the results
(http://www.ks.uiuc.edu/Training/Tutorials). Indeed, VMD and
NAMD are accessible to novice researchers due to the extensive
introductory material prepared by the developers.

The goal of these simulations was to stretch monomeric ubiq-
uitin using the steered molecular dynamics method introduced
above. After equilibration of the protein in a spherical water bath
(a system of altogether 26,000 atoms) under NVT and NVE
ensemble conditions with a 12 Å cutoff of nonbonded forces, the
protein was stretched with the N-terminus constrained and the
C-terminus pulled with a spring (spring constant of about 500
pN/Å), the end of which moved at a speed of 0.5 Å/ps [c.f., eq.
(17) and Fig. 6]. Snapshots during the stretching process are shown
in Figure 10. One can recognize that the protein can be stretched
readily from the folded to the completely extended conformation.
The simulations lasted about a nanosecond and, with a 2 fs time
step, required 4 days on a desktop computer with an AMD Opteron
processor.

Next, the stretching of a tandem of four ubiquitins was also
attempted. In this case, the simulated protein-water system com-
prised 62,000 atoms; snapshots during the 3.5 ns stretching process
are also shown in Figure 10. The simulations revealed the unfold-
ing pathways of stretched ubiquitin, information that cannot be
gleaned from an experiment that provides solely data of extension
and applied forces vs. time. This application of steered molecular
dynamics demonstrates well the value of molecular modeling in
complementing experimental observation. The ready accessibility
and ease of use of NAMD makes such modeling projects possible
for experimentalists.

In this project several key features of NAMD and VMD were
employed. NAMD ran on a common desktop system and was even
used on a laptop, for example, for setting up and testing the
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simulation. NAMD simulations can then easily be migrated to
multiprocessor machines, although in the present case that was not
absolutely necessary. The “Psfgen” plugin of VMD was very
useful in setting up the system, namely in defining the chemical
topology, that is, the LYS48-C-terminus bonds connecting the four
tandem repeats, and generating so-called protein structure and
parameter files. Also beneficial was the “Solvate” plugin of VMD,
which greatly expedited the task of placing ubiquitin in a water
bath. NAMD is ideally suited to carry out SMD simulations; as
explained above, the needed functionality can be activated at the
input file level and other features can be added through scripting.
In the present case, the scripting capabilities of VMD allowed us
to calculate the extension of the protein reached at any moment
during the stretching process. This easy provision of all types of
data from an MD run as well as the interplay with VMD are
invaluable features of NAMD.

Aquaporin

The second example of using NAMD to simulate and investi-
gate a biomolecular process concerns a family of membrane
proteins, known as aquaporins (AQPs), which are responsible
for facilitating water transfer across cellular membranes. Sim-
ulation of the dynamics and function of these channels is a good
example of systems that require inclusion of more than 100,000

atoms in the molecular system,112–115 as one needs to explicitly
include a lipid bilayer and water to provide a natural environ-
ment to the protein and to be able to investigate transmembrane
diffusion of molecules. Conceptual and methodological issues
of simulating membrane proteins have been reviewed in refs.
116 and 117. The size of the system and the computational
demand are usually prohibitive factors in simulation studies of
membrane proteins, but NAMD’s ability to exploit efficiently
hundreds of processors makes it possible to tackle such prob-
lems with full atomic detail in the most faithful way possible. A
side view of an AQP model embedded in a lipid bilayer is
shown in Figure 11. AQPs are passive membrane channels that
increase (over that of pure membranes) the rate of water ex-
change between the cell and its environment in a highly selec-
tive manner. Some members of the family have dual functions
in cellular metabolism, as they also allow other small mole-
cules, such as glycerol, to pass. Charged species, including
protons, however, are excluded.

Simulation of water permeation through AQPs and the study of
selectivity mechanisms employed by the channel require simula-
tions of large molecular aggregates on the order of several tens of
nanoseconds.58,114,115,118 NAMD proved to be very efficient in
simulating such systems at ambient pressure and physiological
temperature with full account of electrostatic forces. These condi-

Figure 9. NAMD performance on modern platforms. The cost in CPU seconds of a single time step
for a representative system of 92,000 atoms with a 12 Å short-range cutoff and full electrostatics
evaluated via PME every four steps is plotted on the vertical axis, while the wait for a 1-ns simulation
(one million time steps of 1 fs each) may be read relative to the broken diagonal lines. Perfect parallel
scaling is a horizontal line. The older Pittsburgh Lemieux Alpha cluster has lower serial performance
but scales very well. The HPCx IBM POWER 4 cluster at Edinburgh scales similarly, with
comparable serial performance to the Xeon, Opteron, and Apple Xserve G5 clusters at UIUC. The
two NCSA Itanium platforms have excellent serial performance but lose efficiency beyond 128
processors.
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tions are critical for a reliable description of the molecular system
at hand. NAMD provides a variety of pressure control schemes
that are effective and useful in the initial setup and equilibration
phases of simulations. For example, NAMD allows exclusion of
atoms from pressure calculation, which enables one to fix the
protein during the initial simulation of its environment under
constant-pressure conditions. Multi-nanosecond equilibrium sim-
ulations performed by NAMD successfully described diffusive
permeation of water through the channel, in close agreement with
the natural time scale (nanoseconds) of the event.114,118 A key
finding of the simulations was a unique configuration of water
enforced by the channel during the permeation. This configuration
was found to be an effective, novel selection mechanism that
prevents proton transfer in these channels.114,118 To investigate the
permeation of larger substrates, that is, glycerol and longer linear
sugar molecules, we took advantage of the SMD and IMD meth-
odologies that are easily accessible through NAMD. SMD simu-
lations of glycerol permeation through GlpF allowed us to recon-
struct the potential of mean force of the process.62 IMD
simulations that permit one to rapidly sample various configura-
tions of a complex between a macromolecule and small molecules
were applied to study how sugar molecules interact with the
narrowest part of the channel, the selectivity filter, and how these
interactions furnish the stereoselectivity of the channel.53

The Tcl scripting capability of NAMD and its atom selection
algorithms allowed us to apply external forces of different mag-
nitude and direction to dynamically changing groups of water
molecules, and thereby generate hydrostatic pressure gradients
across the membrane.58,115,119 Applying this method, and taking
advantage of the speed of the simulations provided by NAMD and
its high performance on various platforms (Fig. 9), we were able to

calculate the water permeation rate through the channel using
several simulations performed at various hydrostatic pressure gra-
dients in either direction, and determine the osmotic permeability
of AQPs, a property that can be directly compared to experimen-
tally measured values for these channels.58,115,119 In these simu-
lations external forces were applied to a large group of molecules
(water molecules in the bulk) whose number and positions are
constantly changing as the simulations proceed. The modularity of
the NAMD code allowed us to easily add the force application part
of the calculations into the code, thus avoiding any compromise in
the performance and scalability of the program. A very important
advantage of NAMD in this respect is that the user does not need
to know parallel programming to implement new features and add
modules to the program.

Multiscale lac Repressor–DNA Complex

Our third example for the use of NAMD concerns a protein–DNA
complex involving the lac repressor (LacI) that is a paradigm for
gene control. We choose this example because it leads to a simu-
lation of very large size (314,000 atoms) that also requires great
flexibility in the simulation protocol in combining all-atom mo-
lecular dynamics with continuum mechanics.

LacI regulates the function of the lac operon, a set of genes
responsible for lactose digestion in Escherichia coli; when lactose
is not present as a metabolite in the environment, LacI inhibits the
expression of these genes by binding to two nearby sites at the
beginning of the operon and folding the intervening DNA into a
loop. The detailed mechanics of the LacI–DNA interaction remain
unknown even though the crystallographic structure of LacI bound
to its cognate DNA segments is available120,121 along with exten-

Figure 10. Pulling ubiquitin and tetra-ubiquitin. (A)–(D) mono-ubiquitin is shown at various stages of a
constant velocity SMD simulation with the N- and C-termini highlighted in green. The different structures
are seen to unfold at different moments in the simulation. (A	)–(C	) Tetra-ubiquitin is shown being pulled
with constant force. Each color represents a different monomer and the transparent portion is the surface
of the protein with the first and fourth segments not completely shown. Again, the different subunits can
be seen to come apart at different times. [Color figure can be viewed in the online issue, which is available
at www.interscience.wiley.com.]
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sive biochemical and genetic data.122,123 In particular, the structure
in ref. 120 does not include the DNA loop connecting the two
bound DNA segments nor does it provide information on how LacI
wrestles the DNA, forcing it to maintain a loop form.

A key obstacle to the simulation of the LacI–DNA dynamics is
that LacI alone is a very large protein that results, together with a
water bath, in a system of 300,000 atoms; including the DNA loop
would increase the size to 700,000 atoms, thus incurring an even
greater computational cost. To overcome this difficulty one can
follow a multiscale strategy and describe the DNA loop mathe-
matically employing the Kirchhoff theory of continuum elastic
rods as developed in ref. 124, coupling the calculation to an
all-atom MD representation of LacI. The method has been outlined
in ref. 86 and applied in ref. 6. The LacI–DNA structure con-
structed in ref. 125 and employed in ref. 6 is available in the
Protein Data Bank (1Z04).126 In the simulation, illustrated in
Figure 12, LacI was solvated in a box of TIP3P water and 100 mM
NaCl and simulated under NPT ensemble conditions with periodic
boundary conditions and PME electrostatics for an overall simu-
lation time of 40 ns using a 1-fs time step. At 10-ps intervals,
position and orientation of the LacI head groups were communi-
cated to the mathematical description of the DNA loop, which

determined the appropriate new loop geometry and communicated
back the forces and torques with which the DNA resisted the
protein’s action; forces and torques were included in the MD
simulations much like forces are incorporated in SMD runs. Sim-
ulation results are shown in Figure 12. One can recognize the large
scale motion of the DNA loop over the course of the simulation. A
key finding resulting from the simulation is an extreme flexibility
of the two LacI head groups absorbing most of the strain arising
from the DNA loop. The simulations reported in ref. 6 also
provided an insightful new interpretation of prior FRET data.127

NAMD proved to be most valuable due to its ability to effi-
ciently simulate very large systems. In the present case NAMD ran
a 314,000 atom system on 256 Itanium processors of the NCSA
TeraGrid system with an average production speed of 2.5 ns per
day. The multiscale strategy linking MD with a continuum me-
chanics DNA model was implemented through the Tcl scripting
interface of NAMD. This feature permitted us not only to obtain
information from the simulation, for example, head group geom-
etries, on the fly, but also to control from the NAMD side the
calculations for the DNA model, eventually retrieving the forces
applied in the LacI simulation. For the sake of clarity we empha-
size that the entire multiscale simulation, including the continuum

Figure 11. Side view of a simulated aquaporin tetramer in the cell membrane. The E. coli water/glycerol
channel GlpF is embedded in a patch of POPE lipid bilayer and fully hydrated by water on both sides.
Lipid head groups are shown in CPK and the hydrophobic tail region is drawn using licorice represen-
tation. The four AQP monomers, each forming an independent water pore, are shown in different colors.
The single file of water formed inside the pores is shown in one of the monomers. The characteristic
conformational inversion of water at the center of the channel that contributes to the barrier against proton
transfer is discernible.
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mechanics description of DNA, was controlled from the NAMD
program and its Tcl scripting feature. Because NAMD readily
permits the definition of all types of external forces, the imple-
mentation of the multiscale strategy was straightforward. We note
here also that the ability of NAMD to write and read any type of
files during its execution proved to be invaluable for the ultimate
analysis of the multiscale simulation data.

Conclusion

We conclude our overview of NAMD with a list of the program’s
key features in Table 1. Surveys indicate consistently that users
greatly appreciate that NAMD is distributed free of charge.
NAMD is well known for its performance on large parallel com-
puters, for which it has received a Gordon Bell award,106 but the
program is actually used on many platforms, including laptops.
This versatility is a great benefit for initiating and testing modeling
projects. NAMD permits a novice to carry out standard simulations
of most types readily, but NAMD also supports more advanced
uses. The most essential feature in this regard is NAMD’s Tcl
scripting capability, which has been used to implement, for exam-
ple, replica exchange dynamics, adaptive biasing forces, and ad-
vanced phase space sampling protocols.

NAMD is complemented by the molecular graphics program
VMD to offer a complete modeling environment. In addition to its
other functions, VMD provides tools tailored to NAMD. This is a
natural development because not only do the programs share a
large common user base, but they are also being developed to-
gether and use the same scripting language. VMD provides assis-

tance at all stages of a simulation including preparing the initial
system, monitoring the progress of the calculation, and analyzing
the results. Initiating a modeling project is simplified and acceler-
ated through convenient features that aid in the typical tasks of
building a model, for example, solvating a protein or placing it in
a lipid bilayer, and providing the needed protein structure files.
VMD’s AutoIMD feature allows one to modify and/or interact
with the system “on the fly” with both immediate visual and
mechanical feedback, thus providing an intuitive method of ex-
ploring the system in ways not available through scripting alone.
Finally, VMD provides a unique analysis environment for the
results of NAMD simulations. For example, one can use VMD for
routine calculations such as protein stability or intra- and intermo-
lecular distances, as well as advanced ones such as electrostatic
potential maps. Furthermore, the analysis capabilities of VMD
may be extended through Tcl scripting, allowing the user to design
any project-specific tools needed. Clearly, although NAMD and
VMD function effectively as stand-alone programs, their highest
purpose is achieved when used together.

NAMD users also benefit from the program BioCoRE,128 a
Web-based collaborative research environment that is linked to
both NAMD and VMD. For example, BioCoRE greatly simplifies
submission of NAMD simulations to supercomputer centers and
local machines alike. BioCoRE also provides a graphical user
interface to prepare simulation input files.

The authors’ Urbana group focuses much effort on training
researchers in the use of NAMD through a series of tutorials
available on the Web. The NAMD Web site is a continuously
updated source of information for novice and advanced users
(http://www.ks.uiuc.edu/Research/namd/).

Figure 12. Snapshots taken over the course of the LacI–DNA complex multiscale simulation: (a) The
evolution of the structure of the DNA loop; (b) The structure of LacI remains unchanged, with the
exception of the rotation of the head groups, which allows the DNA loop to adopt a more relaxed
configuration.
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R.; Schulten, K.; Kufrin, R. Comput Phys Commun 1995, 91, 111.

4. Nelson, M.; Humphrey, W.; Gursoy, A.; Dalke, A.; Kalé, L.; Skeel,
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