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INTRODUCTION TO 
PROGRAMMING LANGUAGES

2



Overview

• Why study programming languages?

• What types of programming languages 
are there?

• What are language implementation 
methods?

• What are Language design trade-offs?

• What is the process of compilation?
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WHY STUDY PROGRAMMING 
LANGUAGES?
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Why are there so many PLs? 

• Evolution: people have learned better 
ways of doing things over time

• Socio-economic factors: proprietary 
interests, commercial advantage

• Orientation towards special purposes

• Orientation towards special hardware

• Diverse ideas about what is pleasant to 
use
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What Makes a Language Successful?

• Easy to learn (BASIC, Pascal, LOGO, Scheme).
• Easy to express things, easy use once fluent, 

"powerful" (C, APL, Algol-68, Perl).
• Easy to implement (BASIC, Forth).

• The languages can be implemented/installed on tiny machines

• Possible to compile to very good (fast/small) 
code (Fortran).

• Backing of a powerful sponsor (COBOL  and Ada 
by DoD, PL/I by IBM).

• Wide dissemination at minimal cost (Pascal, 
Turing, Java).



A Story: ALGOL 60 vs. Fortran

• ALGOL 60 (Backus et al., 1963) was 
more elegant and had much better 
control statements than Fortran 
(McCracken, 1961)

• ALGOL 60 failed to displace Fortran
– Poor understanding of the new language

– No appreciation on the benefits of block 
structures, recursion, and various control 
structures
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Why study PLs?

• 1. Make it easier to learn new languages 
– Some languages are similar; easy to walk 

down family tree
• E.g., from Java to C#
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• 2. Simulate useful features in languages 
that lack them
– Certain useful features are missing in some 

languages, but can be emulated by following 
a deliberate programming style
• E.g., Older dialects of Fortran lack suitable 

control structures, so programmers can use 
comments and self-discipline to write well-
structured code
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• 3. Choose among alternative ways to 
express things based on the knowledge 
of implementation costs/performance 
overhead

• Use simple arithmetic equivalents (use x*x 
instead of x^2)

• Avoid call by value with large data items in 
Pascal

• Manual vs. automatic memory management
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• 4. Make better use of language 
technology whenever it appears
– The code to parse, analyze, generate, 

optimize, and otherwise manipulate 
structured data can be found in almost any 
sophisticated program

– Programmers with a strong grasp of the 
language technology will be able to write 
better structured and maintainable code
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• 5. Get prepared to design new languages 
or extend existing languages
– Easy-to-use

– Easy-to-learn

– Easy-code-to-maintain
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Reasons to Study Concepts of PLs

• Increased capacity to express 
programming concepts

• Improved background for choosing 
appropriate languages

• Increased ability to learn new languages
• Understanding the significance of 

implementation
• Increased ability to design new languages
• Overall advancement of computing
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LANGUAGE EVALUATION 
CRITERIA



Evaluating A Language

• 4 main criteria:
• Readability

• Writability

• Reliability

• Cost



Evaluation: Readability

• The most important criterion
• Overall simplicity

– Too many features is bad
– Multiplicity of features is bad

• Orthogonality
– Combine the primitive elements to build the control and data 

structures 
– Meaning is context independent
– E.g. data types

• Data types
– Having a variety of them
– e,.g. timeOut = 1, timeOut = true

• Syntax Design
– Special/reserved words (while, for, class, …)



Evaluation: Writability

• Factors:
• Simplicity and orthogonality

• Expressivity
– E.g. (in C) count++ is easier than count = count +1



Evaluation: Reliability

• Factors:
• Type checking

• Test for type errors
• Compile-time type check is desirable, while run-time is 

expensive

• Exception handling
• How program intercepts unusual conditions/ run-time 

errors
• E.g. floating-point overflow

• Aliasing
• Two or more references to the same memory

• Readability and writability



Evaluation: Cost

• Categories
• Programmer training
• Software creation (high-level L, lower cost)
• Compiler cost
• Execution (lots of type check)
• Poor reliability 

• Failure cost could be very high: e.g. X-ray machine, cranes
• Maintenance

• Include correction and modification
• Usually higher than development

• Other criteria: portability, generality, well-
definedness



OVERVIEW OF 
PROGRAMMING LANGUAGES

20



Influences on Language Design

• Computer Architecture

• Programming Design Methodologies
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The von Neumann Architecture
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The von Neumann Architecture

• Fetch-execute-cycle (on a von Neumann 
architecture computer)

initialize the program counter

repeat forever

fetch the instruction pointed by the counter

increment the counter

decode the instruction

execute the instruction

end repeat
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Programming Design Methodologies

• 1950s and early 1960s
– Simple applications

– Worry about machine efficiency and 
hardware cost
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Programming Design Methodologies

• Late 1960s: hardware costs decreased 
and programmer costs increased
– Large and complex applications
– People efficiency became important
– Readability: better control structures

• structured programming
• top-down design and step-wise refinement

– Language deficiencies:
• Incompleteness of type check
• Inadequacy of control statements
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Programming Design Methodologies

• Late 1970s: Process-oriented to data-
oriented
– Data abstraction: using abstract data types

• Middle 1980s: Object-oriented 
programming
– Data abstraction + inheritance + 

polymorphism

– Smalltalk
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Language Categories

Programming paradigms:
• Procedural/Imperative

• Functional/Applicative

• Logic

• Object-oriented (closely related to 
imperative)

• Problem-oriented/application-specific



The PL spectrum

• Declarative
– Functional Lisp/Scheme, ML, Haskell

– Dataflow Id, Val

– Logic, constraint-based Prolog, SQL

• Imperative
– von Neumann C, Ada, Fortran

– Object-oriented Smalltalk, Eiffel, Java

– Scripting Perl, Python, PHP
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Declarative vs. Imperative

• “High-level” vs. “Low-level”

• Programmers specify “what should be 
done” or “steps to do it”

• An example (C#): choose all odd 
numbers in a collection
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List<int> results = new List<int>();
foreach(var num in collection)
{

if (num % 2 != 0)
results.Add(num);

}

var results = collection.Where( 
num => num % 2 != 0);



Functional Languages

• Employ a computational model based on 
recursive definition of functions

• Take inspiration from the lambda 
calculus 
– A program is considered as a function from 

inputs to outputs, defined in terms of 
simpler functions through a process of 
refinements

• We will talk a lot about these languages
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Dataflow Languages

• Model computation as the flow of 
information (tokens) among primitive 
functional nodes

• Provide an inherently parallel model:
– Nodes are triggered by the arrival of input 

tokens, and can operate concurrently
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Logic or Rule-Based Languages

• Take inspiration from predicate logic

• Rules are specified in no particular order

• Implementation chooses an order for 
rules to produce the desired result
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Imperative Languages

• von Neumann Languages

• Most familiar and widely used

• The basic means of computation is the 
modification of variables

• The algorithm is identified in great 
detail, and specified order for 
instruction execution
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Object-oriented Languages

• Closely related to the von Neumann 
languages

• Have a much more structured and 
distributed model of both memory and 
computation

• Picture computation as interactions among 
semi-independent objects, each of which 
has both its own internal state and 
subroutines to manage that state

• Inheritance ensures sw reuse
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Scripting Languages

• Emphasize coordinating or “gluing 
together” components drawn from some 
surrounding context

• Support scripts, programs written for a 
special run-time environment that 
automate the execution of tasks, which 
could alternatively be executed one-by-one 
by a human creator

• Specify the layout of the information in 
web documents
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Language Design Trade-offs

1. Reliability versus cost of execution

• Java has array index range check

• C does not

• Result:

• C programs execute faster

• Java traded execution efficiency for reliability



Language Design Trade-offs

2. Writability versus readability
• Example: APL

• Has a lot of array operators

• Is very writable

• Can write huge amount of computation in a very 
small prg.

• Has poor readability

• Almost no one other than programmer can 
understand



Language Design Trade-offs

3. Writability versus reliability 

• C++: pointer can be manipulated in a variety 

of ways

• Highly flexible in addressing data

• Reliability problem

• Java: does not have the feature


