
CS-3304 Introduction

In Text: Chapter 1 & 2

INTRODUCTION TO
PROGRAMMING LANGUAGES

2

Overview

• Why study programming languages?

• What types of programming languages
are there?

• What are language implementation
methods?

• What are Language design trade-offs?

• What is the process of compilation?

3

WHY STUDY PROGRAMMING
LANGUAGES?

4

Why are there so many PLs?

• Evolution: people have learned better
ways of doing things over time

• Socio-economic factors: proprietary
interests, commercial advantage

• Orientation towards special purposes

• Orientation towards special hardware

• Diverse ideas about what is pleasant to
use

5

6

What Makes a Language Successful?

• Easy to learn (BASIC, Pascal, LOGO, Scheme).
• Easy to express things, easy use once fluent,

"powerful" (C, APL, Algol-68, Perl).
• Easy to implement (BASIC, Forth).

• The languages can be implemented/installed on tiny machines

• Possible to compile to very good (fast/small)
code (Fortran).

• Backing of a powerful sponsor (COBOL and Ada
by DoD, PL/I by IBM).

• Wide dissemination at minimal cost (Pascal,
Turing, Java).

A Story: ALGOL 60 vs. Fortran

• ALGOL 60 (Backus et al., 1963) was
more elegant and had much better
control statements than Fortran
(McCracken, 1961)

• ALGOL 60 failed to displace Fortran
– Poor understanding of the new language

– No appreciation on the benefits of block
structures, recursion, and various control
structures

7

Why study PLs?

• 1. Make it easier to learn new languages
– Some languages are similar; easy to walk

down family tree
• E.g., from Java to C#

8

• 2. Simulate useful features in languages
that lack them
– Certain useful features are missing in some

languages, but can be emulated by following
a deliberate programming style
• E.g., Older dialects of Fortran lack suitable

control structures, so programmers can use
comments and self-discipline to write well-
structured code

9

• 3. Choose among alternative ways to
express things based on the knowledge
of implementation costs/performance
overhead

• Use simple arithmetic equivalents (use x*x
instead of x^2)

• Avoid call by value with large data items in
Pascal

• Manual vs. automatic memory management

10

• 4. Make better use of language
technology whenever it appears
– The code to parse, analyze, generate,

optimize, and otherwise manipulate
structured data can be found in almost any
sophisticated program

– Programmers with a strong grasp of the
language technology will be able to write
better structured and maintainable code

11

• 5. Get prepared to design new languages
or extend existing languages
– Easy-to-use

– Easy-to-learn

– Easy-code-to-maintain

12

Reasons to Study Concepts of PLs

• Increased capacity to express
programming concepts

• Improved background for choosing
appropriate languages

• Increased ability to learn new languages
• Understanding the significance of

implementation
• Increased ability to design new languages
• Overall advancement of computing

14

LANGUAGE EVALUATION
CRITERIA

Evaluating A Language

• 4 main criteria:
• Readability

• Writability

• Reliability

• Cost

Evaluation: Readability

• The most important criterion
• Overall simplicity

– Too many features is bad
– Multiplicity of features is bad

• Orthogonality
– Combine the primitive elements to build the control and data

structures
– Meaning is context independent
– E.g. data types

• Data types
– Having a variety of them
– e,.g. timeOut = 1, timeOut = true

• Syntax Design
– Special/reserved words (while, for, class, …)

Evaluation: Writability

• Factors:
• Simplicity and orthogonality

• Expressivity
– E.g. (in C) count++ is easier than count = count +1

Evaluation: Reliability

• Factors:
• Type checking

• Test for type errors
• Compile-time type check is desirable, while run-time is

expensive

• Exception handling
• How program intercepts unusual conditions/ run-time

errors
• E.g. floating-point overflow

• Aliasing
• Two or more references to the same memory

• Readability and writability

Evaluation: Cost

• Categories
• Programmer training
• Software creation (high-level L, lower cost)
• Compiler cost
• Execution (lots of type check)
• Poor reliability

• Failure cost could be very high: e.g. X-ray machine, cranes
• Maintenance

• Include correction and modification
• Usually higher than development

• Other criteria: portability, generality, well-
definedness

OVERVIEW OF
PROGRAMMING LANGUAGES

20

Influences on Language Design

• Computer Architecture

• Programming Design Methodologies

21

The von Neumann Architecture

22

The von Neumann Architecture

• Fetch-execute-cycle (on a von Neumann
architecture computer)

initialize the program counter

repeat forever

fetch the instruction pointed by the counter

increment the counter

decode the instruction

execute the instruction

end repeat

23

Programming Design Methodologies

• 1950s and early 1960s
– Simple applications

– Worry about machine efficiency and
hardware cost

24

Programming Design Methodologies

• Late 1960s: hardware costs decreased
and programmer costs increased
– Large and complex applications
– People efficiency became important
– Readability: better control structures

• structured programming
• top-down design and step-wise refinement

– Language deficiencies:
• Incompleteness of type check
• Inadequacy of control statements

25

Programming Design Methodologies

• Late 1970s: Process-oriented to data-
oriented
– Data abstraction: using abstract data types

• Middle 1980s: Object-oriented
programming
– Data abstraction + inheritance +

polymorphism

– Smalltalk

26

Language Categories

Programming paradigms:
• Procedural/Imperative

• Functional/Applicative

• Logic

• Object-oriented (closely related to
imperative)

• Problem-oriented/application-specific

The PL spectrum

• Declarative
– Functional Lisp/Scheme, ML, Haskell

– Dataflow Id, Val

– Logic, constraint-based Prolog, SQL

• Imperative
– von Neumann C, Ada, Fortran

– Object-oriented Smalltalk, Eiffel, Java

– Scripting Perl, Python, PHP

28

Declarative vs. Imperative

• “High-level” vs. “Low-level”

• Programmers specify “what should be
done” or “steps to do it”

• An example (C#): choose all odd
numbers in a collection

29

List<int> results = new List<int>();
foreach(var num in collection)
{

if (num % 2 != 0)
results.Add(num);

}

var results = collection.Where(
num => num % 2 != 0);

Functional Languages

• Employ a computational model based on
recursive definition of functions

• Take inspiration from the lambda
calculus
– A program is considered as a function from

inputs to outputs, defined in terms of
simpler functions through a process of
refinements

• We will talk a lot about these languages

30

Dataflow Languages

• Model computation as the flow of
information (tokens) among primitive
functional nodes

• Provide an inherently parallel model:
– Nodes are triggered by the arrival of input

tokens, and can operate concurrently

31

Logic or Rule-Based Languages

• Take inspiration from predicate logic

• Rules are specified in no particular order

• Implementation chooses an order for
rules to produce the desired result

32

Imperative Languages

• von Neumann Languages

• Most familiar and widely used

• The basic means of computation is the
modification of variables

• The algorithm is identified in great
detail, and specified order for
instruction execution

33

Object-oriented Languages

• Closely related to the von Neumann
languages

• Have a much more structured and
distributed model of both memory and
computation

• Picture computation as interactions among
semi-independent objects, each of which
has both its own internal state and
subroutines to manage that state

• Inheritance ensures sw reuse

34

Scripting Languages

• Emphasize coordinating or “gluing
together” components drawn from some
surrounding context

• Support scripts, programs written for a
special run-time environment that
automate the execution of tasks, which
could alternatively be executed one-by-one
by a human creator

• Specify the layout of the information in
web documents

35

Language Design Trade-offs

1. Reliability versus cost of execution

• Java has array index range check

• C does not

• Result:

• C programs execute faster

• Java traded execution efficiency for reliability

Language Design Trade-offs

2. Writability versus readability
• Example: APL

• Has a lot of array operators

• Is very writable

• Can write huge amount of computation in a very
small prg.

• Has poor readability

• Almost no one other than programmer can
understand

Language Design Trade-offs

3. Writability versus reliability

• C++: pointer can be manipulated in a variety

of ways

• Highly flexible in addressing data

• Reliability problem

• Java: does not have the feature

