Semantic Analysis

In Text: Chapter 3
N. Meng, F. Poursardar

Outline

Static semantics

Attribute grammars

Dynamic semantics
Operational semantics

Denotational semantics

VIRGINIA TECH

Syntax vs. Semantics

Syntax concerns the form of a valid program
Semantics concerns its meaning

Meaning of a program is important

It allows us to enforce rules, such as type consistency, which
go beyond the form

It provides the information needed to generate an equivalent
output program

VIRGINIA TECH 3

Two types of semantic rules

» Static semantics

* Dynamic semantics

VIRGINIA TECH

Static Semantics

There are some characteristics of the structure of
programming languages that are difficult or
impossible to describe with BNF

E.g., type compatibility: a floating-point value cannot be
assigned to an integer type variable, but the opposite is
legal

Static Semantics

The static semantics of a language is only indirectly

related to the meaning of programs during execution;

rather, it has to do with the legal forms of programs
Syntax rather than semantics

Many static semantic rules of a language state its type
constraints

Dynamic semantics

It describes the meaning of expressions, statements,
and program units

Programmers need dynamic semantics to know
precisely what statements of a language do

Compiler writers need define the semantics of the
languages for which they are writing compilers

Role of Semantic Analysis

Following parsing, the next two phases of the "typical”
compiler are
semantic analysis

(intermediate) code generation

VIRGINIA TECH. 8

Role of Semantic Analysis

The principal job of the semantic analyzer is to
enforce static semantics

Constructs a syntax tree (usually first)

Performs analysis of information that is gathered

Uses that information later during code generation

VIRGINIA TECH

Conventional Semantic Analysis

Compile-time analysis and run-time “actions” that
enforce language-defined semantics

Static semantic rules are enforced at compile time by the
compiler

Type checking
Dynamic semantic rules are enforced at runtime by the
compiler-generated code

Bounds checking

VIRGINIA TECH 10

STATIC SEMANTICS

Attribute Grammar

A device used to describe more of the structure of
a programming language than can be described with
a context-free grammar

It provides a formal framework for decorating parse
trees

An attribute grammar is an extension to a context-
free grammar

Attribute Grammar

The extension includes
Attributes
Attribute computation functions

Predicate functions

VIRGINIA TECH

13

A Running Example

Context-Free Grammar (CFG)

<assign> -> <var> = <expr>

<expr> -> <var> + <var>

<expr> -> <var>

<var> ->A | B | C

Note:
It only focuses on potential structured sequences of
tokens

It says nothing about the meaning of any particular
program

Attributes

Associated with each grammar symbol X is a set of
attributes A(X).The set A(X) consists of two disjoint
sets: S(X) and [(X)

Attributes

S(X): synthesized attributes, which are used to pass
semantic information bottom-up in a parse tree

VIRGINIA TECH

16

Attributes

|(X): inherited attributes, which pass semantic
information down or across a tree. Similar to
variables because they can also have values assigned

to them

Intrinsic Attributes

Synthesized attributes of leaf nodes whose values are
determined outside the parse tree
E.g., the type of a variable can come from the symbol table

Given the intrinsic attribute values on a parse tree, the
semantic functions can be used to compute the remaining

attribute values

Semantic Functions

Specify how attribute values are computed for S(X)
and 1(X)

VIRGINIA TECH

19

Semantic Functions

For a rule X,->X,...X, the synthesized attributes of
X, are computed with semantic functions of the

form S(X,) = f(ACX)), ..., A(X))

The value of a synthesized attribute on a parse tree
node depends only on the attribute values of the
children node

Semantic Functions

Inherited attributes of symbols X, | <j=n, are computed
with a semantic function of the form 1(X)) = f(A(X,), ...,
A(X,))

To avoid circularity, inherited attributes are often

restricted to functions of the form I(X) = f(A(X,), ...
AX()))

The value of an inherited attribute on a parse tree

node depends on the attribute values of the node’s
parent and siblings

Predicate Functions

A predicate function has the form of a Boolean
expression on the union of the attribute set {A(X,), ...,
A(X))}, and a set of literal attribute values

A false predicate function value indicates a violation of
the syntax or static semantic rules

An Attribute Grammar Example

actual_type (a synthesized attribute)

It is used to store the actual type, int or real, of a variable
or expression

For each concrete variable, the actual_type is intrinsic

For expressions and assignments, the attribute is
determined by the actual types of children nodes

VIRGINIA TECH. 23

An Attribute Grammar Example (Cont'd)

expected_type (an inherited attribute)
Associated with the nonterminal <expr>
It is used to store the expected type, either int or real

It is determined by the type of the variable on the left side
of the assignment statement

VIRGINIA TECH 24

An Attribute Grammar Example (Cont'd)

|. Syntax rule: <assign> -> <var> = <expr>
Semantic rule: <expr>.expected_type <- <var>.actual type
2. Syntax rule: <expr> -> <var>[2] + <var[3]
Semantic rule: <expr>.actual type <-
If (<var>[2].actual type = int) and
(<var>[3].actual type = int)
then int
else real
end iIf
Predicate: <expr>.actual type == <expr>.expected_type

VIRGINIA TECH. 25

An Attribute Grammar Example (Cont'd)

3. Syntax rule: <expr> -> <var>
Semantic rule: <expr>.actual type <- <var>.actual type
Predicate: <expr>.actual type == <expr>.expected_type
4. Syntax rule:<var>->A|B|C
Semantic rule: <var>.actual type <- look-up(<var>.string)

The look-up function looks up a given variable name in the symbol
table and returns the variable’s type

VIRGINIA TECH. 26

Another Example: Constant Expressions

CFG Note:

BB+ Says nothing about
E ~ 5 - the meaning of any
. : o % particular program
T/ F * Conveys only

- potential structured
- sequence of tokens
F - (E)

VIRGINIA TECH

Example Attribute Grammar

Attribute; val
Attribute Grammar

E, - E, +
E, - E, —
E - T
T, - T,
T, - T, /
T - F
'y - - F,
FF - (E)

F' - const

T
T

F
F

El.val
El.val
E.val
Tl.val
Tl.val
T.val
Fl.val
F.val
F.val

VIRGINIA TECH

E2.val +
E2.val -

T.

val

T2 .val *
T2 .val /

M = |

.val

F2.val

.val
.val

H

T

.val
.val

.val
.val

28

Evaluating Attributes

The process of evaluating attributes is called
annotation, or DECORATION, of the parse tree

If all attributes are inherited, the evaluation process
can be done in a top-down order

Alternatively, if all attributes are synthesized, the
evaluation can proceed in a bottom-up order

An Example Parse Tree

We have both inherited
<assign> and synthesized

— = attributes. In what
<var> <expr> . .
direction should we
<vars <vars proceed the
\ \ computation !
A = A + B

VIRGINIA TECH. 30

<expr>.expected_type <- <var>.actual type

An Example Parse <expr>.actual_type <- if (<var>[2].actual_type = int) and

Tree (<var>[3].actual type = int)
then int
else real
<assign> end if
<expr>.actual_type == <expr>.expected_type
<var> <expr>
<expr>.actual_type <- <var>.actual _type
<expr>.actual_type == <expr>.expected_type
<var> <var> .
<var>.actual_type <- look-up(<var>.string)
\ \ The look-up function looks up a given variable name in the
A = A + B | symbol table and returns the variable’s type
<var>.actual_type <- look-up(A) (R4)

<expr>.expected type <- <var>.actual_type (RI)
<var>.actual_type <-look-up(A) (R4)

<var>.actual_type <-look-up(B) (R4)
<expr>.actual_type <- real (R2)
<expr>.expected type == <expr>.actual_type is TRUE (R2)

VIRGINIA TECH

Attribute Evaluation Order

<assign>

-» expected_type

<expr>
actual_type

Determining attribute
evaluation order for
any attribute grammar

is a complex problem,

requiring the
construction of a

<var> <7
actual_type
4 A
l' /l ‘\
’I R @ \\‘
I - \
! <vars[1] -----=" <vars[2] | dependency graph to
I
! actual_type actual_type show all attribute
' .
/ 7 7 dependencies
H l'@ ,’I @
H /! /
I / i
II II
A = A’ + B

VIRGINIA TECH

Decoration of a parse tree for the val attribute
evaluation of (| + 3) * 2

VIRGINIA TECH.

const| 1

E|8
E, - E, + T El.val = E2.val + T.val o
E, - E, - T El.val = E2.val - T.val '~
E - T E.val = T.val \
T, - T, E Tl.val = T2.val F.val * F|2
T, - T, E Tl.val = T2.val F.val
T - F T.val = F.val p—
F, - - F, Fl.val = - F2.val / \
F' - (E) F.val = E.val (|)
F - const F.val C.val / \

const| 3

33

