
Semantic Analysis
In Text: Chapter 3
N. Meng, F. Poursardar

Outline

• Static semantics

– Attribute grammars

• Dynamic semantics

– Operational semantics

– Denotational semantics

2

Syntax vs. Semantics

• Syntax concerns the form of a valid program

• Semantics concerns its meaning

• Meaning of a program is important

– It allows us to enforce rules, such as type consistency, which

go beyond the form

– It provides the information needed to generate an equivalent

output program

3

Two types of semantic rules

• Static semantics

• Dynamic semantics

4

Static Semantics

• There are some characteristics of the structure of

programming languages that are difficult or

impossible to describe with BNF

– E.g., type compatibility: a floating-point value cannot be

assigned to an integer type variable, but the opposite is

legal

5

Static Semantics

• The static semantics of a language is only indirectly

related to the meaning of programs during execution;

rather, it has to do with the legal forms of programs

– Syntax rather than semantics

• Many static semantic rules of a language state its type

constraints

6

Dynamic semantics

• It describes the meaning of expressions, statements,

and program units

• Programmers need dynamic semantics to know

precisely what statements of a language do

• Compiler writers need define the semantics of the

languages for which they are writing compilers

7

Role of Semantic Analysis

• Following parsing, the next two phases of the "typical"

compiler are

– semantic analysis

– (intermediate) code generation

8

Role of Semantic Analysis

• The principal job of the semantic analyzer is to

enforce static semantics

– Constructs a syntax tree (usually first)

– Performs analysis of information that is gathered

– Uses that information later during code generation

9

Conventional Semantic Analysis

• Compile-time analysis and run-time “actions” that

enforce language-defined semantics

– Static semantic rules are enforced at compile time by the

compiler

o Type checking

– Dynamic semantic rules are enforced at runtime by the

compiler-generated code

o Bounds checking

10

STATIC SEMANTICS

11

Attribute Grammar

• A device used to describe more of the structure of

a programming language than can be described with

a context-free grammar

• It provides a formal framework for decorating parse

trees

• An attribute grammar is an extension to a context-

free grammar

12

Attribute Grammar

• The extension includes

– Attributes

– Attribute computation functions

– Predicate functions

13

A Running Example

• Context-Free Grammar (CFG)

• Note:

– It only focuses on potential structured sequences of

tokens

– It says nothing about the meaning of any particular

program

14

<assign> -> <var> = <expr>

<expr> -> <var> + <var>

<expr> -> <var>

<var> -> A | B | C

Attributes

• Associated with each grammar symbol X is a set of

attributes A(X). The set A(X) consists of two disjoint

sets: S(X) and I(X)

15

Attributes

• S(X): synthesized attributes, which are used to pass

semantic information bottom-up in a parse tree

16

Attributes

• I(X): inherited attributes, which pass semantic

information down or across a tree. Similar to

variables because they can also have values assigned

to them

17

Intrinsic Attributes

• Synthesized attributes of leaf nodes whose values are

determined outside the parse tree

– E.g., the type of a variable can come from the symbol table

– Given the intrinsic attribute values on a parse tree, the

semantic functions can be used to compute the remaining

attribute values

18

Semantic Functions

• Specify how attribute values are computed for S(X)

and I(X)

19

Semantic Functions

• For a rule X0->X1…Xn, the synthesized attributes of

X0 are computed with semantic functions of the

form S(X0) = f(A(X1), …, A(Xn))

• The value of a synthesized attribute on a parse tree

node depends only on the attribute values of the

children node

20

Semantic Functions

• Inherited attributes of symbols Xj, 1≤j≤n, are computed

with a semantic function of the form I(Xj) = f(A(X0), …,

A(Xn))

• To avoid circularity, inherited attributes are often

restricted to functions of the form I(Xj) = f(A(X0), …,

A(Xj-1))

• The value of an inherited attribute on a parse tree

node depends on the attribute values of the node’s

parent and siblings

21

Predicate Functions

• A predicate function has the form of a Boolean

expression on the union of the attribute set {A(X0), …,

A(Xn)}, and a set of literal attribute values

• A false predicate function value indicates a violation of

the syntax or static semantic rules

22

An Attribute Grammar Example

• actual_type (a synthesized attribute)

– It is used to store the actual type, int or real, of a variable

or expression

– For each concrete variable, the actual_type is intrinsic

– For expressions and assignments, the attribute is

determined by the actual types of children nodes

23

An Attribute Grammar Example (Cont’d)

• expected_type (an inherited attribute)

– Associated with the nonterminal <expr>

– It is used to store the expected type, either int or real

– It is determined by the type of the variable on the left side

of the assignment statement

24

An Attribute Grammar Example (Cont’d)

1. Syntax rule: <assign> -> <var> = <expr>

Semantic rule: <expr>.expected_type <- <var>.actual_type

2. Syntax rule: <expr> -> <var>[2] + <var[3]

Semantic rule: <expr>.actual_type <-

if (<var>[2].actual_type = int) and

(<var>[3].actual_type = int)

then int

else real

end if

Predicate: <expr>.actual_type == <expr>.expected_type

25

An Attribute Grammar Example (Cont’d)

3. Syntax rule: <expr> -> <var>

Semantic rule: <expr>.actual_type <- <var>.actual_type

Predicate: <expr>.actual_type == <expr>.expected_type

4. Syntax rule: <var> -> A | B | C

Semantic rule: <var>.actual_type <- look-up(<var>.string)

The look-up function looks up a given variable name in the symbol

table and returns the variable’s type

26

Another Example: Constant Expressions

• CFG

27

E → E + T

E → E – T

E → T

T → T * F

T → T / F

T → F

F → - F

F → (E)

F → const

Note:
• Says nothing about

the meaning of any
particular program

• Conveys only
potential structured
sequence of tokens

Example Attribute Grammar

• Attribute: val

• Attribute Grammar

E1 → E2 + T E1.val = E2.val + T.val

E1 → E2 – T E1.val = E2.val - T.val

E → T E.val = T.val

T1 → T2 * F T1.val = T2.val * F.val

T1 → T2 / F T1.val = T2.val / F.val

T → F T.val = F.val

F1 → - F2 F1.val = - F2.val

F → (E) F.val = E.val

F → const F.val = C.val

28

Evaluating Attributes

• The process of evaluating attributes is called

annotation, or DECORATION, of the parse tree

• If all attributes are inherited, the evaluation process

can be done in a top-down order

• Alternatively, if all attributes are synthesized, the

evaluation can proceed in a bottom-up order

29

An Example Parse Tree

• We have both inherited

and synthesized

attributes. In what

direction should we

proceed the

computation ?

30

<assign>

<var> <expr>

A =

<var> <var>

A + B

An Example Parse

Tree

1. <var>.actual_type <- look-up(A) (R4)

2. <expr>.expected_type <- <var>.actual_type (R1)

3. <var>.actual_type <- look-up(A) (R4)

4. <var>.actual_type <- look-up(B) (R4)

5. <expr>.actual_type <- real (R2)

6. <expr>.expected_type == <expr>.actual_type is TRUE (R2)

31

<assign>

<var> <expr>

A =

<var> <var>

A + B

<expr>.expected_type <- <var>.actual_type

<expr>.actual_type <- if (<var>[2].actual_type = int) and

(<var>[3].actual_type = int)

then int

else real

end if

<expr>.actual_type == <expr>.expected_type

<expr>.actual_type <- <var>.actual_type

<expr>.actual_type == <expr>.expected_type

<var>.actual_type <- look-up(<var>.string)

The look-up function looks up a given variable name in the

symbol table and returns the variable’s type

Attribute Evaluation Order

• Determining attribute

evaluation order for

any attribute grammar

is a complex problem,

requiring the

construction of a

dependency graph to

show all attribute

dependencies

32

<assign>

<var> <expr>

A =

<var>[1] <var>[2]

A + B

actual_type

expected_type

actual_type actual_type

actual_type

①

②

③ ④

⑤

Decoration of a parse tree for the val attribute

evaluation of (1 + 3) * 2

33

E1 → E2 + T E1.val = E2.val + T.val

E1 → E2 – T E1.val = E2.val - T.val

E → T E.val = T.val

T1 → T2 * F T1.val = T2.val * F.val

T1 → T2 / F T1.val = T2.val / F.val

T → F T.val = F.val

F1 → - F2 F1.val = - F2.val

F → (E) F.val = E.val

F → const F.val = C.val

