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Dynamic Semantics

• Describe the meaning of expressions, statements, and 

program units

• No single widely acceptable notation or formalism 

for describing semantics

• Two common approaches:

– Operational

– Denotational
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Operational Semantics

• Gives a program's meaning in terms of its 

implementation on a real or virtual machine

• Change in the state of the machine  (memory, 

registers, etc.) defines the meaning of the statement
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Operational Semantics Definition Process

1. Design an appropriate intermediate language. Each 

construct of the intermediate language must have 

an obvious and unambiguous meaning

2. Construct a virtual machine (an interpreter) for the 

intermediate language. The virtual machine can be 

used to execute either single statements, code 

segments, or whole programs
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An Example

• The virtual computer is supposed to be able to 

correctly “execute” the instructions and recognize the 

effects of the “execution”
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C Operational Semantics

for (expr1; expr2; expr3) 

{

. . . 

}

expr1;

loop: if expr2 == 0 goto out

. . .

expr3;

goto loop

out:  . . .



Key Points of Operational Semantics

• Advantages

– May be simple and intuitive for small examples

– Good if used informally

– Useful for implementation

• Disadvantages

– Very complex for large programs

– Lacks mathematical rigor
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Typical Usage of Operational Semantics

• Vienna Definition Language (VDL) used to define PL/I 

(Wegner 1972)

• Unfortunately, VDL is so complex that it serves no practical 

purpose
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Denotational Semantics

• The most rigorous, widely known method for 

describing the meaning of programs

• Solely based on recursive function theory

• Originally developed by Scott and Strachey (1970)
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Denotational Semantics

• Key Idea

– Define for each language entity both a mathematical object, 

and a function that maps instances of that entity onto 

instances of the mathematical object

• The basic idea

– There are rigorous ways of manipulating mathematical 

objects but not programming language constructs

– The objects are rigorously defined, they model the exact 

meaning of their corresponding entities
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Denotational Semantics

• Difficulty 

– How to create the objects and the mapping functions?

• The method is named denotational, because the 

mathematical objects denote the meaning of their 

corresponding syntactic entities
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Denotational vs. Operational

• Both denotational semantics and operational 

semantics are defined in terms of state changes in a 

virtual machine

• In operational semantics, the state changes are 

defined by coded algorithms in the machine

• In denotational semantics, the state change is defined 

by rigorous mathematical functions
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Program State

• Let the state s of a program be a set of pairs as 

follows:

{<i1, v1>, <i2, v2>, …, <in, vn>}

– Each i is the name of a variable

– The associated v is the current value of the variable

– Any v can have the special value undef, indicating that the 

associated variable is undefined

• Let VARMAP be a function as follows:

VARMAP(ij, s) = vj
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Program State

• Most semantics mapping functions for programs and 

program constructs map from states to states

• These state changes are used to define the meanings 

of programs and program constructs

• Some language constructs, such as expressions, are 

mapped to values, not state changes
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An Example

• CFG for binary numbers 

<bin_num> -> ‘0’

<bin_num> -> ‘1’

<bin_num> -> <bin_num> ‘0’

<bin_num> -> <bin_num> ‘1’

• Parse tree of the binary number 110
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Example Semantic Rule Design

Describing the meaning of binary numbers using 
denotational semantics

• Mathematical objects

– Decimal number equivalence for each binary number 

• Functions

– Map binary numbers to decimal numbers

– Rules with terminals as RHS are translated as direct mappings 
from terminals to mathematical objects

– Rules with nonterminals as RHS are translated as 
manipulations on mathematical objects
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Example Semantic Rules
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Syntax Rules Semantic Rules

<bin_num>->‘0’

<bin_num>->‘1’

<bin_num>-><bin_num> ‘0’

<bin_num>-><bin_num> ‘1’

Mbin(‘0’)=0

Mbin(‘1’)=1

Mbin(<bin_num> ‘0’)= 

2*Mbin(<bin_num>)

Mbin(<bin_num> ‘1’)=

2*Mbin(<bin_num>)+1

The syntactic domain of the mapping function for binary numbers is the
set of all character string representations of binary numbers. 

The semantic domain is the set of nonnegative decimal numbers.



Expressions

• CFG for expressions

<expr> -> <dec_num> | <var> | <binary_expr>

<binary_expr> -> <l_expr> <op> <r_expr>

<l_expr> -> <dec_num> | <var>

<r_expr> -> <dec_num> | <var>

<op> -> + | *
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To distinguish between mathematical function definitions and the assignment statements 
of programming languages, we use symbol  = to define mathematical functions
The implication symbol => used in this definition to connect the form of an operand with 
its associated switch
. used to refer to a child nodes of a node



Expressions

Me(<expr>, s) =

case <expr> of

<dec_num>  Mdec(<dec_num>)

<var> VARMAP(<var>, s)

<binary_expr> 

if (<binary_expr>.<op> = ‘+’) then

Me(<binary_expr>.<l_expr>, s) + 

Me(<binary_expr>.<r_expr>, s)

else

Me(<binary_expr>.<l_expr>, s) *

Me(<binary_expr>.<r_expr>, s)
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Let Z be the set of 
integers, and let error 
be the error value. 

Then Z U {error} is the 
semantic domain for 
the denotational
specification for our
expressions.



Statement Basics

• The meaning of a single statement executed in a 
state s is a new state s’, which reflects the effects of 
the statement

Mstmt( stmt , s) = s’
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Assignment Statements

Ma(x := E, s) =

s’ = {<i1’, v1’>, <i2’, v2’>, ..., <in’,vn’>},

where for j = 1, 2, ..., n,

vj’ = VARMAP(ij, s)   if   ij  x

vj’ = Me(E, s)            if   ij = x
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Note that the comparison above, ij= x, is of names, not values.



Sequence of Statements

Mstmt( stmt1; stmt2 , s) =
Mstmt( stmt2 , Mstmt( stmt1 , s))

or 
Mstmt( stmt1; stmt2 , s) = s’’ where
s’ = Mstmt( stmt1 , s)
s’’ = Mstmt( stmt2 , s’)
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Sequence of Statements

Initial state s0 = <mem0, i0, o0>

Mstmt( P0, s0) = Mstmt( P1, Ma( x := 5  , s0))

s1

s1 = <mem1, i1, o1> where

VARMAP(x, s1) = 5

VARMAP(z, s1) = VARMAP(z, s0) for all z  x

i1 = i0, o1 = o0
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} P2

x := 5;                            

y := x + 1;

write(x * y);     } P1} P0



Sequence of Statements

Mstmt( P1, s1) = Mstmt( P2, Ma( y := x + 1, s1)) 

s2

s2 = <mem2, i2, o2> where

VARMAP(y, s2) = Me( x + 1, s1) = 6

VARMAP(z, s2) = VARMAP(z, s1) for all z  y

i2 = i1, o2 = o1
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} P2

x := 5;                            

y := x + 1;

write(x * y);     } P1} P0



Sequence of Statements

Mstmt( P2, s2) = Mstmt( write(x * y), s2) = s3

s3 = <mem3, i3, o3> where

VARMAP(z, s3) = VARMAP(z, s2) for all z

i3 = i2, o3 = o2 • Me(  x * y  , s2) = o2 • 30

24

} P2

x := 5;                            

y := x + 1;

write(x * y);     } P1} P0



Sequence of Statements

Therefore, 

Mstmt( P,  s0) = s3 = <mem3, i3, o3 > where

VARMAP(y, s3) = 6

VARMAP(x, s3) = 5

VARMAP(z, s3) = VARMAP(z, s0) for all z  x, y

i3 = i0

o3 = o0 • 30
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Logical Pretest Loops

• The meaning of the loop is the value of program 

variables after the loop body has been executed the 

prescribed number of times, assuming there have been 

no errors

• The loop is converted from iteration to recursion (in 

denotational semantics), where the recursion control is 

mathematically defined by other recursive state mapping 

functions

• Recursion is easier to describe with mathematical rigor 

than iteration
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Logical Pretest Loop

• Ml(while B do L, s) =

if  Mb(B, s) = false  then

s

else

Ml(while B do L, Mstmt(L, s))
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we assume that there are two other existing mapping functions, Mstmt and Mb, 
that map statement lists and states to states and Boolean expressions to 
Boolean values (or error), respectively



Key Points of Denotational Semantics

• Advantages

– Compact & precise, with solid mathematical foundation

– Provide a rigorous way to think about programs

– Can be used to prove the correctness of programs

– Can be an aid to language design
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Key Points of Denotational Semantics

• Disadvantages

– Require mathematical sophistication

– Hard for programmer to use

• Uses

– Semantics for Algol-60, Pascal, etc.

– Compiler generation and optimization
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Summary

• Each form of semantic description has its place

• Operational semantics 

– Informally describe the meaning of language constructs in 

terms of their effects on an ideal machine

• Denotational semantics

– Formally define mathematical objects and functions to 

represent the meanings
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