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Imperative Languages

• We have been discussing imperative languages

– C/C++, Java, and Pascal are imperative languages

– They follow the von Neumman architecture [1]
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Functional Programming

• A different way of looking at things

– It is based on mathematical functions

– It is supported by functional, and applicative, programming 

languages

o LISP, ML, Haskell
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Mathematical Foundations

• A mathematical function is a mapping of 

members from one set to another set

– The “input” set is called the domain

– The “output” set is called the range
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Mathematical Foundations

• The evaluation order of mapping expressions is 

controlled by recursion and conditional expressions, 

rather than by the sequencing and iterative repetition 

• Functions do not have states

– They have no side effects

– They always produce the same output given the same 

input parameters
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Simple Functions

• Usual form: 

function name + a list of parameters in parentheses + 

mapping expression

• E.g., cube(x) = x * x * x, where

– both the domain and range sets are real numbers, and

– x can represent any member of the domain set, but it is fixed 

to represent one specific element during the expression 

evaluation
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Function Application

• It is specified by paring the function name with a 

particular element of the domain set

• The range element is obtained by evaluating the 

function-mapping expression with the domain 

element substituted for the particular element

– Cube(2.0) = 2.0 * 2.0 * 2.0 = 8.0
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Functional Forms

• A higher-order function, or functional form, is one 

that either takes functions as parameters, or yields a 

function as its result, or both

• Two common functional forms

– Function composition

– Apply-to-all
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Function Composition

• Function composition has two functional 

parameters and yields a function whose value is the 

first function applied to the result of the second

• It is written as an expression, using a  operator (called 

“circle” or “round”)

– E.g., h = f  g

if f(x) = x + 2, and 

g(x) = 3 * x

then h(x) = f(g(x)) = (3 * x) + 2
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Apply-to-all

• Apply-to-all takes a single function as a parameter

• If applied to a list of arguments, apply-to-all applies its 

functional parameter to each element of the list, and 

then collects results in a list or sequence

• It is denoted by α

– E.g., h(x) = x * x, then

α(h, (2, 3, 4)) = (4, 9, 16)
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Lambda expression 

• Early theoretical work on functions separated the task 

of defining a function from that of naming the function

• Lambda notation, λ, provides a method for defining 

nameless functions

• A lambda expression is a function, which  specifies 

the parameters, and the mapping expression 

– E.g., λ(x)x * x * x
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Lambda-Calculus

• A formal computation model (a formal system for 

function definition, function application, and 

recursion) using lambda expressions. 

• Lambda calculus can be either typed or untyped.

• Untyped lambda calculus serves as the inspiration for 

the functional programming languages.
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Lambda-Calculus

• In the mid 1960s, Peter Landin observed that a 

complex programming language can be understood 

by formulating it as a tiny core calculus capturing the 

language’s essential mechanisms, together with a 

collection of convenient derived forms whose 

behavior is understood by translating them into the 

core
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Lambda-Calculus

• The core language used by Landin was the lambda-

calculus, a formal system invented in the 1920s by 

Alonzo Church in which all computation is reduced 

to the basic operations of function definition and 

application
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factorial Example

• factorial(n) = 

if n = 0 then 1 else n * factorial(n - 1)

• The corresponding λ-calculs term is:

factorial(n) = 

λn. if n=0 then 1 else n *  factorial(n - 1)

• Meaning

– For each nonnegative number n, instantiating the function 

with the argument n yields the factorial of n as a result
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λ-calculus

• Lambda-calculus embodies function definition and 

application in the purest possible form

• In the lambda-calculus, everything is a function

– the arguments accepted by functions are themselves 

functions, and 

– the result returned by a function is another function
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Syntax of λ-calculus

t ::= x (a variable) 

| λx.t (a function) 

| t t (function application)

• The syntax of lambda-calculus comprises three sorts 

of terms

– Variable itself is a term

– The abstraction of a variable x from a term t is a term

– The application of term t1 to another term t2, is a term
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Two conventions of writing lambda-terms

• Application is left associative

– Given s t u, the calculation is (s t) u
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Two Conventions

• The body of abstraction is extended to right as much 

as possible

– Given λx. λy. x y x, the calculation is λx. (λy. ((x y) x))

N. Meng, S. Arthur 20

λx

λy

x y

apply x

apply



Scope

• An occurrence of the variable x is said to be bound 

when it occurs in the body t of an abstraction λx. t

• An occurrence of x is free if it appears in a position 

where it is not bound by an enclosing abstraction on 

x

– In x y, and λy. x y, x is free 

– In λx. x, and λz. λx. λy. x (y z), x is bound
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Scope

• A term with no free variable is said to be closed

• Closed terms are also called combinators

• The simplest combinator is called the identity 

function:

id = λx. x

N. Meng, S. Arthur 22



Operational Semantics

• (λx. t12)t2 -> (x    t2) t12

– Evaluate the term t12 by replacing every occurrence of x 

with t2

– What is the reduction result of (λx. x) y ? 

– What is the evaluation result of the term (λx. x (λx. x))(u r) ?

– All terms of the form (λx. t12)t2 is called redex (reducible 

expression)

– The operation of rewriting a redex according to the above 

rule is called beta-reduction
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An Example of Reduction

• (λx. x) ((λx. x)(λz. (λx. x) z)) 
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-> (λx. x)(λz. (λx. x) z)

-> λz. (λx. x) z



Programming in the Lambda-Calculus

• Multiple arguments

– Lambda-calculus provides no built-in support for multi-

argument functions

– But we can use higher-order functions to achieve the same 

effect

N. Meng, S. Arthur 25



Multiple Arguments

• Suppose 

– s is a term involving two free variables x and y

– We want to write a function f, such that for each pair of 

arguments (v, w), f yields the result of substituting v for x, 

and w for y

– f = λx. λy. s

– Applying f to (v, w): f v w
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Multiple Arguments

• The transformation of multi-argument functions into 

higher-order functions is called currying
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