
FP Foundations, Scheme
In Text: Chapter 15
N. Meng, F. Poursardar

Outline

• Mathematical foundations

• Functional programming

• λ-calculus

• LISP

• Scheme

N. Meng, S. Arthur 2

Imperative Languages

• We have been discussing imperative languages

– C/C++, Java, and Pascal are imperative languages

– They follow the von Neumman architecture [1]

3

Functional Programming

• A different way of looking at things

– It is based on mathematical functions

– It is supported by functional, and applicative, programming

languages

o LISP, ML, Haskell

N. Meng, S. Arthur 4

Mathematical Foundations

• A mathematical function is a mapping of

members from one set to another set

– The “input” set is called the domain

– The “output” set is called the range

N. Meng, S. Arthur 5

Mathematical Foundations

• The evaluation order of mapping expressions is

controlled by recursion and conditional expressions,

rather than by the sequencing and iterative repetition

• Functions do not have states

– They have no side effects

– They always produce the same output given the same

input parameters

N. Meng, S. Arthur 6

Simple Functions

• Usual form:

function name + a list of parameters in parentheses +

mapping expression

• E.g., cube(x) = x * x * x, where

– both the domain and range sets are real numbers, and

– x can represent any member of the domain set, but it is fixed

to represent one specific element during the expression

evaluation

N. Meng, S. Arthur 7

Function Application

• It is specified by paring the function name with a

particular element of the domain set

• The range element is obtained by evaluating the

function-mapping expression with the domain

element substituted for the particular element

– Cube(2.0) = 2.0 * 2.0 * 2.0 = 8.0

N. Meng, S. Arthur 8

Functional Forms

• A higher-order function, or functional form, is one

that either takes functions as parameters, or yields a

function as its result, or both

• Two common functional forms

– Function composition

– Apply-to-all

N. Meng, S. Arthur 9

Function Composition

• Function composition has two functional

parameters and yields a function whose value is the

first function applied to the result of the second

• It is written as an expression, using a  operator (called

“circle” or “round”)

– E.g., h = f  g

if f(x) = x + 2, and

g(x) = 3 * x

then h(x) = f(g(x)) = (3 * x) + 2

N. Meng, S. Arthur 10

Apply-to-all

• Apply-to-all takes a single function as a parameter

• If applied to a list of arguments, apply-to-all applies its

functional parameter to each element of the list, and

then collects results in a list or sequence

• It is denoted by α

– E.g., h(x) = x * x, then

α(h, (2, 3, 4)) = (4, 9, 16)

N. Meng, S. Arthur 11

Lambda expression

• Early theoretical work on functions separated the task

of defining a function from that of naming the function

• Lambda notation, λ, provides a method for defining

nameless functions

• A lambda expression is a function, which specifies

the parameters, and the mapping expression

– E.g., λ(x)x * x * x

N. Meng, S. Arthur 12

Lambda-Calculus

• A formal computation model (a formal system for

function definition, function application, and

recursion) using lambda expressions.

• Lambda calculus can be either typed or untyped.

• Untyped lambda calculus serves as the inspiration for

the functional programming languages.

13

Lambda-Calculus

• In the mid 1960s, Peter Landin observed that a

complex programming language can be understood

by formulating it as a tiny core calculus capturing the

language’s essential mechanisms, together with a

collection of convenient derived forms whose

behavior is understood by translating them into the

core

N. Meng, S. Arthur 14

Lambda-Calculus

• The core language used by Landin was the lambda-

calculus, a formal system invented in the 1920s by

Alonzo Church in which all computation is reduced

to the basic operations of function definition and

application

N. Meng, S. Arthur 15

factorial Example

• factorial(n) =

if n = 0 then 1 else n * factorial(n - 1)

• The corresponding λ-calculs term is:

factorial(n) =

λn. if n=0 then 1 else n * factorial(n - 1)

• Meaning

– For each nonnegative number n, instantiating the function

with the argument n yields the factorial of n as a result

N. Meng, S. Arthur 16

λ-calculus

• Lambda-calculus embodies function definition and

application in the purest possible form

• In the lambda-calculus, everything is a function

– the arguments accepted by functions are themselves

functions, and

– the result returned by a function is another function

N. Meng, S. Arthur 17

Syntax of λ-calculus

t ::= x (a variable)

| λx.t (a function)

| t t (function application)

• The syntax of lambda-calculus comprises three sorts

of terms

– Variable itself is a term

– The abstraction of a variable x from a term t is a term

– The application of term t1 to another term t2, is a term

N. Meng, S. Arthur 18

Two conventions of writing lambda-terms

• Application is left associative

– Given s t u, the calculation is (s t) u

N. Meng, S. Arthur 19

apply

apply

s t

u

Two Conventions

• The body of abstraction is extended to right as much

as possible

– Given λx. λy. x y x, the calculation is λx. (λy. ((x y) x))

N. Meng, S. Arthur 20

λx

λy

x y

apply x

apply

Scope

• An occurrence of the variable x is said to be bound

when it occurs in the body t of an abstraction λx. t

• An occurrence of x is free if it appears in a position

where it is not bound by an enclosing abstraction on

x

– In x y, and λy. x y, x is free

– In λx. x, and λz. λx. λy. x (y z), x is bound

N. Meng, S. Arthur 21

Scope

• A term with no free variable is said to be closed

• Closed terms are also called combinators

• The simplest combinator is called the identity

function:

id = λx. x

N. Meng, S. Arthur 22

Operational Semantics

• (λx. t12)t2 -> (x t2) t12

– Evaluate the term t12 by replacing every occurrence of x

with t2

– What is the reduction result of (λx. x) y ?

– What is the evaluation result of the term (λx. x (λx. x))(u r) ?

– All terms of the form (λx. t12)t2 is called redex (reducible

expression)

– The operation of rewriting a redex according to the above

rule is called beta-reduction

N. Meng, S. Arthur 23

An Example of Reduction

• (λx. x) ((λx. x)(λz. (λx. x) z))

N. Meng, S. Arthur 24

-> (λx. x)(λz. (λx. x) z)

-> λz. (λx. x) z

Programming in the Lambda-Calculus

• Multiple arguments

– Lambda-calculus provides no built-in support for multi-

argument functions

– But we can use higher-order functions to achieve the same

effect

N. Meng, S. Arthur 25

Multiple Arguments

• Suppose

– s is a term involving two free variables x and y

– We want to write a function f, such that for each pair of

arguments (v, w), f yields the result of substituting v for x,

and w for y

– f = λx. λy. s

– Applying f to (v, w): f v w

N. Meng, S. Arthur 26

Multiple Arguments

• The transformation of multi-argument functions into

higher-order functions is called currying

N. Meng, S. Arthur 27

