

FP Foundations, Scheme

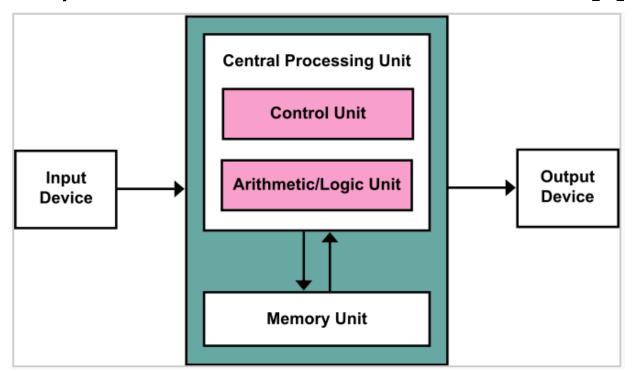
In Text: Chapter 15 N. Meng, F. Poursardar

Outline

- Mathematical foundations
- Functional programming
- λ-calculus
- LISP
- Scheme

Imperative Languages

- We have been discussing imperative languages
 - C/C++, Java, and Pascal are imperative languages
 - They follow the von Neumman architecture [1]



VIRGINIA TECH.

Functional Programming

- A different way of looking at things
 - It is based on mathematical functions
 - It is supported by functional, and applicative, programming languages
 - LISP, ML, Haskell

Mathematical Foundations

- A mathematical function is a mapping of members from one set to another set
 - The "input" set is called the domain
 - The "output" set is called the range

Mathematical Foundations

- The evaluation order of mapping expressions is controlled by recursion and conditional expressions, rather than by the sequencing and iterative repetition
- Functions do not have states
 - They have no side effects
 - They always produce the same output given the same input parameters

Simple Functions

- Usual form:
 - function name + a list of parameters in parentheses + mapping expression
- E.g., cube(x) = x * x * x, where
 - both the domain and range sets are real numbers, and
 - x can represent any member of the domain set, but it is fixed to represent one specific element during the expression evaluation

Function Application

- It is specified by paring the function name with a particular element of the domain set
- The range element is obtained by evaluating the function-mapping expression with the domain element substituted for the particular element
 - Cube(2.0) = 2.0 * 2.0 * 2.0 = 8.0

Functional Forms

- A higher-order function, or functional form, is one that either takes functions as parameters, or yields a function as its result, or both
- Two common functional forms
 - Function composition
 - Apply-to-all

Function Composition

- Function composition has two functional parameters and yields a function whose value is the first function applied to the result of the second
- It is written as an expression, using a $^{\circ}$ operator (called "circle" or "round")

```
- E.g., h = f \circ g

if f(x) = x + 2, and

g(x) = 3 * x

then h(x) = f(g(x)) = (3 * x) + 2
```

Apply-to-all

- Apply-to-all takes a single function as a parameter
- If applied to a list of arguments, apply-to-all applies its functional parameter to each element of the list, and then collects results in a list or sequence
- It is denoted by α
 - E.g., h(x) = x * x, then $\alpha(h, (2, 3, 4)) = (4, 9, 16)$

Lambda expression

- Early theoretical work on functions separated the task of defining a function from that of naming the function
- Lambda notation, λ, provides a method for defining nameless functions
- A lambda expression is a function, which specifies the parameters, and the mapping expression
 - E.g., $\lambda(x)x * x * x$

Lambda-Calculus

- A formal computation model (a formal system for function definition, function application, and recursion) using lambda expressions.
- Lambda calculus can be either typed or untyped.
- Untyped lambda calculus serves as the inspiration for the functional programming languages.

/IRGINIA TECH_a 13

Lambda-Calculus

 In the mid 1960s, Peter Landin observed that a complex programming language can be understood by formulating it as a tiny core calculus capturing the language's essential mechanisms, together with a collection of convenient derived forms whose behavior is understood by translating them into the core

Lambda-Calculus

 The core language used by Landin was the lambdacalculus, a formal system invented in the 1920s by Alonzo Church in which all computation is reduced to the basic operations of function definition and application

factorial Example

- factorial(n) =if n = 0 then I else n * factorial(n I)
- The corresponding λ -calculs term is:

```
factorial(n) =
```

 λn . if n=0 then I else n * factorial(n - I)

- Meaning
 - For each nonnegative number n, instantiating the function with the argument n yields the factorial of n as a result

λ-calculus

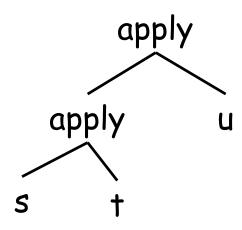
- Lambda-calculus embodies function definition and application in the purest possible form
- In the lambda-calculus, everything is a function
 - the arguments accepted by functions are themselves functions, and
 - the result returned by a function is another function

Syntax of λ-calculus

- The syntax of lambda-calculus comprises three sorts of terms
 - Variable itself is a term
 - The abstraction of a variable x from a term t is a term
 - The application of term t_1 to another term t_2 , is a term

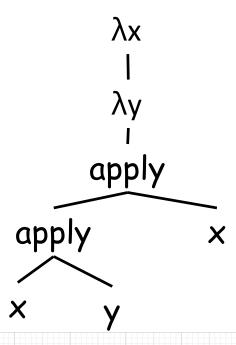
Two conventions of writing lambda-terms

- Application is left associative
 - Given s t u, the calculation is (s t) u



Two Conventions

- The body of abstraction is extended to right as much as possible
 - Given λx . λy . x y x, the calculation is λx . $(\lambda y$. ((x y) x))



Scope

- An occurrence of the variable x is said to be bound when it occurs in the body t of an abstraction λx. t
- An occurrence of x is free if it appears in a position where it is not bound by an enclosing abstraction on x
 - In x y, and λy . x y, x is free
 - In λx . x, and λz . λx . λy . x (y z), x is bound

Scope

- A term with no free variable is said to be closed
- Closed terms are also called combinators
- The simplest combinator is called the identity function:

$$id = \lambda x. x$$

Operational Semantics

- $(\lambda x. t_{12})t_2 -> (x \mapsto t_2) t_{12}$
 - Evaluate the term t_{12} by replacing every occurrence of x with t_2
 - What is the reduction result of $(\lambda x. x)$ y?
 - What is the evaluation result of the term $(\lambda x. x (\lambda x. x))(u r)$?
 - All terms of the form $(\lambda x. t_{12})t_2$ is called **redex** (reducible expression)
 - The operation of rewriting a redex according to the above rule is called **beta-reduction**

An Example of Reduction

- $(\lambda x. x) ((\lambda x. x)(\lambda z. (\lambda x. x) z))$
- $\rightarrow (\lambda x. x)(\lambda z. (\lambda x. x) z)$
- $\rightarrow \lambda z. (\lambda x. x) z$

Programming in the Lambda-Calculus

- Multiple arguments
 - Lambda-calculus provides no built-in support for multiargument functions
 - But we can use higher-order functions to achieve the same effect

Multiple Arguments

Suppose

- s is a term involving two free variables x and y
- We want to write a function f, such that for each pair of arguments (v, w), f yields the result of substituting v for x, and w for y
- $f = \lambda x. \lambda y. s$
- Applying f to (v, w): f v w

Multiple Arguments

 The transformation of multi-argument functions into higher-order functions is called currying