FP Foundations, Scheme (2)

In Text: Chapter 15
N. Meng, F. Poursardar

Functional programming

LISP: John McCarthy 1958 MIT

List Processing => Symbolic Manipulation

First functional programming language

Every version after the first has imperative features, but we
will discuss the functional subset

VIRGINIA TECH 2

LISP Data Types

There are only two types of data objects in the
original LISP
Atoms: symbols, numbers, strings,...
E.g.,a, 100,“fo0”
Lists: specified by delimitating elements within parentheses

Simple lists: elements are only atoms
E.g.(ABCD)

Nested lists: elements can be lists
E.e.,(A (B C)D (E (FQ)))

LISP Data Types

Internally, lists are stored as single-linked list
structures

Each node has two pointers: one to element, the other to
next node in the list

Single atom: |
List of atoms: (a b ¢) atom

QT
U._
O

VIRGINIA TECH

LISP Data Types

— List containing list (a (b c¢) d)

s

VIRGINIA TECH

S | S B

Q

O«

Scheme

Scheme is a dialect of LISP, emerged from MIT in
1975

Characteristics
simple syntax and semantics
small size
exclusive use of static scoping

treating functions as first-class entities

As first-class entities, Scheme functions can be the values of
expressions, elements of lists, assigned to variables, and passed as
parameters

Interpreter

Most Scheme implementations employ an interpreter
that runs a “read-eval-print” loop

The interpreter repeatedly reads an expression from a
standard input, evaluates the expression, and prints the
resulting value

Primitive Numeric Functions

Primitive functions for the basic arithmetic operations:
+’) *’ /

+ and * can have zero or more parameters. If * is given no
parameter, it returns |;if + is given no parameter, it returns 0

- and / can have two or more parameters

Prefix notation Expression | Value
42 42
(* 3 6) 18
(+123) 6
(sqrt 16) 4

VIRGINIA TECH 8

Numeric Predicate Functions

Predicate functions return Boolean values (#T or
#F). =, <>, >, <,>=, <= EVEN?, ODD?, ZERO?

Expression Value
(= 16 16) HT
(even? 29) HF

(>10 (* 2 4))

(zero? (-10(* 2 5)))

VIRGINIA TECH

Type Checking

Dynamic type checking

Type predicate functions
(boolean? x) ;Is x a Boolean?
(char? x)

(string? x)
(symbol? x)
(number? x)

(pair? x)
(list? x)

VIRGINIA TECH

10

Lambda Expression

E.g., lambda(x) (* x x) is a nameless function that
returns the square of its given numeric parameter

Such functions can be applied in the same ways as
named functions

E.g., (lambda(x) (* x x)) 7) = 49

It allows us to pass function definitions as parameters

Lambda Expression

Lambda expressions can have any number of
parameters.
E.g.,

(LAMBDA (a b ¢ x) (+ (*a x x) (* b x) c))

VIRGINIA TECH

12

“define”

Scheme special form function

To bind a name to the value of a variable:
(define symbol expression)
E.g., (define pi 3.14159)
E.g., (define two_pi (* 2 pi))
To bind a function name to an expression:
(define (function_name parameters)
(expression)

)

E.g., (define (square x) (* x x))

“define”

To bind a function name to a lambda expression
(define function_name
(lambda_expression)

)

E.g., (define square (lambda (x) (* x x)))

Another Example

Factorial function using “define”:

(define (factorial n)
(if (<=n 1)
I
(* n (factorial (— n 1)))

)

VIRGINIA TECH

J(x)

|

lif x=0
x*f(x—=1Dif x>0

15

Control Flow

Simple conditional expressions can be written using
if:

E.g. (if (<2 3) 45) =>4

E.g., (if #f 2 3) => 3

VIRGINIA TECH

16

Control Flow (cont’d)

It is modeled based on the evaluation control used in
mathematical functions:

(COND

(predicate_| expression)
(predicate_2 expression)

(predicate_n expression)
[ELSE expression]

An Example

lif x=0

f(x):{x*f(x—l)ifx>0

(define (factorial x)
(cond
((<x0)#)

(=x0)1)
(#t (* x (factorial (- x 1)))) ; or else (...)

VIRGINIA TECH

Bindings & Scopes

let is a function that creates a local scope in which
names are temporarily bound to the values of expressions

Names can be bound to values by introducing a nested
scope

let takes two or more arguments:

The first argument is a list of pairs
In each pair, the first element is the name, while the second is the
value/expression

Remaining arguments are evaluated in order
The value of the construct as a whole is the value of the final
argument

E.g. (let ((a 3)) a)

let Examples

computes the roots of a given quadratic equation, ax2 + bx + c:
rootl = (-b + sqrt(b2 - 4ac))/2a and
root2 = (-b - sqrt(b2 - 4ac))/2a

(define (quadratic_roots a b c)

(let (

(root_part_over_2a
(/ (SQRT (= (*bb) (F4acq)) (*2a))
(minus_b_over_2a (/ (- 0 b) (* 2 a)))
)
(LIST (+ minus_b_over_2a root part_over_2a)
(— minus_b_over_2a root_part_over_2a))

let Examples

E.g., (let ((a 3)
(b 4)
(square (lambda (x) (* x x)))
(plus +))

(sqrt (plus (square a) (square b))))
The scope of the bindings produced by let is its

second and following arguments

let Examples

E.g., (let ((a 3))
(let ((a 4)

(b 2))
(tab))) =>?

* b takes the value of the outer q,
because the defined names are visible

"all at once"” at the end of the
declaration list

let* Example

let* makes sure that names become available “one at
a time”’

E.g., (let™((x 1) (y (+ x 1))
(*xy)) =>1?

VIRGINIA TECH. 23

Functions

quote: identity function

When the function is given a parameter, it simply returns
the parameter

E.g., (quote A) => A
(quote (AB C)) => (ABC)

The common abbreviation of quote is apostrophe ()

Eg.,'a=>a
‘“(ABC)=>(ABCQ)

List Functions

car: returns the first element of a given list
E.g., (car (A B C)) => A
(car ‘(A B) C D)) => (A B)
(car ‘A) =>1?
(car ‘(A)) =>1
(car()) =>?

VIRGINIA TECH

25

List Functions

cdr: returns the remainder of a given list after its car

has been removed
E.g., (cdr (A B C)) => (B C)
(cdr (A B) C D)) => (C D)
(cdr‘A) =>?
(cdr‘(A)) =>1?
(cdr()) =>?

List Functions

cons: concatenates an element with a list

cons builds a list from its two arguments
The first can be either an atom or a list

The second is usually a list
E.g., (cons ‘A‘() => (A)
(cons ‘A‘(B C)) => (AB C)
(cons ‘() ‘(A B)) =>?
(cons ‘(A B) (C D)) =>?
How to compose a list (A B C) from A, B,and C?

List Functions

Note that cons can take two atoms as parameters,
and return a dotted pair

E.g., (cons ‘A‘B) => (A . B)

The dotted pair indicates that this cell contains two atoms,

instead of

an atom + a pointer
or

a pointer + a pointer

More Predicate Functions

The following returns #t if the symbolic atom is of
the indicated type, and #f otherwise
E.g., (symbol? ‘a) => #t
(symbol? () => #f
E.g., (humber? '55) => #t
(number? 55) => #t
(number? ‘(a)) => #f
E.g., (list? ‘(a)) => #t
E.g., (null? °()) => #t

VIRGINIA TECH

29

More Predicate Functions

eq! returns true if two objects are equal through
pointer comparison

Guaranteed to work on symbols
E.g., (eq? ‘A‘A) => #T
(eq? ‘A‘(A B)) => #F

equal? recursively compares two objects to
determine if they are equal

The objects can be atoms or lists

How do we implement equal?

(define (atom? atm) (define (equal? lisl lis2)
(cond (cond
((list? atm) (null? atm)) ((atom? lisl) (eq? lisl lis2))
(else #T) ((atom? lis2) #F)
) ((equal? (car lis1) (car lis2))
) ((equal? (cdr lis1) (cdr lis2))
(else #F)
)
)

VIRGINIA TECH 31

More Examples

(define (member? atm lis) (define (append lisl lis2)
(cond (cond
((null? lis) #F) ((null? lis1) lis2)
((eq? atm (car lis)) #T) (else (cons (car lisl)
(else (member? atm (cdr lis))) (append(cdr lisl) lis2)))
))
))
What is returned for the Is lis2 appended to lisl, or lisl
following function? prepended to lis2?

(member? 'b '(a (b ¢)))

An example: apply-to-all function

(define (mapcar fctn lis)
(cond

((null? lis) ()

(else (cons (fctn (car lis))
(mapcar fctn (cdr lis))))

VIRGINIA TECH

