FP Foundations, Scheme (2)
In Text: Chapter 15
N. Meng, F. Poursardar

Functional programming

- LISP:John McCarthy 1958 MIT
- List Processing => Symbolic Manipulation
- First functional programming language
- Every version after the first has imperative features, but we will discuss the functional subset

LISP Data Types

- There are only two types of data objects in the original LISP
- Atoms: symbols, numbers, strings,...
- E.g., a, 100, "foo"
- Lists: specified by delimitating elements within parentheses
- Simple lists: elements are only atoms
- E.g., (A B C D)
- Nested lists: elements can be lists
- E.g., (A (BC) D (E (F G)))

LISP Data Types

- Internally, lists are stored as single-linked list structures
- Each node has two pointers: one to element, the other to next node in the list
- Single atom:
- List of atoms: (abc) atom

LISP Data Types

- List containing list (a (bc)d)

Scheme

- Scheme is a dialect of LISP, emerged from MIT in 1975
- Characteristics
- simple syntax and semantics
- small size
- exclusive use of static scoping
- treating functions as first-class entities
- As first-class entities, Scheme functions can be the values of expressions, elements of lists, assigned to variables, and passed as parameters

Interpreter

- Most Scheme implementations employ an interpreter that runs a "read-eval-print" loop
- The interpreter repeatedly reads an expression from a standard input, evaluates the expression, and prints the resulting value

Primitive Numeric Functions

- Primitive functions for the basic arithmetic operations: ,,+- , /
- + and * can have zero or more parameters. If * is given no parameter, it returns I; if + is given no parameter, it returns 0
- - and / can have two or more parameters
- Prefix notation

Expression	Value
42	42
$(* 36)$	18
$(+123)$	6
(sqrt 16)	4

Numeric Predicate Functions

- Predicate functions return Boolean values (\#T or \#F): =, <>, >, <, >=, <=, EVEN?, ODD?, ZERO?

Expression	Value
$(=1616)$	$\# T$
(even? 29)	$\# \mathrm{~F}$
$(>10(* 24))$	
(zero? $(-10(* 25)))$	

Type Checking

- Dynamic type checking
- Type predicate functions
(boolean? x) ; Is x a Boolean?
(char? x)
(string? x)
(symbol? x)
(number? x)
(pair? x)
(list? x)

Lambda Expression

- E.g., lambda $(x)\left({ }^{*} x x\right)$ is a nameless function that returns the square of its given numeric parameter
- Such functions can be applied in the same ways as named functions
- E.g., ((lambda(x) $\left.\left({ }^{*} \times x\right)\right) 7$) $=49$
- It allows us to pass function definitions as parameters

Lambda Expression

- Lambda expressions can have any number of parameters.
- E.g.,
(LAMBDA (abcx) (+ (* a x x) (* b x) c))

"define"

- Scheme special form function
- To bind a name to the value of a variable:
(define symbol expression)
- E.g., (define pi 3.14159)
- E.g., (define two_pi (* 2 pi))
- To bind a function name to an expression: (define (function_name parameters) (expression)
)
- E.g., (define (square $x)\left({ }^{*} \times x\right)$)

"define"

To bind a function name to a lambda expression (define function_name (lambda_expression)
)

- E.g., (define square (lambda (x) (* $\left.{ }^{*} \mathrm{x}\right)$))

Another Example

Factorial function using "define":
(define (factorial n)

$$
\text { (if }(<=\mathrm{n} \text { I) }
$$

$$
f(x)=\left\{\begin{array}{l}
1 \text { if } x=0 \\
x^{*} f(x-1) \text { if } x>0
\end{array}\right.
$$

(* n (factorial (- n I)))
))

Control Flow

- Simple conditional expressions can be written using if:
- E.g. (if (<2 3) 4 5) => 4
- E.g., (if \#f 2 3) $=>3$

Control Flow (cont'd)

- It is modeled based on the evaluation control used in mathematical functions:
(COND
(predicate_I expression)
(predicate_2 expression)
(predicate_n expression)
[ELSE expression]
)

An Example

$$
f(x)=\left\{\begin{array}{l}
1 \text { if } x=0 \\
x^{*} f(x-1) \text { if } x>0
\end{array}\right.
$$

(define (factorial x)
(cond
$((<x 0) \# f)$
($=x 0$) I)
(\#t (*x (factorial (-×I)))); or else (...)
)
)

Bindings \& Scopes

- let is a function that creates a local scope in which names are temporarily bound to the values of expressions
- Names can be bound to values by introducing a nested scope
- let takes two or more arguments:
- The first argument is a list of pairs
- In each pair, the first element is the name, while the second is the value/expression
- Remaining arguments are evaluated in order
- The value of the construct as a whole is the value of the final argument
- E.g. (let ((a 3)) a)

let Examples

- computes the roots of a given quadratic equation, $a x 2+b x+c$: root $=(-b+\operatorname{sqrt}(b 2-4 a c)) / 2 a$ and $\operatorname{root} 2=(-\mathrm{b}-\operatorname{sqrt}(\mathrm{b} 2-4 \mathrm{ac})) / 2 \mathrm{a}$
(define (quadratic_roots abc)
(let (
(root_part_over_2a
(/ (SQRT (- (* b b) (* 4 a c))) $\left.\left.)^{*} 2 \mathrm{a}\right)\right)$)
(minus_b_over_2a (/ (- 0 b) (* 2 a$)$))
(LIST (+ minus_b_over_2a root_part_over_2a)
(- minus_b_over_2a root_part_over_2a))
))

let Examples

- E.g., (let ((a 3)
(b 4)
(square (lambda (x) (*xx)))
(plus +))
(sqrt (plus (square a) (square b))))
- The scope of the bindings produced by let is its second and following arguments

let Examples

- E.g., (let ((a 3))
(let ((a 4)
(b a))
$(+a b)))=>$?
- b takes the value of the outer a, because the defined names are visible "all at once" at the end of the declaration list

let* Example

- let* makes sure that names become available "one at a time"
- E.g., (let*((x I) (y (+ x I)))

$$
(+x y))=>\text { ? }
$$

Functions

- quote: identity function
- When the function is given a parameter, it simply returns the parameter
- E.g., (quote A) $=>A$ (quote $(A B C))=>(A B C)$
- The common abbreviation of quote is apostrophe (')
- E.g.,' a => a
' $(A B C)=>(A B C)$

List Functions

- car: returns the first element of a given list
- E.g., (car '(A B C)) $=>$ A
$\left(\operatorname{car}^{\prime}((\mathrm{A} B) \mathrm{CD})\right)=>(\mathrm{AB})$
($\left.\operatorname{car}^{\prime} \mathrm{A}\right)=>$?
($\left.\operatorname{car}^{\prime}(\mathrm{A})\right)=>$?
(car $\left.^{\prime}()\right)$) $=>$?

List Functions

- cdr: returns the remainder of a given list after its car has been removed
- E.g., (cdr '(A B C)) $=>$ (B C)
$(c d r ‘((A B) C D))=>(C D)$
($\operatorname{cdr} \times \mathrm{A}$) $=>$?
(cdr'(A)) $=>$?
(cdr '()) $=>$?

List Functions

- cons: concatenates an element with a list
cons builds a list from its two arguments
- The first can be either an atom or a list
- The second is usually a list
- E.g., (cons 'A '()) $=>$ (A)
(cons 'A '(B C)) $=>(A B C)$
(cons '() '(A B)) $=>$?
(cons '(A B) '(C D)) $=>$?
- How to compose a list (A B C) from A, B, and C ?

List Functions

- Note that cons can take two atoms as parameters, and return a dotted pair
- E.g., (cons 'A ‘B) => (A .B)
- The dotted pair indicates that this cell contains two atoms, instead of
an atom + a pointer
or
a pointer + a pointer

More Predicate Functions

The following returns \#t if the symbolic atom is of the indicated type, and \#f otherwise

- E.g., (symbol? 'a) => \#t
(symbol? '()) => \#f
- E.g., (number? ‘55) => \#t
(number? 55) $=>$ \#t
(number? '(a)) $=>\# f$
- E.g., (list? '(a)) => \#t
- E.g., (null? ‘()) $=>$ \#t

More Predicate Functions

- eq? returns true if two objects are equal through pointer comparison
- Guaranteed to work on symbols
- E.g., (eq? ‘A ‘A) => \#T

$$
\text { (eq? ‘A } \left.A^{\prime}(A B)\right)=>\# F
$$

- equal? recursively compares two objects to determine if they are equal
- The objects can be atoms or lists

How do we implement equal?

(define (atom? atm)
(cond
((list? atm) (null? atm)) (else \#T)
(define (equal? lis1 lis2)
(cond
((atom? lis1) (eq? lis1 lis2))
((atom? lis2) \#F)
((equal? (car lis1) (car lis2))
((equal? (cdr lis1) (cdr lis2))
(else \#F)
)
)

More Examples

```
(define (member? atm lis)
    (cond
                ((null? lis) #F)
        ((eq? atm (car lis)) #T)
        (else (member? atm (cdr lis)))
        )
)
```

What is returned for the following function? (member? 'b '(a (b c)))
(define (append lis1 lis2) (cond ((null? lis1) lis2) (else (cons (car lis1)
(append(cdr lis1) lis2)))
)
)
Is lis2 appended to lis1, or lis1 prepended to lis2?

An example: apply-to-all function

(define (mapcar fctn lis)
(cond
((null? lis) '())
(else (cons (fctn (car lis)) (mapcar fctn (cdr lis))))
)

