
FP Foundations, Scheme (2)
In Text: Chapter 15

N. Meng, F. Poursardar

Functional programming

• LISP: John McCarthy 1958 MIT

– List Processing => Symbolic Manipulation

• First functional programming language

– Every version after the first has imperative features, but we

will discuss the functional subset

2

LISP Data Types

• There are only two types of data objects in the

original LISP

– Atoms: symbols, numbers, strings,…

o E.g., a, 100, “foo”

– Lists: specified by delimitating elements within parentheses

o Simple lists: elements are only atoms

– E.g., (A B C D)

o Nested lists: elements can be lists

– E.g., (A (B C) D (E (F G)))

3

LISP Data Types

• Internally, lists are stored as single-linked list

structures

– Each node has two pointers: one to element, the other to

next node in the list

– Single atom:

– List of atoms: (a b c)

4

atom

a b c

LISP Data Types

– List containing list (a (b c) d)

5

a d

b c

Scheme

• Scheme is a dialect of LISP, emerged from MIT in

1975

• Characteristics

– simple syntax and semantics

– small size

– exclusive use of static scoping

– treating functions as first-class entities

o As first-class entities, Scheme functions can be the values of

expressions, elements of lists, assigned to variables, and passed as

parameters

6

Interpreter

• Most Scheme implementations employ an interpreter

that runs a “read-eval-print” loop

– The interpreter repeatedly reads an expression from a

standard input, evaluates the expression, and prints the

resulting value

7

Primitive Numeric Functions

• Primitive functions for the basic arithmetic operations:

+, -, *, /

– + and * can have zero or more parameters. If * is given no

parameter, it returns 1; if + is given no parameter, it returns 0

– - and / can have two or more parameters

– Prefix notation

8

Expression Value

42 42

(* 3 6) 18

(+ 1 2 3) 6

(sqrt 16) 4

Numeric Predicate Functions

• Predicate functions return Boolean values (#T or

#F): =, <>, >, <, >=, <=, EVEN?, ODD?, ZERO?

9

Expression Value

(= 16 16) #T

(even? 29) #F

(> 10 (* 2 4))

(zero? (-10(* 2 5)))

Type Checking

• Dynamic type checking

• Type predicate functions

(boolean? x) ; Is x a Boolean?

(char? x)

(string? x)

(symbol? x)

(number? x)

(pair? x)

(list? x)

10

Lambda Expression

• E.g., lambda(x) (* x x) is a nameless function that

returns the square of its given numeric parameter

• Such functions can be applied in the same ways as

named functions

– E.g., ((lambda(x) (* x x)) 7) = 49

• It allows us to pass function definitions as parameters

11

Lambda Expression

• Lambda expressions can have any number of

parameters.

• E.g.,

(LAMBDA (a b c x) (+ (* a x x) (* b x) c))

12

“define”

• Scheme special form function

• To bind a name to the value of a variable:

(define symbol expression)

– E.g., (define pi 3.14159)

– E.g., (define two_pi (* 2 pi))

• To bind a function name to an expression:

(define (function_name parameters)

(expression)

)

– E.g., (define (square x) (* x x))

13

“define”

• To bind a function name to a lambda expression

(define function_name

(lambda_expression)

)

– E.g., (define square (lambda (x) (* x x)))

14

Another Example

Factorial function using “define”:

(define (factorial n)

(if (<= n 1)

1

(* n (factorial (− n 1)))

))

15



f (x) =
1if x = 0

x* f (x −1) if x  0





Control Flow

• Simple conditional expressions can be written using

if:

– E.g. (if (< 2 3) 4 5) => 4

– E.g., (if #f 2 3) => 3

16

Control Flow (cont’d)

• It is modeled based on the evaluation control used in

mathematical functions:

(COND

(predicate_1 expression)

(predicate_2 expression)

…

(predicate_n expression)

[ELSE expression]

)

17

An Example

(define (factorial x)

(cond

((< x 0) #f)

((= x 0) 1)

(#t (* x (factorial (- x 1)))) ; or else (…)

)

)

18



f (x) =
1if x = 0

x* f (x −1) if x  0





Bindings & Scopes

• let is a function that creates a local scope in which
names are temporarily bound to the values of expressions

• Names can be bound to values by introducing a nested
scope

• let takes two or more arguments:

– The first argument is a list of pairs

o In each pair, the first element is the name, while the second is the
value/expression

– Remaining arguments are evaluated in order

– The value of the construct as a whole is the value of the final
argument

– E.g. (let ((a 3)) a)

19

let Examples

• computes the roots of a given quadratic equation, ax2 + bx + c:

root1 = (-b + sqrt(b2 - 4ac))/2a and

root2 = (-b - sqrt(b2 - 4ac))/2a

(define (quadratic_roots a b c)

(let (

(root_part_over_2a

(/ (SQRT (− (* b b) (* 4 a c))) (* 2 a)))

(minus_b_over_2a (/ (− 0 b) (* 2 a)))

)

(LIST (+ minus_b_over_2a root_part_over_2a)

(− minus_b_over_2a root_part_over_2a))

))

20

let Examples

• E.g., (let ((a 3)

(b 4)

(square (lambda (x) (* x x)))

(plus +))

(sqrt (plus (square a) (square b))))

• The scope of the bindings produced by let is its

second and following arguments

21

let Examples

• E.g., (let ((a 3))

(let ((a 4)

(b a))

(+ a b))) => ?

22

• b takes the value of the outer a,
because the defined names are visible
“all at once” at the end of the
declaration list

let* Example

• let* makes sure that names become available “one at

a time”

• E.g., (let*((x 1) (y (+ x 1)))

(+ x y)) => ?

23

Functions

• quote: identity function

– When the function is given a parameter, it simply returns

the parameter

– E.g., (quote A) => A

(quote (A B C)) => (A B C)

• The common abbreviation of quote is apostrophe (‘)

– E.g., ‘ a => a

‘ (A B C) => (A B C)

24

List Functions

• car: returns the first element of a given list

– E.g., (car ‘(A B C)) => A

(car ‘((A B) C D)) => (A B)

(car ‘A) => ?

(car ‘(A)) => ?

(car ‘()) => ?

25

List Functions

• cdr: returns the remainder of a given list after its car

has been removed

– E.g., (cdr ‘(A B C)) => (B C)

(cdr ‘((A B) C D)) => (C D)

(cdr ‘A) => ?

(cdr ‘(A)) => ?

(cdr ‘()) => ?

26

List Functions

• cons: concatenates an element with a list

• cons builds a list from its two arguments

– The first can be either an atom or a list

– The second is usually a list

– E.g., (cons ‘A ‘()) => (A)

(cons ‘A ‘(B C)) => (A B C)

(cons ‘() ‘(A B)) => ?

(cons ‘(A B) ‘(C D)) => ?

– How to compose a list (A B C) from A, B, and C?

27

List Functions

• Note that cons can take two atoms as parameters,

and return a dotted pair

– E.g., (cons ‘A ‘B) => (A . B)

– The dotted pair indicates that this cell contains two atoms,

instead of

an atom + a pointer

or

a pointer + a pointer

28

More Predicate Functions

• The following returns #t if the symbolic atom is of

the indicated type, and #f otherwise

– E.g., (symbol? ‘a) => #t

(symbol? ‘()) => #f

– E.g., (number? ‘55) => #t

(number? 55) => #t

(number? ‘(a)) => #f

– E.g., (list? ‘(a)) => #t

– E.g., (null? ‘()) => #t

29

More Predicate Functions

• eq? returns true if two objects are equal through

pointer comparison

– Guaranteed to work on symbols

– E.g., (eq? ‘A ‘A) => #T

(eq? ‘A ‘(A B)) => #F

• equal? recursively compares two objects to

determine if they are equal

– The objects can be atoms or lists

30

How do we implement equal?

(define (atom? atm)

(cond

((list? atm) (null? atm))

(else #T)

)

)

31

(define (equal? lis1 lis2)

(cond

((atom? lis1) (eq? lis1 lis2))

((atom? lis2) #F)

((equal? (car lis1) (car lis2))

((equal? (cdr lis1) (cdr lis2))

(else #F)

)

)

More Examples

(define (member? atm lis)

(cond

((null? lis) #F)

((eq? atm (car lis)) #T)

(else (member? atm (cdr lis)))

)

)

32

(define (append lis1 lis2)

(cond

((null? lis1) lis2)
(else (cons (car lis1)

(append(cdr lis1) lis2)))

)

)

What is returned for the
following function?

(member? ‘b ‘(a (b c)))

Is lis2 appended to lis1, or lis1
prepended to lis2?

An example: apply-to-all function

(define (mapcar fctn lis)

(cond

((null? lis) ‘())

(else (cons (fctn (car lis))

(mapcar fctn (cdr lis))))

)

33

