
Prolog
In Text: Chapter 16

N. Meng, J. Aurthur, F. Poursardar

Prolog

• A logic programming language

• Prolog programs consist of collections of statements

• There are only a few kinds of statements in Prolog,

but they can be complex

– Fact statements, rule statements, and goal statements

• All prolog statements are constructed from terms

2

Fact Statements

• Correspond to Headless Horn clauses

• Fact statements are propositions that are assumed to

be true, and from which new information can be

inferred

• E.g., female(shelley).

female(mary).

mother(mary, shelley).

3

Rule Statements

• Correspond to Headed Horn clauses

• They describe implication rules between propositions,

or logical relationship between them: if a set of given

conditions are satisfied, what conclusion can be drawn

• The consequent of a statement is a single term, while

the antecedent can be either a single term or

conjunction

4

Conjunctions

• The AND operation in conjunctions is implied in

Prolog

• The structures that specify atomic propositions in a

conjunction are separated by commas

• The commas can be considered as AND operators

5

Rule Statements

• E.g., grandparent(X, Z) :- parent(X, Y), parent(Y, Z),

where X, Y, and Z are universal objects

– It states that if there are instantiations of X, Y, and Z such

that parent (X, Y) is true, and parent (Y, Z) is true, then for

those same instantiations of X, Y, and Z, grandparent(X, Z)

is true

6

Goal Statements

• Also correspond to Headless Horn clauses

• Goal statements are propositions describing the

theorem that we want the system to either prove or

disprove

– E.g., man(fred)

• Because goal statements and some nongoal statements

have the same form, a Prolog implementation must have

some means to distinguish between the two

7

Goal Statement

(assert(rainy(seattle))).

(assert(rainy(rochester))).

rainy(C).

The Prolog interpreter would respond with:

C = seattle

Seattle is returned first, because it comes first in the

database

8

Goal Statement

• If we want to find all possible solutions, we can ask

the interpreter to continue by typing a semicolon:

C = seattle ;

C = rochester.

9

Another Example

(assert(takes(jane_doe, his201)).

(assert(takes(jane_doe, cs254)).

(assert(takes(ajit_chandra, art302)).

(assert(takes(ajit_chandra, cs254)).

(assert(classmates(X, Y) :- takes(X, Z),

takes(Y, Z)).

What does the following query return?

classmates(jane_doe, X).

10

X = jane_doe;

X = jane_doe;

X = ajit_chandra.

How should we modify the rule so that the student is

not considered as a classmate of himself or herself?

11

classmates(X, Y) :- takes(X, Z),

takes(Y, Z), X\=Y.

• Can we define propositions in the following way?

takes(jane doe, his201).

12

• No. The prolog interpreter will complain.
Instead, we can define the proposition
as below:

takes(‘jane doe’, his201).

Prolog Programs

• ASSERT (define)

– FACTS about OBJECTS

– RULES(“CLAUSES”) that inter-relate facts

• Ask QUESTIONS about objects and their

relationship

– GOALS

13

Some Prolog FACTS

| ?- (assert (father (michael, cathy))).

| ?- (assert (father (chuck, michael))).

| ?- (assert (father (chuck, julie))).

| ?- (assert (father (david, chuck))).

| ?- (assert (father (sam, melody))).

| ?- (assert (mother (cathy, melody))).

| ?- (assert (mother (hazel, michael))).

| ?- (assert (mother (hazel, julie))).

| ?- (assert (mother (melody, sandy))).

| ?- (assert (made_of (moon, green_cheese))).

14

Some Prolog RULES

• A person’s parent is their mother or father

| ?- (assert ((parent(X, Y) :- father(X, Y); mother (X, Y)))).

• A person’s grandfather is the father of one of their parents

| ?- (assert ((grandfather(X,Y) :- father(X, A), parent(A, Y)))).

15

Some Prolog QUESTIONS

• Is chuck the parent of julie ?

| ?- parent(chuck, julie).

• Is john the father of cathy ?

| ?- father(john, cathy).

16

Note:
• No “assert”s
• No use of variables

Prolog Notes

• atoms: symbolic values of Prolog

– father (bill, mike)

– Strings of letters, digits, and underscores starting with a lower

case letter

• variable: unbound entity

– father (X, mike)

– Strings of letters, digits, and underscores starting with an

UPPER CASE letter

– Variables are not bound to type by declaration

17

Prolog Notes

• FACTS: UNCONDITIONAL ASSERTIONS OF

“TRUTH”

(assert(mother(carol, jim))).

– assumed to be true

– contains no variables

– stored in database

18

Prolog Notes

• RULES: ASSERTIONS from which conclusions can be

drawn if given conditions are true

(assert((parent(X, Y) :-father(X, Y); mother (X, Y)))).

– contains variables for instantiation

– also stored in database

19

An Example

20

| ?- (assert(color(banana, yellow))).
| ?- (assert(color(squash, yellow))).
| ?- (assert(color(apple, green))).
| ?- (assert(color(peas, green))).

FACTS
| ?- (assert(fruit(banana))).
| ?- (assert(fruit(apple))).
| ?- (assert(vegetable(squash))).
| ?- (assert(vegetable(peas))).

bob eats green colored vegetables
RULE | ?- (assert((eats(bob, X) :- color(X,
green), vegetable(X)))).

An Example

21

What does bob eat ?
| ?- eats(bob, X).

color(banana, green) => no
color(squash, green) => no
color(apple, green) => yes

vegetable(apple) => no
color(peas, green) => yes

vegetable(peas) => yes

Does bob eat apples ?
| ?- eats(bob, apple).

color(apple, green) => match
vegetable(apple) => no

Does bob eat squash ?
| ?- eats(bob, squash).

color(squash, green) => no

(assert ((eats(bob, X) :-
color(X, green),
vegetable(X)))).

therefore X = peas

false

false

Prolog Notes

INSTANTIATION: binding of a variable to value (and

thus, a type)

UNIFICATION: Process of finding an instantiation of a

variable for which “match” is found in the database of

facts and rules

22

Instantiation & Unification

23

Prolog Notes

• DISJUNCTIVE RULES: X if Y or Z

(assert ((parent(X, Y) :- father(X, Y)))).

(assert ((parent(X, Y) :- mother(X, Y)))).

or

(assert ((parent(X, Y) :- father(X, Y); mother(X, Y)))).

24

Prolog Notes

• CONJUNCTIVE RULES: X if Y AND Z

(assert((father(X, Y) :- parent(X, Y), male(X)))).

• NEGATION RULES: X if Not Y

(assert((good(X) :- not(bad(X))))).

(assert((mother(X, Y) :- parent(X, Y), not(male(X))))).

25

“Older” Example

older(george, john).

older(alice, george).

older(john, mary).

older(X, Z) :- older(X, Y), older(Y, Z).

26

• When we ask a query that will result in
TRUE, we get the right answer:

?- older(george, mary).
yes

• When we ask a query that will result in
FALSE, we get into an endless loop

?- older(mary, john).

27

Left Recursion Problem

• The first element in older is the predicate that is

repeatedly tried

• To solve the problem, remove the older rule and

replace with:

is_older(X, Y) :- older(X, Y).

is_older(X, Z) :- older(X, Y), is_older(Y, Z).

• Now:

?- is_older(mary, john).

false

28

Prolog Notes

• Prolog is more than “LOGIC”

– Math

– List manipulation

29

Consult File Format

• File x.pl:

husband(tommy, claudia).

husband(mike, effie).

mother(claudia, sannon).

mother(effie, jamie).

father(X, Y) :- mother(W, Y), husband(X, W).

parent(X, Y) :-father(X, Y); mother(X, Y).

• Note: No assert’s, but can still state Facts and Rules

30

[x]. or consult(x).

Consult File

• Cannot state question/goal in a consult file

31

| ?- consult(x).

Suggested Approach to Specifying Solution

• Use a consult file to define facts and rules

– Instantiate prolog

– “consult” file interactively

– Interactively ask questions to see if facts/rules yield

expected results

– Change consult as needed

o Need to reinitiate prolog and re”consult”

32

Suggested Approach to Specifying Solution

(cont’d)

• Construct I/O redirected file to include

– Consult file and queries, e.g.,

– You may use “;” to ask “Is there another answer?”

o The initial query CANNOT have anything on the line

after the “.”, and

o There must be a blank line after “;”

33

< input.fleswipl

input.fle
consult(cnslt).
query1.
;

query2.

SWI-Prolog: Access & Nuance

• Download “stable release” of SWI-Prolog:

http://www.swi-prolog.org/Download.html

8.0.2-1 has versions for Windows and MacOSX

• swipl prints output to STDERR (file descriptor 2). To

redirect output to a file you must precede “>” with a

“2” :

– swipl < input.fle 2> output.fle

34

http://www.swi-prolog.org/Download.html

Prolog – Issues/Limitations

• “Closed World”

– the only truth is that known to the system

• Efficiency

– theorem proving can be extremely time consuming

• Resolution order control

– Prolog always starts with left side of a goal, and always
searches database from the top. Have some control by
choice of order in the propositions and by structuring
database.

35

Prolog – Issues/Limitations

– Prolog uses backward chaining (start with goal and attempt
to find sequence of propositions that leads to facts in the
database).

– In some cases forward chaining (start with facts in the
database and attempt to find a sequence of propositions
that leads to the goal) can be more efficient.

– Prolog always searches depth-first, though breadth-first can
work better in some cases.

36

Prolog – Issues/Limitations

• The Negation Problem -- failure to prove is not

equivalent to a logical not

– not(not(some_goal)) is not necessarily equivalent to

some_goal

37

