
Subprograms
In Text: Chapter 9

N. Meng, S. Arthur, F. Poursardar



Parameters that are subroutines

• In some situations, subroutine names can be sent as 

parameters to other subroutines

• Only the transmission of computation is necessary, 

which could be done by passing a functional pointer

2



Two complications with subroutine 

parameters

• Are parameters type checked?

– Early Pascal and FORTRAN 77 do not type check

– Later versions of Pascal, Modula-2, and FORTRAN 90 do

– C and C++ do

3



Two complications with subroutine 

parameters (cont’d)

• What referencing environment should be used for 

executing the passed subroutine?

– The environment of the call statement that enacts the passed 

subroutine(shallow binding)

– The environment of the definition of the subroutine(deep 

binding)

– The environment of the call statement that passed it as an 

actual parameter(ad hoc binding)

4



An Examplefunction sub1() {

var x;

function sub2() {

alert (x);

};

function sub3() {

var x;

x = 3;

sub4(sub2);

};

function sub4(subx) {

var x;

x = 4;

subx();
};

x = 1;

sub3();

};

5

• For shallow binding, the 
referencing environment 
of sub2 is sub4

• For deep binding, the 
referencing environment 
of sub2 is sub1

• For ad hoc binding, the 
referencing environment 
of sub2 is sub3



What is the output of alert(x)?

• Shallow binding?

• Deep binding?

• Ad hoc binding?

6



Referencing Environment for Subroutine 

Parameters

• Deep binding and ad hoc binding can be the same 

when a subroutine is declared and passed by the same 

subroutine

• In reality, ad hoc binding has never been used

• Static-scoped languages usually use deep binding

• Dynamic-scoped languages usually use shallow binding

7



Design Issues for Functions

• Are side effects allowed?

– Ada requires in-mode parameters, and does not allow any 

side effect

– Most languages support two-way parameters, and thus 

allow functions to cause side effects

8



Design Issues for Functions (cont’d)

• What types of values can be returned?

– FORTRAN, Pascal, and Modula-2: only simple types

– C: any type except functions and arrays

– Ada: any type (but subroutines are not types)

– JavaScript: functions can be returned

– Python, Ruby and functional languages: methods are objects 

that can be treated as any other object

9



Overloaded Subroutine

• A subroutine that has the same name as another 

subroutine in the same referencing environment, but 

its number, order, or types of parameters must be 

different

– E.g., void fun(float);

void fun();

• C++ and Ada have overloaded subroutines built-in, 

and users can write their own overloaded subroutines

10



Generic Subroutine

• A generic or polymorphic subroutine takes 

parameters of different types on different activations

• An example in C++

11

template<class Type>

Type max(Type first, Type second) {

return first > second ? first: second;

}

int a, b, c;

char d, e, f;

…

c = max(a, b);

f = max(d, e);



Generic Subroutine (cont’d)

• Overloaded subroutines provide a particular kind of 

polymorphism called ad hoc polymorphism

– Overloaded subroutines need not behave similarly

• Parametric polymorphism is provided by a 

subroutine that takes generic parameters to describe 

the types of parameters 

• Parametric polymorphic subroutines are often called 

generic subroutines

12



Coroutine

• A special kind of subroutine. Rather than the master-

slave relationship, the caller and callee coroutines are 

on a more equal basis

• A coroutine is a subroutine that has multiple entry 

points, which are controlled by coroutines

themselves

13



Coroutine

• The first execution of a coroutine begins at its 

beginning, but all subsequent executions often begin at 

points other than the beginning

• Therefore, the invocation of a coroutine is named a 

resume

• Typically, coroutines repeatedly resume each other, 

possibly forever

• Their executions interleave, but do not overlap

14



An Example

sub co1() {

…

resume(co2);

…

resume(co3);

}

15

• The first time co1 is resumed, its 

execution begins at the first statement, 

and executes down to resume(co2) (with 

the statement included)

• The next time co1 is resumed, its 

execution begins at the first statement 

after resume(co2)

• The third time co1 is resumed, its 

execution begins at the first statement 

after resume(co3)



Coroutine

• The interleaved execution sequence is related to the 

way multiprogramming operating systems work

– Although there may be one processor, all of the executing 

programs in such a system appear to run concurrently 

while sharing the processor

– This is called quasi-concurrency

• Coroutines provide quasi-concurrent execution of 

program units

16


