
Implementing Subprograms
In Text: Chapter 10

N. Meng, F. Poursardar

Outline

• General semantics of calls and returns

• Implementing “simple” subroutines

• Call Stack

• Implementing subroutines with stack-dynamic local

variables

• Nested programs

2

General Semantics of Calls and Returns

• The subroutine call and return operations are

together called subroutine linkage

• The implementation of subroutines must be based

on the semantics of the subroutine linkage

3

Semantics of a subroutine call

• Save the execution status of the current program

unit

• Pass the parameters

• Pass the return address to the callee

• Transfer control to the callee

4

Semantics of a subroutine return

• If there are pass-by-value-result or out-mode

parameters, the current values of those parameters

are moved to the corresponding actual parameters

• Move the return value to a place accessible to the

caller

• The execution status of the caller is restored

• Control is transferred back to the caller

5

Storage of Information

• The call and return actions require storage for the

following:

– Status information about the caller

– Parameters

– Return address

– Return value for functions

– Local variables

6

Implementing “simple” subroutines

• Simple subroutines are those that cannot be

nested and all local variables are static

• A simple subroutine consists of two parts: code and

data

– Code: constant (instruction space)

– Data: can change when the subroutine is executed (data

space)

– Both parts have fixed sizes

7

Activation Record

• The format, or layout, of the data part is called an

activation record, because the data is relevant to

an activation, or execution, of the subroutine

• The form of an activation record is static

• An activation record instance is a concrete

example of an activation record, corresponding to

one execution

8

An activation record for simple subroutine

9

• Since the activation record instance of a “simple”

subprogram has fixed size, it can be statically allocated

• Actually, it could be attached to the code part of the

subprogram

The code and activation records of a

program with simple subroutines

• Four program units—MAIN, A, B, and C

• MAIN calls A, B, and C

• Originally, all four programs may be compiled at

different times individually

• When each program is compiled, its machine code,

along with a list of references to external

subprograms are written to a file

10

How is the code linked?

• A linker is called for MAIN to create an

executable program

– Linker is part of the OS

– Linker is also called loader, linker/loader, or link

editor

– It finds and loads all referenced subroutines,

including code and activation records, into

memory

– It sets the target addresses of calls to those

subroutines’ entry addresses

11

Assumptions so far…

• All local variables are statically allocated

• No function recursion

• No value returned from any function

12

Call Stack

• Call stack is a stack data structure that stores

information about the active subroutines of a

program

• Also known as execution stack, control stack,

runtime-stack, or machine stack

• Large array which typically grows downwards in

memory towards lower addresses, shrinks upwards

13

Call Stack

• Push(r1):

stack_pointer--;

M[stack_pointer] = r1;

• r1 = Pop();

r1 = M[stack_pointer];

stack_pointer++;

14

Call Stack

• When a function is invoked, its activation record is

created dynamically and pushed onto the stack

• When a function returns, its activation record is popped

from the stack

• The activation record on stack is also called stack

frame

• Stack pointer(sp): points to the frame top

• Frame pointer(fp): points to the frame base

15

Implementing subroutines with stack-

dynamic local variables

• One important advantage of stack-dynamic local

variables is support for recursion

• The implementation requires more complex

activation records

– The compiler must generate code to cause the implicit

allocation and deallocation of local variables

16

More complex

activation records

• Since the return address, dynamic link, and

parameters are placed in the activation record

instance by the caller, these entries must appear first

• Local variables are allocated and possibly initialized in

the callee, so they appear last

17

Dynamic Link (control link) = previous sp

• Used in the destruction of the current activation record

instance when the procedure completes its execution

• To restore the sp in previous frame (caller)

• The collection of dynamic links in the stack at a given

time is called the dynamic chain, or call chain, which

represents the dynamic history of how execution got to

its current position

18

Why do we need

dynamic links?

• The dynamic link is required in some cases, because

there are other allocations from the stack by a

subroutine beyond its activation record, such as

temporaries

• Even though the activation record size is known, we

cannot simply subtract the size from the stack pointer

to remove the activation record

• Access nonlocal variables in dynamic scoped languages

19

Temporaries

An Example without Recursion
void fun1(float r) {

int s, t;

… ---------1

fun2(s);

}

void fun2(int x) {

int y;

… --------2

fun3(y);

…

}

void fun3(int q) {

… ---------3

}

void main() {

float p;

…

fun1(p);

}

20

• Call sequence:

main -> fun1 -> fun2 -> fun3

• What is the stack content at

points labeled as 1, 2, and 3?

21

p p p

Local Variable Allocation

• Local scalar variables are bound to storage within an

activation record instance

• Local variables that are structures are sometimes

allocated elsewhere, and only leave their descriptors

and a pointer to the storage as part of the activation

record

22

An Example

void sub(float total, int part) {

int list[5];

float sum;

…

}

Return address

Dynamic link

Parameter

Parameter

Local

Local

Local

Local

Local

Local

total

part

list[0]

list[1]

list[2]

list[3]

list[4]

sum

23

Recursion

• Function recursion means that a function can

eventually call itself

• Recursion adds the possibility of multiple

simultaneous activations of a subroutine at a given

time, with at least one call from outside the

subroutine, and one or more recursive calls

• Each activation requires its own activation record

instance

24

An Example

int factorial(int n) {

if (n <= 1)

return 1;

else return (n * factorial(n - 1));

}

void main() {

int value;

value = factorial (3);

}

25

How does the

stack change?

26

Implementing nested subroutines

• Some static-scoped languages use stack-dynamic

local variables and allow subroutines to be nested

– FORTRAN 95, Ada, Python, and JavaScript

• Challenge

– How to access nonlocal variables?

27

Two-step access process

• Find the activation record instance on the stack where

the variable was allocated

– more challenging and more difficult

• Use the local_offset of the variable to access it

– local_offset describes the offset from the beginning/bottom

of an activation record

28

Key Observations

• In a given subroutine, only variables that are declared

in static ancestor scopes are visible and can be

accessed

• Activation record instances of all static ancestors are

always on the stack when variables in them are

referenced by a nested subroutine: A subroutine is

callable only when all its static ancestors are active

29

Finding Activation Record Instance

• Static chaining

– A new pointer, static link (static scope pointer or

access link), is used to point to the bottom of an

activation record instance of the static parent

– The pointer is used for access to nonlocal variables

– Typically, the static link appears below parameters in an

activation record

30

Finding Activation Record Instance (cont’d)

• A static chain is a chain of static links

that connect the activation record

instances of all static ancestors for an

executing subroutine

• This chain can be used to implement

nonlocal variable access

31

Local variables

Parameters

Dynamic link

Static link

Return address

Finding Activation Record Instance (cont’d)

• With static links, finding the correct activation record

instance is simple

– Search the static chain until a static ancestor is found to

contain the variable

• However, the implementation can be even simpler

– Compiler identifies both nonlocal references, and the

length of static chain to follow to reach the correct record

32

Finding Activation Record Instance (cont’d)

• static_depth is an integer associated with a static

scope that indicates how deeply it is nested in the

outermost scope

• The difference between the static_depth of a nonlocal

reference and the static_depth of the variable

definition is called nesting_depth, or chain_depth,

of the reference

• Each reference is represented with an ordered

integer pair (chain_offset, local_offset)

33

An Ada Example

34

procedure Main_2 is

What is the static depth

for each procedure?

What is the

representation of A at

points 1, 2, and 3?

Stack Contents

procedure Main_2 is

