
Name, Scope and Binding (2)
In Text: Chapter 5

N. Meng, F. Poursardar

Variable

• A program variable is an abstraction of a memory cell

or a collection of cells

• It has several attributes

– Name: A mnemonic character string

– Address

– Type

2

Variable Attributes (continued)

• Storage Bindings

– Allocation

o Getting a memory cell from a pool of available memory to bind to

a variable

– Deallocation

o Putting a memory cell that has been unbound from a variable back

into the pool

• Lifetime

– The lifetime of a variable is the time during which it is

bound to a particular memory cell

3

Object Lifetime and Storage Management

• Key events: creation of objects, creation of bindings, references to
variables (which use bindings), (temporary) deactivation of bindings,
reactivation of bindings, destruction of bindings, and destruction of
objects.

• Binding lifetime: the period of time from creation to destruction of
a name-to-object binding.

• Object lifetime: the time between the creation and destruction of
an objects is the object’s lifetime:
– If object outlives binding it's garbage.

– If binding outlives object it's a dangling reference.

• Scope: the textual region of the program in which the binding is
active; we sometimes use the word scope as a noun all by itself,
without an indirect object.

Lifetime

• If an object’s memory binding outlives its access

binding, we get garbage

• If an object’s access binding outlives its memory

binding, we get a dangling reference

• Variable lifetime begins at allocation, and ends at

deallocation either by the program or garbage

collector

5

Categories of Variables by Lifetimes

• Static

• Stack-dynamic

• Explicit heap-dynamic

• Implicit heap-dynamic

Storage Allocation Mechanisms

• Static: objects are given an absolute address that is

retained throughout the program’s execution.

• Stack: objects are allocated and deallocated in last-in,

first-out order, usually in conjunction with subroutine

calls and returns.

• Heap: objects may be allocated and deallocated at

arbitrary times. They require a more general (and

expensive) storage management algorithm.

Static Allocation

• Static memory allocation is the allocation of memory

at compile time before the associated program is

executed

• When the program is loaded into memory, static

variables are stored in the data segment of the

program’s address space

• The lifetime of static variables exists throughout

program execution

– E.g., static int a;

8

Static Allocation

• Advantage

– Efficiency

• Disadvantage

– Reduce flexibility

– No support for recursive subprograms

– No memory sharing among variables

9

Stack-Based Allocation for Subroutines

Stack-based Allocation

• The location of local variables and parameters can be

defined as negative offsets relative to the base of the

frame (fp), or positive offsets relative to sp

• The displacement addressing mechanism allows such

addition to be specified implicitly as part of an ordinary
load or store instruction

• Variable lifetime exists through the declared method

11

Heap-based Allocation

• Heap

– A region of storage in which subblocks can be allocated

and deallocated at arbitrary time

– Its organization is highly disorganized because of the

unpredictability of its use

• Heap space management

– Different strategies achieve different trade-offs between

speed and space

12

Heap-based Allocation

• Explicit heap-dynamic variables are nameless
(abstract) memory cells that are allocated and
deallocated by explicit run-time instructions written by
the programmer.

• An example (C++):
int *intnode; // Create a pointer

intnode = new int; // Create the heap-dynamic variable

. . .

delete intnode; // Deallocate the heap-dynamic variable

// to which intnode points

• Usage: to construct dynamic structures,
– such as linked lists and trees, that need to grow and/or shrink

during execution

13

Heap-based Allocation

• Implicit heap-dynamic variables are bound to heap
storage only when they are assigned values.

• All their attributes are bound every time they are assigned.

• Example (JavaScript):
highs = [74, 84, 86, 90, 71];

• Advantage of such variables is that they have the highest
degree of flexibility, allowing highly generic code to be written.

• One disadvantage of implicit heap-dynamic variables is the
run-time overhead of maintaining all the dynamic attributes,
which could include array subscript types and ranges, among
others

14

Garbage Collection

• Allocation of heap-based objects: triggered by some specific operation in a
program (e.g., object instantiation).

• Deallocation: explicit in some languages (e.g., C++), implicit in others (e.g.,
Java).

• Garbage collection mechanism identifies and reclaims unreachable objects
(implicitly deallocated).

• Explicit deallocation benefits: simplicity and execution speed provided that
the programmer can correctly identify the end of an object’s lifetime.

• Implicit deallocation (automatic garbage collection) benefits: eliminates
manual allocation errors such as dangling reference and memory leak.

Garbage Collection Algorithms

• Reference Counting

– Keep a count of how many times you are referencing a

resource (e.g., an object in memory), and reclaim the space

when the count is zero

– It cannot handle cyclic structures

– It causes very high overhead to maintain counters

16

Garbage Collection Algorithms

• Mark-Sweep

– Periodically marks all live objects transitively, and sweeps

over all memory and disposes of garbage

– Entire heap has to be iterated over

– Many long-lived objects are iterated over and over again,

which is time-consuming

17

Garbage Collection Algorithms

• Mark-Compact

– Mark live objects, and move all live objects into free space

to make live space compact

– It takes even longer time than mark-sweep due to object

movement

18

Garbage Collection Algorithms

• Copying

– It uses two memory spaces, and each time only uses one

space to allocate memory, when the space is used up, copy

all live objects to the other space

– Each time only half space is used

19

Space Concern

• Fragmentation

– The phenomenon in which storage space is used inefficiently

– E.g., although in total 6K memory is available, there is not a

4K contiguous block available, which can cause allocation to

fail

20

Space Concern

• Internal fragmentation

– Allocates a block that is larger than required to hold a given

object

– E.g., Since memory can be provided in chunks divisible by 4, 8,

or 16, when a program requests 23 bytes, it will actually gets 32

(2^8) bytes

• External fragmentation

– Free memory is separated into small blocks, and the ability to

meet allocation requests degrades over time

21

Declaration Order

• C99, C++, Java, and C# allow variable declarations to

appear anywhere a statement can appear

– In C99, C++, and Java, the scope of all local variables is

from the declaration to the end of the block

22

Declaration Order

23

void fun() {

. . .

for (int count = 0; count < 10;

count++){

. . .

}

. . .

}

{int x;

. . .

{int x; //illegal

. . .

}

. . .

}

Examples (C#)

Declaration Order (continued)

– In C#, the scope of any variable declared in a block is the

whole block, regardless of the position of the declaration

in the block

o However, a variable still must be declared before it can be used

– In C++, Java, and C#, variables can be declared in for

statements

o The scope of such variables is restricted to the for construct

24

Scope

• The scope of a variable is the range of statements over
which its declaration is visible

• A variable is visible in a statement if it can be referenced
in that statement

• The nonlocal variables of a program unit or block are
those that are visible but not declared in the unit

• Global versus nonlocal

• Two types of scope

– Static/lexical scope

– Dynamic scope

25

Scope Rules

• Scope: a program section of maximal size in which no
bindings change, or at least no re-declarations are
permitted.

• In most languages with subroutines, we open a new
scope on subroutine entry:

– Create bindings for new local variables.

– Deactivate bindings for global variables that are re-declared
(these variable are said to have a “hole” in their scope).

– Make references to variables.

• On subroutine exit destroy bindings for local variables
and reactivate bindings for global variables that were
deactivated.

26

Static Scope

• The scope of a variable can be statically determined,

that is, prior to execution

• Two categories of static-scoped languages

– Languages allowing nested subprograms: Ada, JavaScript,

Python, and PHP

– Languages which does not allow subprograms: C, C++, Java

27

Static Scope

• To connect a name reference to a variable, you must

find the appropriate declaration

• Search process

1. search the declaration locally

2. If not found, search the next-larger enclosing unit (static

parent or ancestors)

3. Loop over step 2 until a declaration is found or an

undeclared variable error is detected

28

An Example (Ada)
1. procedure Big is

2. X : Integer;

3. procedure Sub1 is

4. X: Integer;

5. begin -- of Sub1

6. …

7. end; -- of Sub1

8. procedure Sub2 is

9. begin -- of Sub2

10. … X …

11. end;-- of Sub2

12. begin -- of Big

13. …

14. end; -- of Big

29

• Which declaration does X

in line 10 refer to?

Variable Hiding

• Variables can be hidden from a unit by having a

“closer” variable with the same name

– “Closer” means more immediate enclosing scope

– C++ and Ada allow access to the “hidden” variables (using

fully qualified names)

o scope.name

• Blocks can be used to create new static scopes inside

subprograms

30

Dynamic Scope

• Dynamic scoping is based on the calling sequence of

subprograms, not on their spatial relationship to each

other

• Dynamic scope can be determined only at runtime

• Always used in interpreted languages, which does not

have type checking at compile time

31

An Example

32

program foo;
var x: integer;

procedure f;
begin

print(x);
end f;

procedure g;
var x: integer;

begin
x := 2;
f;

end g;

begin
x := 1;
g;

end foo.

What value is printed?

Evaluate with static
scoping:

x = 1

Evaluate with dynamic
scoping:

x = 2

Static vs. Dynamic Scoping

Static scoping Dynamic scoping

Advantages 1. Readability

2. Locality of

reasoning

3. Less runtime

overhead

Some extra

convenience (minimal

parameter passing)

Disadvantages Less flexibility 1. Loss of readability

2. Unpredictable

behavior

3. More runtime

overhead
33

Another Example

void printheader() {

…

}

void compute() {

int sum;

…

printheader();

}

34

What is the static scope of

sum?

What is the lifetime of sum?

Referencing Environment

• At any given point in a program’s execution, the set

of active bindings is called the current referencing

environment.

• The referencing environment is principally

determined by static or dynamic scope rules.

• Sometimes it may depend on deep and shallow

binding related to the passing of parameters to

subroutines.

35

Referencing environments in static-

scoped languages

• The variables declared in the local scope plus the

collection of all variables of its ancestor scopes that are

visible, excluding variables in nonlocal scopes that are

hidden by declarations in nearer procedures

36

An Example
1. procedure Example is

2. A, B : Integer;

3. … -------------------------1

4. procedure Sub1 is

5. X, Y: Integer;

6. begin -- of Sub1

7. … ----------------2

8. end; -- of Sub1

9. procedure Sub2 is

10. X: Integer;

11. begin -- of Sub2

12. … ----------------3

13. end; -- of Sub2

14. begin -- of Example

15. … -----------------------4

16. end; -- of Example
37

What are the referencing

environments of the

indicated program points?

Point RE
1. A and B of Example

2. A and B of Example, X and
Y of Sub1

3.

4.

Referencing environments in dynamic-

scoped languages

• A subprogram is active if its execution has begun

but has not yet terminated

• The referencing environments of a statement in a

dynamically scoped language is the locally declared

variables, plus the variables of all other subprograms

that are currently active

– Some variables in active previous subprograms can be

hidden by variables with the same names in recent ones

38

An Example

What are the referencing

environments of the

indicated program points?

39

1. void sub1() {

2. int a, b;

3. … ------------------------1

4. } /* end of sub1 */

5. void sub2() {

6. int b, c;

7. … -------------------2

8. sub1();

9. } /* end of sub2 */

10.void main() {

11. int c, d;

12. … ----------------3

13. sub2();

14.} /* end of main */

The meaning of names within a scope

• Within a scope,

– Two or more names that refer to the same object at the

same program point are called aliases

o E.g., int a =3; int* p = &a, q = &a;

– A name that can refer to more than one object at a given

point is considered overloaded

o E.g., print_num(){…}, print_num(int n){…}

o E.g., complex + complex, complex + float

40

Named Constants

• A named constant is a variable that is bound to a

value only once

• Advantages: readability and modifiability

• Used to parameterize programs

• The binding of values to named constants can be

either static (called manifest constants) or dynamic

41

Parameterize a Program

42

void example() {

int[] intList = new int[100];

String[] strList = new String[100];

. . .

for (index = 0; index < 100;

index++) {

. . .

}

. . .

for (index = 0; index < 100;

index++) {

. . .

}

. . .

average = sum / 100;

. . .

}

void example() {

final int len = 100;

int[] intList = new int[len];

String[] strList = new String[len];

. . .

for (index = 0; index < len;

index++) {

. . .

}

. . .

for (index = 0; index < len;

index++) {

. . .

}

. . .

average = sum / len;

. . .

}

Using a named constant as a program
parameter

Named Constants (continued)

• Languages:

– C++ and Java: allow dynamic binding of values to named

variables

o final int result = 2 * width + 1; (Java)

– C# has two kinds, readonly and const

o the values of const named constants are bound at compile time

o the values of readonly named constants are dynamically bound

43

