
Expression Evaluation and
Control Flow

In Text: Chapter 7, 8

N. Meng, F. Poursardar

Outline

• Notation

• Operator evaluation order

• Operand evaluation order

• Overloaded operators

• Type conversions

• Short-circuit evaluation of conditions

• Control structures

2

Arithmetic Expressions

• Design issues for arithmetic expressions

– Notation form?

– What are the operator precedence rules?

– What are the operator associativity rules?

– What is the order of operand evaluation?

– Are there restrictions on operand evaluation side effects?

– Does the language allow user-defined operator overloading?

3

Operators

• A unary operator has one operand

• A binary operator has two operands

• A ternary operator has three operands

• Functions can be viewed as unary operators with an

operand of a simple list

4

Operators

• Argument lists (or parameter lists) treat separators

(comma, space) as “stacking” or “append” operators

• A keyword in a language statement can be viewed as

functions in which the remainder of the statement is

the operand

5

Notation & Placement

• Prefix

– op a b op(a,b) (op a b)

• Infix

– a op b

• Postfix

– a b op

6

Notation & Placement

• Most imperative languages use infix notation for

binary and prefix for unary operators

• Lisp: prefix

– (op a b)

7

Operator Evaluation Order

• Precedence

• Associativity

• Parentheses

The operator precedence and associativity rules of a

language dictate the order of evaluation of its

operators.

8

Operator Precedence

• Define the order in which “adjacent” operators of different
precedence levels are evaluated

• E.g., a + b * c

– Parenthetical groups (...)
– Exponentiation **
– Unary + , -
– Mult & Div * , /
– Add & Sub + , -
– Assignment :=

• Where to put the parentheses?
– E.g., A * B + C ** D / E - F

9

Highest

Lowest

Operator Precedence

10

We must have some definition of the order of operations, unless we want to write lots of

parentheses. The ordering used here is slightly adapted from the precedence rules for the

C language:

highest

(,) grouping

NOT, ! logical negation

^ exponentiation

*, / multiplication, division (parenthesize if both are chained)

+, - addition, subtraction (parenthesize if both are chained)

AND, && logical and

OR, || logical or

lowest

Remember, when in doubt, add parenthesis for clarity.

Operator Precedence

• Only some languages like Fortran, Ruby, Visual Basic,

Ada, and Python have the (built-in) exponentiation

operator.

• In all, exponentiation operator has higher precedence

than unary operators

– Where to place the parentheses in –A**B?

11

Operator Precedence

• The precedence of the arithmetic operators of Ruby

and the C-based languages (e.g., C, C++, Java, Python)

Ruby C-Based Languages

Highest ** postfix ++, --

unary +, - prefix ++, --, unary +, -

*, /, % *, /, %

Lowest binary +, - binary +, -

12

Operator Associativity

• Define the order in which adjacent operators with

the same precedence level are evaluated

• E.g., a – b + c - d

– Left associative * , / , + , -

– Right associative ** (exponentiation)

• Where to put the parentheses?

– E.g., B ** C ** D - E + F * G / H

13

Operator Associativity

• Associativity

– For some operators, the evaluation order does not matter, i.e.,
(A + B) + C = A + (B + C)

• EFFECTIVELY

– Most programming languages evaluate expressions from left to
right

– LISP uses parentheses to enforce evaluation order

– APL is different; all operators have equal precedence and all
operators associate right to left

• Can be overridden with parentheses

14

Parentheses

• Programmers can alter the precedence and

associativity rules by placing parentheses in

expressions (grouping)

• A parenthesized part of an expression has

precedence over its adjacent peers without

parentheses

15

Parentheses

• Advantages

– Allow programmers to specify any desired order of

evaluation

– Do not require author or reader of programs to

remember any precedence or association rules

• Disadvantages

– Can make writing expressions more tedious

– May seriously compromise code readability

16

Parentheses

• Although we need parentheses in infix expressions,

we don’t need parentheses in prefix and postfix

expressions

– The operators are no longer ambiguous with respect to

the operands that they work on in prefix and postfix

expressions

17

Expression Conversion

Infix Expression Prefix Expression Postfix Expression

A+B + A B A B +

A+B*C ? ?

(A+B)*C ? ?

18

A Motivating Example

• What is the value of the following expression?

3 10 + 4 5 - *

19

How do you automate the calculation of a

postfix expression ?

• Assuming operators include:

Highest * /

Lowest binary + -

• Input: a string of a postfix expression

• Output: a value

• Algorithm ?

20

Operand Evaluation Order

• The process:

1. Variables: just fetch the value

2. Constants: sometimes a fetch from memory; sometimes

the constant is in the machine language instruction

3. Parenthesized expressions: evaluate all operands and

operators first

4. Function references: The case of most interest!

– Order of evaluation is crucial

Side Effects

• Functional side effects—when a function changes a two-
way parameter or a non-local variable

• The problem with functional side effects:
– When a function referenced in an expression alters another

operand of the expression

• Example, for a parameter change:
a = 10;

b = a + fun(&a);

/* Assume that fun changes its param */

• If none of the operands of an operator has side effects,
then the operand evaluation order does not matter

Side Effects

• The following C program illustrates the same problem when a
function changes a global variable that appears in an expression:

int a = 5;

int fun1() {

a = 17;

return 3;

} /* end of fun1 */

void main() {

a = a + fun1();

} /* end of main */

• The value computed for a in main depends on the order of
evaluation of the operands in the expression a + fun1().

• The value of a will be either 8 (if a is evaluated first) or 20 (if the
function call is evaluated first).

23

Solutions for Side Effects

Two Possible Solutions to the Problem:

1. Write the language definition to disallow functional side
effects
– No pass-by-reference (two-way) parameters in functions

– No non-local references in functions

– Disadvantage: Programmers want the flexibility of two-way
parameters and non-local references

2. Write the language definition to demand that operand
evaluation order be fixed
– Disadvantage: limits some compiler optimizations

Referential Transparency and Side Effects

• A program has the property of referential

transparency if any two expressions having the same

value can be substituted for one another

E.g., result1 = (fun(a) + b) / (fun(a) – c);

temp = fun(a);

result2 = (temp + b) / (temp - c),

given that the function fun has no side effect

25

Key points of referentially transparent

programs

• Semantics is much easier to understand

– Being referentially transparent makes a function equivalent

to a mathematical function

• Programs written in pure functional languages are

referentially transparent

• The value of a referentially transparent function

depends on its parameters, and possibly one or more

global constants

26

Overloaded Operators

• The multiple use of an operator is called operator

overloading

– E.g., “+” is used to specify integer addition, floating-point

addition, and string catenation

• Do not use the same symbol for two completely

unrelated operations, because that can decrease

readability

– In C, “&” can represent a bitwise AND operator, and an

address-of operator

27

Type Conversion

• Narrowing conversion

– To convert a value to a type that cannot store all values of

the original type

– E.g. (Java), double->float, float->int

• Widening conversion

– To convert a value to a type that can include all values

belong to the original type

– E.g., int->float, float->double

28

Narrowing Conversion vs. Widening

Conversion

• Narrowing conversion are not always safe

– The magnitude of the converted value can be changed

– E.g., float->int with 1.3E25, the converted value is distantly

related to the original one

• Widening conversion is always safe

– However, some precision may be lost

– E.g., int->float, integers have at least 9 decimal digits of

precision, while floats have 7 decimal digits of precision

(reduced accuracy)

29

Implicit Type Conversion

• One of the design decisions concerning arithmetic
expressions is whether an operator can have operands of
different types.

• Languages that allow such expressions, which are called
mixed-mode expressions, must define conventions for
implicit operand type conversions because computers do
not have binary operations that take operands of
different types.

• A coercion is an implicit type conversion that is initiated
by the compiler

30

Implicit Type Conversion

• Implicit type conversion can be achieved by narrowing

or widening one or more operators

• It is better to widen when possible

– E.g., x = 3, z = 5.9, what is y’s value if x is widened? How about

z narrowed?

31

var x, y: integer;
z: real;
...

y := x * z; /* x is automatically converted to “real” */

Key Points of Implicit Coercions

• They decrease the type error detection ability of

compilers

– Did you really mean to use “mixed-mode expressions” ?

• In most languages, all numeric types are coerced in

expressions, using widening conversions

32

Explicit Type Conversion

• Also called “casts”

• Ada example

FLOAT(INDEX)-- INDEX is an INTEGER

• C example:

(int) speed /* speed is a float */

33

Short-Circuit Evaluation

• A short-circuit evaluation of an expression is one in

which the result is determined without evaluating all of

the operands and/or operators

– Consider (a < b) && (b < c):

o If a >= b, there is no point evaluating b < c because (a < b) &&

(b < c) is automatically false

• (x && y) if x then y else false

• (x || y) if x then true else y

34

Short-Circuit Evaluation

• Short-circuit evaluation may lead to unexpected side

effects and cause error

– E.g., (a > b) || ((b++) / 3)

• C, C++, and Java:

– Use short-circuit evaluation for Boolean operations (&& and

||)

– Also provide bitwise operators that are not short circuit

(& and |)

35

Short-Circuit Evaluation

• Ada: programmers can specify either

Non-SC eval SC eval

(x or y) (x or else y)

(x and y) (x and then y)

36

Control Structures

• Sequencing

• Selection

• Iteration

– Iterators

• Recursion

• Concurrency & non-determinism

– Guarded commands

37

Structured and Unstructured Flow

• Assembly language: conditional and unconditional branches.

• Early Fortran: relied heavily on goto statements (and labels):
IF (A .LT. B) GOTO 10 ! “.LT.” means “<“
…

10

• Late 1960s: Abandoning of GOTO statements started.

• Move to structured programming in 1970s:
– Top-down design (progressive refinement).

– Modularization of code.

– Descriptive variable.

• Within a subroutine, a well-designed imperative algorithm can
be expressed with only sequencing, selection, and iteration.

• Most of the structured control-flow constructs were
introduced by Algol 60.

38

Structured Alternatives to goto

• With the structured constructs available, there was a small
number of special cases where goto was replaced by special
constructs: return, break, continue.

• Multilevel returns: branching outside the current subroutine.
– Unwinding: the repair operation that restores the run-time stack of

subroutine information, including the restoration of register contents.

• Errors and other exceptions within nested subroutines:
– Auxiliary Boolean variable.

– Nonlocal GOTOs.

– Multilevel returns.

– Exception handling.

39

Sequencing

• The principal means of controlling the order in which
side effects occur.

• Compound statement: a delimited list of statements.

• Block: a compound statement optionally preceded by a
set of declarations.

• The value of a list of statements:

– The value of its final element (Algol 68).

– Programmers choice (Common Lisp – not purely functional).

• Can have side effects; very imperative, von Neumann.

• There are situations where side effects in functions are
desirable: random number generators.

40

Selection

• Selection statement: mostly some variant of if…then…else.

• Languages differ in the details of the syntax.

• Short-circuited conditions:
– The Boolean expression is not used to compute a value but to cause

control to branch to various locations.

– Provides a way to generate efficient (jump) code.

– Parse tree: inherited attributes of the root inform it of the address to
which control should branch:
if ((A > B) and (C > D)) or (E ≠ F) then r1 := A r2 := B

then_clause if r1 <= r2 goto L4
else r1 := C r2 := D

else_clause if r1 > r2 goto L1
L4: r1 := E r2 := F

if r1 = r2 goto L2
L1: then_clause

goto L3
L2: else_clause
L3:

41

Case/Switch Statements

• Alternative syntax for a special case of nested if..then..else.
CASE … (* expression *)

1: clause_A
| 2, 7: clause_B
| 3..5: clause_C
| 10: clause_D

ELSE clause_E
END

• Multiple selectors
• Code fragments (clauses): the arms of the CASE statement.

• The list of constants are CASE statement labels:
– The constants must be disjoint.

– The constants must of a type compatible with the tested expression.

• The principal motivation is to facilitate the generation of efficient
target code: meant to compute the address in which to jump in a
single instruction.
– A jump table: a table of addresses.

42

Case/Switch Statements

43

switch (index) {

case 1:

case 3: odd += 1;

sumodd += index;

break;

case 2:

case 4: even += 1;

sumeven += index;

break;

default: printf("Error in

switch, index = %d\n", index);

}

Iteration

• Iteration: a mechanism that allows a computer to
perform similar operations repeatedly.

• Favored in imperative languages.

• Mostly some form of loops executed for their side
effects:
• Enumeration-controlled loops: executed once of every value in a

given finite set.

• Logically controlled loops: executed until some Boolean
condition changes value.

• Combination loops: combines the properties of enumeration-
controlled and logically controlled loops (Algol 60).

• Iterators: executed over the elements of a well-defined set
(often called containers or collections in object-oriented code).

44

Design Issues

• What are the type and scope of the loop variable?

• Should it be legal for the loop variable or loop parameters to be

changed in the loop, and if so, does the change affect loop control?

• Should the loop parameters be evaluated only once, or once for

every iteration?

45

Enumeration-Controlled Loops

• Originated with the DO loop in Fortran I.

• Adopted in almost every language but with varying syntax and
semantics.

• Many modern languages allow iteration over much more
general finite sets.

• Semantic complications:
1. Can control enter or leave the loop in any way other than through the

enumeration mechanism?

2. What happens if the loop body modifies variables that were used to
compute the end-of-loop bound?

3. What happens if the loop body modifies the index variable itself?

4. Can the program read the index variable after the loop has completed,
and if so, what will its value be?

• Solution: the loop header contains a declaration of the index.

46

Combination Loops

• Algol 60: can specify an arbitrary number of “enumerators” –
a single value, a range of values, or an expression.

• Common Lisp: four separate sets of clauses – initialize index
variables, test for loop termination, evaluate body expressions,
and cleanup at loop termination.

• C: semantically, for loop is logically controlled but makes
enumeration easy - it is the programmer’s responsibility to
test the terminating condition.
– The index and any variables in the terminating condition can be

modified within the loop.

– All the code affecting the flow of control is localized within the header.

– The index can be made local by declaring it within the loop thus it is
not visible outside the loop.

47

Iteration Based on Data Structures

• A data-based iteration statement uses a user-defined

data structure and a user-defined function to go

through the structure’s elements

– The function is called an iterator

– The iterator is invoked at the beginning of each iteration

– Each time it is invoked, an element from the data structure

is returned

– Elements are returned in a particular order

48

Iterators

• True iterators: a container abstraction provides an iterator
that enumerates its items (Clu, Python, Ruby, C#).
– An iterator is a separate thread of control, with its own program

counter, whose execution is interleaved with that of the loop.
for i in range(first, last, step):

• Iterator objects: iteration involves both a special from of a for
loop and a mechanisms to enumerate the values for the loop:
– Java: an object that supports Iterable interface – includes an
iterator() method that returns an Iterator object.
for (iterator<Integer> it = myTree.iterator(); it.hasNext();) {

Integer i = it.next();

System.out.println(i);

}

– C++: overloading operators so that iterating over the elements is like
using pointer arithmetic.

49

A Java

Implementation

for Iterator

50

Logically Controlled Loops

• The only issue: where within the body of the loop the termination

condition is tested.

• Before each iteration: the familiar while loop syntax – using an

explicit concluding keyword or bracket the body with delimiters.

• Post-test loops: test the terminating condition at the bottom of a
loop – the body is always executed at least once. (do while)

• Midtest loops: often accomplished with a special statement nested
inside a conditional – break (C), exit (Ada), or last (Perl).

51

Recursion

• Recursion requires no special syntax: why?

• Recursion and iteration are equally powerful.

• Most languages provide both iteration (more “imperative”)

and recursion (more “functional”).

• Tail-recursive function: additional computation never

follows a recursive call. The compiler can reuse the space,

i.e., no need for dynamic allocation of stack space.
int gcd(int a, int b) {

if (a == b) return a;

else if (a > b) return gcd(a - b,b);

else return gcd(a, b – a);

}

52

Guarded Commands

• New and quite different forms of selection and loop

structures were suggested by Dijkstra (1975)

• We cover guarded commands because they are the

basis for two linguistic mechanisms developed later

for concurrent programming in two languages: CSP

and Ada

53

Motivations of Guarded Commands

• To support a program design methodology that

ensures correctness during development rather than

relying on verification or testing of completed

programs afterwards

• Also useful for concurrency

• Increased clarity in reasoning

54

Guarded Commands

• Two guarded forms

– Selection (guarded if)

– Iteration (guarded do)

55

Guarded Selection

• Sementics

– When this construct is reached

o Evaluate all boolean expressions

o If more than one is true, choose one nondeterministically

o If none is true, it is a runtime error

• Idea: Forces one to consider all possibilities

56

if <boolean> -> <statement>

[] <boolean> -> <statement>

...

[] <boolean> -> <statement>

fi

An Example

• If i = 0 and j > i, the construct chooses

nondeterministically between the first and the third

assignment statements

• If i == j and i ≠ 0, none of the conditions is true and a

runtime error occurs

57

if i = 0 -> sum := sum + i

[] i > j -> sum := sum + j

[] j > i -> sum := sum + i

fi

Guarded Selection

• The construction can be an elegant way to state that

the order of execution, in some cases, is irrelevant

– E.g., if x == y, it does not matter which we assign to max

– This is a form of abstraction provided by the

nondeterministic semantics

58

if x >= y -> max := x

[] y >= x -> max := y

fi

Guarded Selection

59

if (x >= y)

max = x;

else

max = y;

This could also be coded as follows:
if (x > y)

max = x;

else

max = y;

Now, consider this same process coded in a traditional programming language
selector:

Guarded Iteration

• Semantics:

– For each iteration

o Evaluate all boolean expressions

o If more than one is true, choose one nondeterministically, and then

start loop again

o If none is true, exit the loop

• Idea: if the order of evaluation is not important, the

program should not specify one

60

do <boolean> -> <statement>

[] <boolean> -> <statement>

...

[] <boolean> -> <statement>

od

An Example

• Given four integer variables: q1, q2, q3, and q4,

rearrange the values so that

q1 ≤ q2 ≤ q3 ≤ q4

• Without guarded iteration, one solution is to put the

values into an array, sort the array, and then assigns

the value back to the four variables

61

do q1 > q2 -> temp := q1; q1 := q2; q2 := temp;

[] q2 > q3 -> temp := q2; q2 := q3; q3 := temp;

[] q3 > q4 -> temp := q3; q3 := q4; q4 := temp;

od

An Example

• While the solution with guarded iteration is not

difficult, it requires a good deal of code

• There is considerably increased complexity in the

implementation of the guarded commands over their

conventional deterministic counterparts

62

