
Lexical and Syntax Analysis
In Text: Chapter 4

N. Meng, F. Poursardar

Lexical and Syntactic Analysis

• Two steps to discover the syntactic structure of a

program

– Lexical analysis (Scanner): to read the input characters and

output a sequence of tokens

– Syntactic analysis (Parser): to read the tokens and output a

parse tree and report syntax errors if any

2

3

Compilation
Process

Interaction between lexical analysis and

syntactic analysis

4

Reasons to Separate Lexical and Syntax

Analysis

• Simplicity - less complex approaches can be used for

lexical analysis; separating them simplifies the parser

• Efficiency - separation allows optimization of the

lexical analyzer

• Portability - parts of the lexical analyzer may not be

portable, but the parser is always portable

5

Scanner

• Pattern matcher for character strings

– If a character sequence matches a pattern, it is identified as

a token

• Responsibilities

– Tokenize source, report lexical errors if any, remove

comments and whitespace, save text of interesting tokens,

save source locations, (optional) expand macros and

implement preprocessor functions

6

Tokenizing Source

• Given a program, identify all lexemes and their

categories (tokens)

7

Lexeme, Token, & Pattern

• Lexeme

– A sequence of characters in the source program with the

lowest level of syntactic meanings

o E.g., sum, +, -

• Token

– A category of lexemes

– A lexeme is an instance of token

– The basic building blocks of programs

8

Token Examples

9

Token Informal Description Sample
Lexemes

keyword All keywords defined in the language if else

comparison <, >, <=, >=, ==, != <=, !=

id Letter followed by letters and digits pi, score, D2

number Any numeric constant 3.14159, 0, 6

literal Anything surrounded by “’s, but
exclude “

“core dumped”

Another Token Example

Consider the following example of an assignment

statement:

result = oldsum – value / 100;

• Following are the tokens and lexemes of this

statement:

10

Lexeme, Token, & Pattern

• Pattern

– A description of the form that the lexemes of a token may

take

– Specified with regular expressions

11

Motivating Example

• Token set:

– assign -> :=

– plus -> +

– minus -> -

– times -> *

– div -> /

– lparen -> (

– rparen ->)

– id -> letter(letter|digit)*

– number -> digit digit*|digit*(.digit|digit.)digit*

12

Motivating Example

• What are the lexemes in the string “a_var:=b*3” ?

• What are the corresponding tokens ?

• How do you identify the tokens?

13

Lexical Analysis

• Three approaches to build a lexical analyzer:

– Write a formal description of the tokens and use a software

tool that constructs a table-driven lexical analyzer from such a

description

– Design a state diagram that describes the tokens and write a

program that implements the state diagram

– Design a state diagram that describes the tokens and hand-

construct a table-driven implementation of the state diagram

14

State Diagram

• A state transition diagram, or just state diagram,

is a directed graph.

• The nodes of a state diagram are labeled with state

names.

• The arcs are labeled with the input characters that

cause the transitions among the states.

• An arc may also include actions the lexical analyzer

must perform when the transition is taken.

15

State Diagram

• State diagrams of the form used for lexical analyzers
are representations of a class of mathematical
machines called finite automata.

• Finite automata can be designed to recognize
members of a class of languages called regular
languages.

• Regular grammars are generative devices for regular
languages.

• The tokens of a programming language are a regular
language, and a lexical analyzer is a finite automaton.

16

State Diagram Design

• A naïve state diagram would have a transition from

every state on every character in the source

language - such a diagram would be very large!

• Reason? Because every node in the state diagram

would need a transition for every character in the

character set of the language being analyzed.

• Solution: Consider ways to simplify

17

State Diagram Design - Example

• Design a lexical analyzer that recognizes only arithmetic
expressions, including variable names and integer literals
as operands.

• Assume that the variable names consist of strings of
uppercase letters, lowercase letters, and digits but must
begin with a letter.

• Names have no length limitation.

• How many transitions for initial state?

• How can we simplify it?

18

Example (continued)

• There are 52 different characters (any uppercase or
lowercase letter) that can begin a name, which would
require 52 transitions from the transition diagram’s
initial state.

• However, a lexical analyzer is interested only in
determining that it is a name and is not concerned
with which specific name it happens to be.

• Therefore, we define a character class named
LETTER for all 52 letters and use a single transition
on the first letter of any name.

19

Example (continued)

• Another opportunity for simplifying the transition

diagram is with the

• integer literal tokens.

• There are 10 different characters that could begin an

integer literal lexeme. This would require 10

transitions from the start state of the state diagram.

• define a character class named DIGIT for digits and

use a single transition on any character in this

character class to a state that collects integer literals

20

Lexical Analysis (continued)

• In many cases, transitions can be combined to

simplify the state diagram

– When recognizing an identifier, all uppercase and

lowercase letters are equivalent

o Use a character class that includes all letters

– When recognizing an integer literal, all digits are equivalent

- use a digit class

21

Lexical Analysis (continued)

• Reserved words and identifiers can be recognized

together (rather than having a part of the diagram

for each reserved word)

– Use a table lookup to determine whether a possible

identifier is in fact a reserved word

22

State Diagram

23

Lexical Analysis (continued)

• Convenient utility subprograms:

– getChar - gets the next character of input, puts it in

nextChar, determines its class and puts the class in

charClass

– addChar - puts the character from nextChar into the

place the lexeme is being accumulated

– lookup - determines whether the string in lexeme is a

reserved word (returns a code)

24

25

/* Function declarations */

void addChar();

void getChar();

void getNonBlank();

int lex();

/* Character classes */

#define LETTER 0

#define DIGIT 1

#define UNKNOWN 99

/* Token codes */

#define INT_LIT 10

#define IDENT 11

#define ASSIGN_OP 20

#define ADD_OP 21

#define SUB_OP 22

#define MULT_OP 23

#define DIV_OP 24

#define LEFT_PAREN 25

#define RIGHT_PAREN 26

Implementation Pseudo-code

static TOKEN nextToken;

static CHAR_CLASS charClass;

int lex() {

switch (charClass) {

case LETTER:

// add nextChar to lexeme

addChar();

// get the next character and determine its class

getChar();

while (charClass == LETTER || charClass == DIGIT)

{

addChar();

getChar();

}

nextToken = ID;

break;

26

case DIGIT:

addChar();

getChar();

while (charClass == DIGIT) {

addChar();

getChar();

}

nextToken = INT_LIT;

break;

…

case EOF:

nextToken = EOF;

lexeme[0] = ‘E’;

lexeme[1] = ‘O’;

lexeme[2] = ‘F’;

lexeme[3] = 0;

}

printf (“Next token is: %d, Next lexeme is %s\n”,

nextToken, lexeme);

return nextToken;

} /* End of function lex */

27

Lexical Analyzer

Implementation:
→ front.c (pp. 166-170)

- Following is the output of the lexical analyzer
of front.c when used on (sum + 47) /
total

Next token is: 25 Next lexeme is (

Next token is: 11 Next lexeme is sum

Next token is: 21 Next lexeme is +

Next token is: 10 Next lexeme is 47

Next token is: 26 Next lexeme is)

Next token is: 24 Next lexeme is /

Next token is: 11 Next lexeme is total

Next token is: -1 Next lexeme is EOF

28

The Parsing Problem

• Given an input program, the goals of the parser:

– Find all syntax errors; for each, produce an appropriate

diagnostic message and recover quickly

– Produce the parse tree, or at least a trace of the parse

tree, for the program

29

The Parsing Problem (continued)

• The Complexity of Parsing

– Parsers that work for any unambiguous grammar are

complex and inefficient (O(n3), where n is the length of

the input)

– Compilers use parsers that only work for a subset of all

unambiguous grammars, but do it in linear time (O(n),

where n is the length of the input)

30

Two Classes of Grammars

• Left-to-right, Leftmost derivation (LL)

• Left-to-right, Rightmost derivation (LR)

• We can build parsers for these grammars that run in

linear time

31

Grammar Comparison

32

LL LR

E -> T E’
E’ -> + T E’ | ε
T -> F T’
T’ -> * F T’ | ε
F -> id

E -> E + T | T
T -> T * F | F
F -> id

Two Categories of Parsers

• LL(1) Parsers

– L: scanning the input from left to right

– L: producing a leftmost derivation

– 1: using one input symbol of lookahead at each step to make

parsing action decisions

• LR(1) Parsers

– L: scanning the input from left to right

– R: producing a rightmost derivation in reverse

– 1: the same as above

33

Two Categories of Parsers

• LL(1) parsers (predicative parsers)

– Top down

o Build the parse tree from the root

o Find a left most derivation for an input string

• LR(1) parsers (shift-reduce parsers)

– Bottom up

o Build the parse tree from leaves

o Reducing a string to the start symbol of a grammar

34

Top-down Parsers

• Given a sentential form, xAα, the parser must choose

the correct A-rule to get the next sentential form in

the leftmost derivation, using only the first token

produced by A

• The most common top-down parsing algorithms:

– Recursive descent - a coded implementation

– LL parsers - table driven implementation

35

Bottom-up parsers

• Given a right sentential form, α, determine what

substring of α is the right-hand side of the rule in the

grammar that must be reduced to produce the

previous sentential form in the right derivation

• The most common bottom-up parsing algorithms are

in the LR family

36

Recursive Descent Parsing

• Parsing is the process of tracing or constructing a parse tree for
a given input string

• Parsers usually do not analyze lexemes; that is done by a lexical
analyzer, which is called by the parser

• A recursive descent parser traces out a parse tree in top-down
order; it is a top-down parser

• Each nonterminal has an associated subprogram; the
subprogram parses all sentential forms that the nonterminal can
generate

• The recursive descent parsing subprograms are built directly
from the grammar rules

• Recursive descent parsers, like other top-down parsers, cannot be
built from left-recursive grammars

37

Recursive Descent Example

• Example: For the grammar:

<term> -> <factor> {(* | /) <factor>}

• Simple recursive descent parsing subprogram:

void term() {

factor(); /* parse the first factor*/

while (next_token == ast_code ||

next_token == slash_code) {

lexical(); /* get next token */

factor(); /* parse the next factor */

}

}

38

39

