Lexical and Syntax Analysis

In Text: Chapter 4

Lexical and Syntactic Analysis

Two steps to discover the syntactic structure of a
program
Lexical analysis (Scanner): to read the input characters and
output a sequence of tokens

Syntactic analysis (Parser): to read the tokens and output a
parse tree and report syntax errors if any

VIRGINIA TECH

Compilation
Process

p—
(=)

l

Lexical
analyzer

Lexical units

r

Symbal
table

Syntax
analyzer

Parse trees

T

Intermediate
code generator

and semantic
analyzer

-

Optimization
{opticnal)

code
‘r

w

Code
generator

Machine

Computer

l

Results

VIRGINIA TECH

Intermediate

language _~— Input data
g E!/

Interaction between lexical analysis and
syntactic analysis

SOUTCE token
Program Lexical Syntex
Analysis — Analysis % Parse Lree
get mext -
taken froen

lexical analyzer

VIRGINIA TECH. 4

Reasons to Separate Lexical and Syntax
Analysis

Simplicity - less complex approaches can be used for
lexical analysis; separating them simplifies the parser

Efficiency - separation allows optimization of the
lexical analyzer

Portability - parts of the lexical analyzer may not be
portable, but the parser is always portable

VIRGINIA TECH

Scanner

Pattern matcher for character strings

If a character sequence matches a pattern, it is identified as
a token
Responsibilities

Tokenize source, report lexical errors if any, remove
comments and whitespace, save text of interesting tokens,
save source locations, (optional) expand macros and
implement preprocessor functions

Tokenizing Source

Given a program, identify all lexemes and their
categories (tokens)

VIRGINIA TECH

Lexeme, Token, & Pattern

Lexeme

A sequence of characters in the source program with the
lowest level of syntactic meanings

E.g., sum, +, -

Token

A category of lexemes
A lexeme is an instance of token

The basic building blocks of programs

VIRGINIA TECH

Token Examples

Token Informal Description Sample
Lexemes
keyword | All keywords defined in the language if else
compar'i50n <,> <=, >, ==, I= <=, I=
id Letter followed by letters and digits | pi, score, D2
number Any numeric constant 3.14159,0, 6
literal Anything surrounded by "'s, but “core dumped"
exclude *

VIRGINIA TECH. 9

Another Token Example

Consider the following example of an assignment

statement:

result = oldsum - value / 100;

* Following are the tokens and lexemes of this

statement: Token

IDENT
ASSIGN OP
IDENT
SUB_OP
IDENT
DIV OF
INT LIT
SEMICOLON

VIRGINIA TECH

Lexeme
result

oldsum

value

!
¢

100

i

10

Lexeme, Token, & Pattern

Pattern

A description of the form that the lexemes of a token may
take

Specified with regular expressions

VIRGINIA TECH 11

Motivating Example

Token set:
assign -> :=
plus -> +
minus -> -
times -> *
div -> /
lparen -> (
rparen ->)
id -> letter(letter|digit)*
number -> digit digit™|digit*(.digit|digit.)digit*

VIRGINIA TECH

12

Motivating Example

What are the lexemes in the string “a_var:=b*3” ?
What are the corresponding tokens !

How do you identify the tokens?

VIRGINIA TECH

13

Lexical Analysis

Three approaches to build a lexical analyzer:

Write a formal description of the tokens and use a software

tool that constructs a table-driven lexical analyzer from such a
description

Design a state diagram that describes the tokens and write a
program that implements the state diagram

Design a state diagram that describes the tokens and hand-
construct a table-driven implementation of the state diagram

State Diagram

A state transition diagram, or just state diagram,
is a directed graph.

The nodes of a state diagram are labeled with state
names.

The arcs are labeled with the input characters that
cause the transitions among the states.

An arc may also include actions the lexical analyzer
must perform when the transition is taken.

State Diagram

State diagrams of the form used for lexical analyzers
are representations of a class of mathematical
machines called finite automata.

Finite automata can be designed to recognize
members of a class of languages called regular
languages.

Regular grammars are generative devices for regular
languages.

The tokens of a programming language are a regular
language, and a lexical analyzer is a finite automaton.

State Diagram Design

A naive state diagram would have a transition from
every state on every character in the source
language - such a diagram would be very large!

Reason? Because every node in the state diagram
would need a transition for every character in the
character set of the language being analyzed.

Solution: Consider ways to simplify

State Diagram Design - Example

Design a lexical analyzer that recognizes only arithmetic
expressions, including variable names and integer literals
as operands.

Assume that the variable names consist of strings of
uppercase letters, lowercase letters, and digits but must
begin with a letter.

Names have no length limitation.

How many transitions for initial state!?
How can we simplify it?

Example (continued)

There are 52 different characters (any uppercase or
lowercase letter) that can begin a name, which would
require 52 transitions from the transition diagram’s
initial state.

However, a lexical analyzer is interested only in
determining that it is a name and is not concerned
with which specific name it happens to be.

Therefore, we define a character class named
LETTER for all 52 letters and use a single transition
on the first letter of any name.

Example (continued)

Another opportunity for simplifying the transition
diagram is with the

integer literal tokens.

There are 10 different characters that could begin an
integer literal lexeme. This would require 10
transitions from the start state of the state diagram.

define a character class named DIGIT for digits and
use a single transition on any character in this
character class to a state that collects integer literals

Lexical Analysis (continued)

In many cases, transitions can be combined to
simplify the state diagram
When recognizing an identifier, all uppercase and
lowercase letters are equivalent

Use a character class that includes all letters

When recognizing an integer literal, all digits are equivalent
- use a digit class

VIRGINIA TECH 21

Lexical Analysis (continued)

Reserved words and identifiers can be recognized
together (rather than having a part of the diagram
for each reserved word)

Use a table lookup to determine whether a possible
identifier is in fact a reserved word

VIRGINIA TECH 22

State Diagram

Letter/Digit

addChar; getChar

» return lookup (1exeme)

Letter
<§E§E> addChar; getChar

Digit N
> @ > return Int Lit

addChar; getChar

addChar; getChar

VIRGINIA TECH

23

Lexical Analysis (continued)

Convenient utility subprograms:

getChar - gets the next character of input, puts it in

nextChar, determines its class and puts the class in
charClass

addChar - puts the character from nextChar into the
place the lexeme is being accumulated

lookup - determines whether the string in lexeme is a
reserved word (returns a code)

VIRGINIA TECH

/* Function declarations */
void addChar () ;

void getChar () ;

void getNonBlank() ;

int lex();

/* Character classes */
#define LETTER O
#define DIGIT 1

#define UNKNOWN 99

/* Token codes */
#define INT LIT 10
#define IDENT 11
#define ASSIGN OP 20
#define ADD OP 21
#define SUB OP 22
#define MULT OP 23
#define DIV_OP 24
#define LEFT_ PAREN 25
#define RIGHT PAREN 26

Implementation Pseudo-code

static TOKEN nextToken;
static CHAR CLASS charClass;

int lex() {
switch (charClass) {
case LETTER:
// add nextChar to lexeme
addChar () ;
// get the next character and determine its class
getChar () ;
while (charClass == LETTER || charClass == DIGIT)
{
addChar () ;
getChar () ;
}

nextToken

I
H
O

VIRGINIA TECH 26

case DIGIT:
addChar () ;
getChar () ;
while (charClass == DIGIT) {
addChar () ;
getChar () ;

}
nextToken = INT LIT;

break;

case EOF:
nextToken = EOF;
lexeme[0] = ‘E’;
lexeme[l] = ‘0O’ ;
lexeme[2] = ‘F’;
lexeme[3] = 0;

}

printf (“Next token is: %d, Next lexeme is %s\n”,
nextToken, lexeme) ;

return nextToken;
} /* End of function lex */

Lexical Analyzer

Implementation:
- front.c (pp. 166-170)

- Following is the output of the lexical analyzer
of front.c when used on (sum + 47) /
total

Next token is: 25 Next lexeme is (
Next token is: 11 Next lexeme 1is sum
Next token is: 21 Next lexeme is +
Next token 1s: 10 Next lexeme is 47
Next token 1s: 26 Next lexeme 1is)
Next token is: 24 Next lexeme is /
Next token 1s: 11 Next lexeme 1s total
Next token is: -1 Next lexeme 1is EOF

VIRGINIA TECH 28

The Parsing Problem

Given an input program, the goals of the parser:
Find all syntax errors; for each, produce an appropriate
diagnostic message and recover quickly
Produce the parse tree, or at least a trace of the parse
tree, for the program

VIRGINIA TECH 29

The Parsing Problem (continued)

The Complexity of Parsing
Parsers that work for any unambiguous grammar are
complex and inefficient (O(n3), where n is the length of
the input)
Compilers use parsers that only work for a subset of all
unambiguous grammars, but do it in linear time (O(n),
where n is the length of the input)

VIRGINIA TECH

30

Two Classes of Grammars

Left-to-right, Leftmost derivation (LL)
Left-to-right, Rightmost derivation (LR)

We can build parsers for these grammars that run in
linear time

VIRGINIA TECH

31

Grammar Comparison

LL

LR

M4 4mm

>TE
>+ TE | ¢
>FT
S>*FT | e
-> id

E >E+T|T
T->T*F|F
F ->id

VIRGINIA TECH

32

Two Categories of Parsers

LL(l) Parsers
L: scanning the input from left to right

L: producing a leftmost derivation

|: using one input symbol of lookahead at each step to make
parsing action decisions

LR(I) Parsers
L: scanning the input from left to right

R: producing a rightmost derivation in reverse

|: the same as above

VIRGINIA TECH 33

Two Categories of Parsers

LL(1) parsers (predicative parsers)

Top down
Build the parse tree from the root

Find a left most derivation for an input string

LR(1) parsers (shift-reduce parsers)
Bottom up

Build the parse tree from leaves

Reducing a string to the start symbol of a grammar

VIRGINIA TECH

34

Top-down Parsers

Given a sentential form, xAaq, the parser must choose
the correct A-rule to get the next sentential form in
the leftmost derivation, using only the first token
produced by A

The most common top-down parsing algorithms:
Recursive descent - a coded implementation

LL parsers - table driven implementation

Bottom-up parsers

Given a right sentential form, a, determine what
substring of a is the right-hand side of the rule in the
grammar that must be reduced to produce the
previous sentential form in the right derivation

The most common bottom-up parsing algorithms are
in the LR family

Recursive Descent Parsing

Parsing is the process of tracing or constructing a parse tree for
a given input string

Parsers usually do not analyze lexemes; that is done by a lexical
analyzer, which is called by the parser

A recursive descent parser traces out a parse tree in top-down
order; it is a top-down parser

Each nonterminal has an associated subprogram; the
subprogram parses all sentential forms that the nonterminal can
generate

The recursive descent parsing subprograms are built directly
from the grammar rules

Recursive descent parsers, like other top-down parsers, cannot be
built from left-recursive grammars

VIRGINIA TECH 37

Recursive Descent Example

Example: For the grammar:
<term> -> <factor> {(* | /) <factor>}
Simple recursive descent parsing subprogram:
void term() {
factor(); /* parse the first factor*/
while (next_token == ast_code ||
next_token == slash_code) {
lexical(); /* get next token */
factor(); /* parse the next factor

VIRGINIA TECH

h"
" /

38

id_list id(A)

id_list id(a)

T id(a) , id(B)
1d(8) id_list_tail
id(a) , 1d(B) ,

/'d/—{Ei\ id(4) , 1d(B) , 1d(C)
I id(8) id_list_tail id(8) , id(B) , 1d(Q) ;

AT

sa(B) i list tail id(a) , id(B) , id(C) id_list_tail

id_list id(4) , id(B) id_list_tail

1d(A) id_list_tail //]\
.//I\ . 1dcy ed_list_tail

, id(B) id_list_tail

/H id(a) id_kst_tail

, id(cy ad_list_tail

)

id_list . 1d(B) id_list_tail

id(a) id_list_tail , 1d(ey id_list_tadl

, id(B) id_list_fail ;
/H id_list

» 1d(C) id_!j]rt_taif id(a) id_list_tail

. id(B)} id_list_tail

/R

id_list — id id_list_tail . id(cy id_list tail

id_list_tail — , id id_list_tail

id_list_tail — ;

Top-down (left) and bottom-up parsing (right) of the input stng &, B, C:.
Grammar appears at lower left.

VIRGINIA TECH.

