The Evolution of Programming
Languages

1957 Fortranl —> FLOW-MATIC
° 58 Fortran |l —— ALGOL 58
59 L
Programming :
61
62 Fortran IV —> CPL

63 SIMULA | =\
64

Language : . e

7 SIMULA 67
68 ALGOL 68

Genealogy : | - Wi

77 MODULA-2 ’
78 Fortran 77— “ "k

80 alltalk 8

<

(=)

Y 4 ICON
a3 «Ada 83 Y Miranda

D
C++\ COMMBN LISP

86 Perl
MODULA- Oberon QuickBASIC Haskell

89 “RANSI C (C89)
90 Fortran 90—> Eiffel Visual BASIC ¢

Python
92 yt
93
94 elua PHP

95 Fortran 95_5. ¢ Ada 95 Ruby

>

97 Javascript

Python 2.0

Y
01 Visual Bpsic.NET ©

03 Fortran 2003
04 Ruby 1.8

4

3

Ada 2005
o Ci# 2.0 Python 3.0
C#3.0

08 Fortran 2008
Ruby 1.9 C#4.0

C#5.0

14 Java 8.0

Zuse's Plankalkdil

Designed in 1945, but not published
until 1972

Invented by a German scientist
Never implemented

Advanced data structures
— floating point, arrays, records

Invariants

Plankalkil Syntax

* An assignment statement to assign the
expression A[4]+1 to A[D]

A+1=>A
V 4 5 (subscripts)
S | 1l.n 1.n (data types)

Minimal Hardware Programming:
Pseudocodes

 Pseudocodes were developed and used in
the late 1940s and early 1950s

« What was wrong with using machine
code?

— Poor readability
— Poor modifiability
— Expression coding was tedious

— Machine deficiencies--no indexing or
floating point

1101010101010000101010110101001010101010101101010101
1010010100001010101010111001011001010010101011010100

MGC h ' ne COde 0001101010100101001101000101010101101011010101010101
0011010101101010100100101010101010101010101011010101
1010101011010110101001010101101010110101010101011010
1010101010110101010101101110101010101011010101010101
1010101101010101010101101010101010101101010101010110
1101010101010000101010110101001010101010101101010101

1010010100001010101010111001011001010010101011010100
0001101010100101001101000101010101101011010101010101

* Any binary instruction which the
computer's CPU will read and execute

—e.g., 10001000 01010111 11000101 11110001
10100001 00010101

 Each instruction performs a very
specific task, such as loading a value
into a register, or adding two binary
numbers together

Short Code: The First Pseudocode

* Short Code developed by Mauchly in
1949 for BINAC computers

— Expressions were coded, left to right
— Example of operations:

01 - 06 abs wvalue In (n+2)nd power
02) 07 + 2n (n+2)nd root
03 = 08 pause 4n 1if <= n

04 / 09 (58 print and tab

Variables were named with byte-pair
codes

—E.g., XO = SQRT(ABS(YO))

— 00 X003 2006 YO

— 00 was used as padding to fill the word

Short Code

Implementation: pure interpretation
(called atomic programming)

High execution time

50 times slower than machine code
Simple for programming

IBM 704 and Fortran

* Fortran O: 1954 - not implemented

 Fortran I:. 1957

— Designed for the new IBM 704, which had
index registers and floating point hardware
* This led to the idea of compiled programming

languages, because there was no place to hide the
cost of interpretation (no floating-point software)

— Includes

* Formatted I/0, variable names of up to six
characters, user-defined subroutines, three-way
selection statement (arithmetic IF), do-loop

IBM 704 and Fortran

— Environment of development
« Computers were small and unreliable
« Applications were scientific
* No programming methodology or tools

* Machine efficiency was the most important
concern

— Limitations
* No separate compilation
— Subroutines could not be separately compiled

 No data typing statements

— Variables whose names began with I, J, K, L, M, and N
were implicitly integer type, and all others were
implicitly floating-point.

* Programs larger than 400 lines rarely compiled
correctly, mainly due to poor reliability of 704

Fortran

* Fortran II: 1958

— Independent compilation
— Fixed the bugs

* Fortran IV: 1960-62 (Fortran 66)

— Explicit type declarations
— Logical if-construct

— The capability of passing subprograms as
parameters

Fortran

 Fortran 77: 1978

— Character string handling

— Logical loop control statement
— IF-THEN-ELSE statement

* Fortran 90

— Modules, dynamic arrays, pointers,
recursion, CASE statement, parameter type
checking

Fortran

* Fortran 95

— relatively minor additions, plus some
deletions

* Fortran 2003

— support for OOP, procedure pointers,
interoperability with C

* Fortran 2008

— blocks for local scopes, co-arrays (for
parallel execution), Do Concurrent

Fortran Evaluation

» Highly optimizing compilers (all versions
before 90)

» Types and storage of all variables are
fixed before runtime

* Dramatically changed forever the way
computers are used (first used high-
level language)

The First Step Toward
Sophistication: ALGOL 60

 Environment of development

— FORTRAN had (barely) arrived for IBM 70x

— Many other languages were being developed, all
for specific machines

— No portable language; all were machine-
dependent

— No universal language for communicating
algorithms

» ALGOL 60 was the result of efforts to
design a universal language

Early Design Process

* ACM and GAMM met for four days for
design (May 27 to June 1, 1958)

* Goals of the language
— Close to mathematical notation
— Good for describing algorithms
— Must be translatable to machine code

ALGOL 58

Concept of type was formalized

Names could be any length

Arrays could have any number of subscripts
Parameters were separated by mode (in & out)
Subscripts were placed in brackets

Compound statements (begin ... end)
Semicolon as a statement separator
Assignment operator was :=

if had an else-if clause

No I/0 - "would make it machine dependent”

ALGOL 58 Implementation

* Not meant to be implemented, but
variations of it were (MAD, JOVIAL)

* Although IBM was initially enthusiastic,
all support was dropped by mid 1959

ALGOL 60 Overview

* Modified ALGOL 58 at 6-day meeting in
Paris

* New features
— Block structure (local scope)
— Two parameter passing methods
— Subprogram recursion
— Stack-dynamic arrays
— Still no I/0 and no string handling

ALGOL 60 Evaluation

e Successes

— It was the standard way to publish
algorithms for over 20 years

— All subsequent imperative languages are
based on it

— First machine-independent language

— First language whose syntax was formally
defined (BNF: Backus-Naur form)

ALGOL 60 Evaluation (continued)

* Failure
— Never widely used, especially in U.S.

 Reasons

— Lack of I/0 and the character set made
programs non-portable

— Too flexible--hard to implement
— Entrenchment of Fortran

— Formal syntax description

— Lack of support from IBM

ALGOL 68

* From the continued development of
ALGOL 60 but not a superset of that
language

* Source of several new ideas (even though
the language itself never achieved
widespread use)

» Design is based on the concept of

orthogonality

— A few basic concepts, plus a few combining
mechanisms

ALGOL 68 Evaluation

 Contributions
— User-defined data structures
— Reference types
— Dynamic arrays (called flex arrays)

« Comments

_ess usage than ALGOL 60

Had strong influence on subsequent
anguages, especially Pascal, €, and Ada

Pascal - 1971

Developed by Wirth (a former member of
the ALGOL 68 committee)

Designed for teaching structured
programming
Small, simple, nothing really new

Largest impact was on teaching
programming
— From mid-1970s until the late 1990s, it was

the most widely used language for teaching
programming

C-1972

Designed for system programming (at Bell
Labs by Dennis Richie)

Evolved primarily from BCLP and B, but
also ALGOL 68

Powerful set of operators, but poor type
checking

Initially spread through UNIX

Though designed as a system language, it
has been used in many application areas

History's Largest Design Effort: Ada

* Huge design effort, involving hundreds of
people, much money, and about eight years

» Sequence of requirements document for the
new language (1975-1978)

— (Strawman, Woodenman, Tinman, Ironman,
Steelman)

— Four finalist language design proposals were
chosen, all of which were based on Pascal

— The Cii Honeywell/Bull language design proposal
was selected

Ada Evaluation

* Named Ada after Augusta Ada Byron,
the first programmer

« Contributions
— Packages - support for data abstraction
— Exception handling
— Generic program units
— Concurrency - through the tasking model

Ada Evaluation

* Comments
— Competitive design

— Included all concepts that was then known
about software engineering and language
design

— First compilers were very difficult; the
first really usable compiler came nearly
five years after the language design was
completed

* Ada 95 (began in 1988)
— Support for OOP through type derivation
— Better control mechanisms for shared data
— New concurrency features
— More flexible libraries

 Ada 2005

— Interfaces and synchronizing interfaces

Ada

* Popularity suffered because the DoD no
longer requires its use but also because
of popularity of C++

Object-Oriented Programming: Smalltalk

 Developed at Xerox PARC, initially by
Alan Kay, later by Adele Goldberg

» First full implementation of an object-
oriented language (data abstraction,
inheritance, and dynamic binding)

* Pioneered the graphical user interface
design

* Promoted OOP

Combining Imperative and Object-
Oriented Programming: C++

 Developed at Bell Labs by Stroustrup in
1980

« Evolved from C and SIMULA 67

* Facilities for object-oriented
programming, taken partially from
SIMULA 67

* A large and complex language, in part
because it supports both procedural and
OO programming

C++

* Rapidly grew in popularity, along with
OOP

» ANST standard approved in November
1997

* Microsoft's version: MC++

— Properties, delegates, interfaces, no
multiple inheritance

A Related OOP Language

» Objective-C (desighed by Brad Cox -
early 1980s)
— C plus support for OOP based on Smalltalk
— Uses Smalltalk's method calling syntax
— Used by Apple for system programs

An Imperative-Based Object-
Oriented Language: Java

 Developed at Sun in the early 1990s

— C and C++ were not satisfactory for
embedded electronic devices

* Based on C++

— Significantly simplified (does not include
struct, union, enum, pointer arithmetic, and
half of the assignment coercions of C++)

— Supports only OOP
— Has references, but not pointers

— Includes support for applets and a form of
concurrency

Java Evaluation

* Eliminated many unsafe features of C++
* Supports concurrency

» Libraries for applets, GUIs, database
access

* Portable: Java Virtual Machine concept,
JIT compilers

» Widely used for Web programming

 Use increased faster than any previous
language

* Most recent version, 8, released in 2014

Scripting Languages for the Web

* Perl
— Designed by Larry Wall—first released in 1987
— Variables are statically typed but implicitly declared

— Three distinctive hamespaces, denoted by the first
character of a variable's name
« All scalar variable names begin with dollar signs ($),
« All array names begin with at signs (@), and
« all hash names (hashes are briefly described below) begin
with percent signs (%).
— Powerful, but somewhat dangerous

— %ﬁrt\)ed widespread use for CGI programming on the
e

— Also used for a replacement for UNIX system
administration language

Scripting Languages for the Web

» JavaScript

— Began at Netscape, but later became a
joint venture of Netscape and Sun
Microsystems

— A client-side HTML-embedded scripting
language

— Used to dynamically create and modify
HTML documents

— Purely interpreted
— Related to Java only through similar syntax

Scripting Languages for the Web

« PHP

— PHP: Hypertext Preprocessor, designed by
Rasmus Lerdorf

— A server-side HTML-embedded scripting
language, often used for form processing
and database access through the Web

— Purely interpreted

Scripting Languages for the Web

* Python
— An OO interpreted scripting language
— Type checked but dynamically typed

— Used for CGI programming and form
processing

— Supports lists, tuples, and hashes

Scripting Languages for the Web

* Lua
— 1990s, Brazil

— Supports procedural and functional
programming

— An OO interpreted scripting language
— Type checked but dynamically typed

— Used for CGI programming and form
processing

— Supports lists, tuples, and hashes, all with its
single data structure—the table

— Easily extendable

Scripting Languages for the Web

 Ruby
— Designed in Japan by Yukihiro Matsumoto
(a.k.a, "Matz")
— Began as a replacement for Perl and Python
— A pure object-oriented scripting language
* All data are objects

— Most operators are implemented as methods,
which can be redefined by user code

— Purely interpreted

The Flagship .NET Language: C#

* Part of the NET development platform
(2000)

* Based on C++ , Java, and Delphi

e Inc

udes pointers, delegates,

properties, enumeration types, a limited
kind of dynamic typing, and anonymous
Types

* Is evolving rapidly

Functional Programming: Lisp

LISt Processing language
— Designed at MIT by John McCarthy
AT research needed a language to

— Process data in lists (rather than arrays)

— Symbolic computation (rather than
humeric)

Only two data types: atoms and lists
Syntax is based on /ambda calculus

Representation of Two Lisp Lists

Ll g kamugl (ABCD)
: : ' l
— ool g e[
.
ikamuell; '
o
i kamnell,
l :

Lisp Evaluation

* Pioneered functional programming

— No need for variables or assignments

— Control via recursion and conditional expressions
» Still the dominant language for AI

« Common Lisp and Scheme are contemporary
dialects of Lisp

* ML (Meta-Language), Haskell, and F# are also
functional programming languages, but use
very different syntax

Scheme

Developed at MIT in mid 1970s
Smal
Extensive use of static scoping

Functions as first-class entities

Simple syntax and small size make it
ideal for educational applications

Common Lisp

* An effort to combine features of
several dialects of Lisp into a single

anguage

* Large, complex, used in industry for

some large applications

Programming Based on Logic: Prolog

Prolog: Programming Logic
Developed by Comerauer and Roussel

(University of Aix-Marseille), with help from
Kowalski (University of Edinburgh)

Based on formal logic
Non-procedural

Can be summarized as being an intelligent
database system that uses an inference
process to infer the truth of given queries

Comparatively inefficient
Few application areas

Markup/Programming Hybrid
Languages

« XSLT

— eXtensible Markup Language (XML): a
metamarkup language

— eXtensible Stylesheet Language
Transformation (XSLT) transforms XML
documents (to HTML) for display

— Programming constructs (e.g., looping and
control flow)

Markup/Programming Hybrid
Languages

. JSP

— Java Server Pages: a collection of
technologies to support/create dynamic
Web documents

—JSTL, a JSP library, includes programming
constructs in the form of HTML elements

Computerizing Business Records: COBOL

COBOL design process
— First Design Meeting (Pentagon) - May 1959
— Design goals

* Must look like simple English

* Must be easy to use, even if that means it will be less
powerful

* Must broaden the base of computer users
 Must not be biased by current compiler problems

— Design committee members were all from
computer manufacturers and DoD branches

— Design Problems: arithmetic expressions?
subscripts? Fights among manufacturers

COBOL Evaluation

 Contributions

— First macro facility in a high-level language
(DEFINE verb)

— Hierarchical data structures (records)
— Nested selection statements

— Long names (up to 30 characters), with
hyphens

— Separate data division

COBOL: DoD Influence

* First language required by DoD
— would have failed without DoD

 Still the most widely used business
applications language

The Beginning of Timesharing: Basic

Designed by Kemeny & Kurtz at Dartmouth

Designh Goals:

— Easy to learn and use for non-science students

— Must be "pleasant and friendly”

— Fast turnaround for homework

— Free and private access

— User time is more important than computer
Time

Current popular dialect: Visual Basic

First widely used language with time sharing

Everything for Everybody: PL/I

* Designed by IBM and SHARE
» Computing situation in 1964 (IBM's point
of view)
— Scientific computing
« IBM 1620 and 7090 computers

« FORTRAN
« SHARE user group
— Business computing
- IBM 1401, 7080 computers
« COBOL
« GUIDE user group

PL/I: Background

« By 1963

— Scientific users began to used floating-
point data and arrays extensively; business
users began to need more elaborate I/0

— It looked like many shops would begin to
need two kinds of computers, languages,
and support staff--too costly

PL/I: Background

* The obvious solution

— Build a new computer to do both kinds of
applications

— Design a new language to do both kinds of
applications

PL/I: Design Process

* Designed in five months by the 3 X 3
Committee

— Three members from IBM, three members
from SHARE

* Initial concept
— An extension of Fortran IV

» Initially called NPL (New Programming
Language)

» Name changed to PL/I in 1965

PL/I: Evaluation

« PL/T contributions
— First unit-level concurrency
— First exception handling
— Switch-selectable recursion
— First pointer data type
— First array cross sections

» Concerns
— Many new features were poorly designed
— Too large and too complex

