
The Evolution of Programming
Languages

In Text: Chapter 2

Programming
Language
Genealogy

2

Zuse’s Plankalkül

• Designed in 1945, but not published
until 1972

• Invented by a German scientist

• Never implemented

• Advanced data structures
– floating point, arrays, records

• Invariants

3

Plankalkül Syntax

• An assignment statement to assign the
expression A[4] + 1 to A[5]

| A + 1 => A

V | 4 5 (subscripts)

S | 1.n 1.n (data types)

4

Minimal Hardware Programming:
Pseudocodes

• Pseudocodes were developed and used in
the late 1940s and early 1950s

• What was wrong with using machine
code?
– Poor readability
– Poor modifiability
– Expression coding was tedious
– Machine deficiencies--no indexing or

floating point

5

Machine Code

• Any binary instruction which the
computer’s CPU will read and execute
– e.g., 10001000 01010111 11000101 11110001

10100001 00010101

• Each instruction performs a very
specific task, such as loading a value
into a register, or adding two binary
numbers together

6

Short Code: The First Pseudocode

• Short Code developed by Mauchly in
1949 for BINAC computers
– Expressions were coded, left to right

– Example of operations:

01 – 06 abs value 1n (n+2)nd power

02) 07 + 2n (n+2)nd root

03 = 08 pause 4n if <= n

04 / 09 (58 print and tab

7

• Variables were named with byte-pair
codes
– E.g., X0 = SQRT(ABS(Y0))

– 00 X0 03 20 06 Y0

– 00 was used as padding to fill the word

8

Short Code

• Implementation: pure interpretation

• (called atomic programming)

• High execution time

• 50 times slower than machine code

• Simple for programming

9

IBM 704 and Fortran

• Fortran 0: 1954 - not implemented
• Fortran I: 1957

– Designed for the new IBM 704, which had
index registers and floating point hardware
• This led to the idea of compiled programming

languages, because there was no place to hide the
cost of interpretation (no floating-point software)

– Includes
• Formatted I/O, variable names of up to six

characters, user-defined subroutines, three-way
selection statement (arithmetic IF), do-loop

10

IBM 704 and Fortran

– Environment of development
• Computers were small and unreliable

• Applications were scientific

• No programming methodology or tools

• Machine efficiency was the most important
concern

11

– Limitations
• No separate compilation

– Subroutines could not be separately compiled

• No data typing statements
– Variables whose names began with I, J, K, L, M, and N

were implicitly integer type, and all others were
implicitly floating-point.

• Programs larger than 400 lines rarely compiled
correctly, mainly due to poor reliability of 704

12

Fortran

• Fortran II: 1958
– Independent compilation

– Fixed the bugs

• Fortran IV: 1960-62 (Fortran 66)
– Explicit type declarations

– Logical if-construct

– The capability of passing subprograms as
parameters

13

Fortran

• Fortran 77: 1978
– Character string handling

– Logical loop control statement

– IF-THEN-ELSE statement

• Fortran 90
– Modules, dynamic arrays, pointers,

recursion, CASE statement, parameter type
checking

14

Fortran

• Fortran 95
– relatively minor additions, plus some

deletions

• Fortran 2003
– support for OOP, procedure pointers,

interoperability with C

• Fortran 2008
– blocks for local scopes, co-arrays (for

parallel execution), Do Concurrent

15

Fortran Evaluation

• Highly optimizing compilers (all versions
before 90)

• Types and storage of all variables are
fixed before runtime

• Dramatically changed forever the way
computers are used (first used high-
level language)

16

The First Step Toward
Sophistication: ALGOL 60

• Environment of development
– FORTRAN had (barely) arrived for IBM 70x
– Many other languages were being developed, all

for specific machines
– No portable language; all were machine-

dependent
– No universal language for communicating

algorithms

• ALGOL 60 was the result of efforts to
design a universal language

17

Early Design Process

• ACM and GAMM met for four days for
design (May 27 to June 1, 1958)

• Goals of the language
– Close to mathematical notation

– Good for describing algorithms

– Must be translatable to machine code

18

ALGOL 58

• Concept of type was formalized
• Names could be any length
• Arrays could have any number of subscripts
• Parameters were separated by mode (in & out)
• Subscripts were placed in brackets
• Compound statements (begin ... end)
• Semicolon as a statement separator
• Assignment operator was :=
• if had an else-if clause
• No I/O - “would make it machine dependent”

19

ALGOL 58 Implementation

• Not meant to be implemented, but
variations of it were (MAD, JOVIAL)

• Although IBM was initially enthusiastic,
all support was dropped by mid 1959

20

ALGOL 60 Overview

• Modified ALGOL 58 at 6-day meeting in
Paris

• New features
– Block structure (local scope)

– Two parameter passing methods

– Subprogram recursion

– Stack-dynamic arrays

– Still no I/O and no string handling

21

ALGOL 60 Evaluation

• Successes
– It was the standard way to publish

algorithms for over 20 years

– All subsequent imperative languages are
based on it

– First machine-independent language

– First language whose syntax was formally
defined (BNF: Backus-Naur form)

22

ALGOL 60 Evaluation (continued)

• Failure
– Never widely used, especially in U.S.

• Reasons
– Lack of I/O and the character set made

programs non-portable
– Too flexible--hard to implement
– Entrenchment of Fortran
– Formal syntax description
– Lack of support from IBM

23

ALGOL 68

• From the continued development of
ALGOL 60 but not a superset of that
language

• Source of several new ideas (even though
the language itself never achieved
widespread use)

• Design is based on the concept of
orthogonality
– A few basic concepts, plus a few combining

mechanisms

24

ALGOL 68 Evaluation

• Contributions
– User-defined data structures
– Reference types
– Dynamic arrays (called flex arrays)

• Comments
– Less usage than ALGOL 60
– Had strong influence on subsequent

languages, especially Pascal, C, and Ada

25

Pascal - 1971

• Developed by Wirth (a former member of
the ALGOL 68 committee)

• Designed for teaching structured
programming

• Small, simple, nothing really new
• Largest impact was on teaching

programming
– From mid-1970s until the late 1990s, it was

the most widely used language for teaching
programming

26

C - 1972

• Designed for system programming (at Bell
Labs by Dennis Richie)

• Evolved primarily from BCLP and B, but
also ALGOL 68

• Powerful set of operators, but poor type
checking

• Initially spread through UNIX
• Though designed as a system language, it

has been used in many application areas

27

History’s Largest Design Effort: Ada

• Huge design effort, involving hundreds of
people, much money, and about eight years

• Sequence of requirements document for the
new language (1975-1978)
– (Strawman, Woodenman, Tinman, Ironman,

Steelman)
– Four finalist language design proposals were

chosen, all of which were based on Pascal
– The Cii Honeywell/Bull language design proposal

was selected

28

Ada Evaluation

• Named Ada after Augusta Ada Byron,
the first programmer

• Contributions
– Packages - support for data abstraction

– Exception handling

– Generic program units

– Concurrency - through the tasking model

29

Ada Evaluation

• Comments
– Competitive design

– Included all concepts that was then known
about software engineering and language
design

– First compilers were very difficult; the
first really usable compiler came nearly
five years after the language design was
completed

30

• Ada 95 (began in 1988)
– Support for OOP through type derivation

– Better control mechanisms for shared data

– New concurrency features

– More flexible libraries

• Ada 2005
– Interfaces and synchronizing interfaces

31

Ada

• Popularity suffered because the DoD no
longer requires its use but also because
of popularity of C++

32

Object-Oriented Programming: Smalltalk

• Developed at Xerox PARC, initially by
Alan Kay, later by Adele Goldberg

• First full implementation of an object-
oriented language (data abstraction,
inheritance, and dynamic binding)

• Pioneered the graphical user interface
design

• Promoted OOP

33

Combining Imperative and Object-
Oriented Programming: C++

• Developed at Bell Labs by Stroustrup in
1980

• Evolved from C and SIMULA 67
• Facilities for object-oriented

programming, taken partially from
SIMULA 67

• A large and complex language, in part
because it supports both procedural and
OO programming

34

C++

• Rapidly grew in popularity, along with
OOP

• ANSI standard approved in November
1997

• Microsoft’s version: MC++
– Properties, delegates, interfaces, no

multiple inheritance

35

A Related OOP Language

• Objective-C (designed by Brad Cox –
early 1980s)
– C plus support for OOP based on Smalltalk

– Uses Smalltalk’s method calling syntax

– Used by Apple for system programs

36

An Imperative-Based Object-
Oriented Language: Java

• Developed at Sun in the early 1990s
– C and C++ were not satisfactory for

embedded electronic devices

• Based on C++
– Significantly simplified (does not include

struct, union, enum, pointer arithmetic, and
half of the assignment coercions of C++)

– Supports only OOP
– Has references, but not pointers
– Includes support for applets and a form of

concurrency
37

Java Evaluation
• Eliminated many unsafe features of C++
• Supports concurrency
• Libraries for applets, GUIs, database

access
• Portable: Java Virtual Machine concept,

JIT compilers
• Widely used for Web programming
• Use increased faster than any previous

language
• Most recent version, 8, released in 2014

38

Scripting Languages for the Web

• Perl
– Designed by Larry Wall—first released in 1987
– Variables are statically typed but implicitly declared
– Three distinctive namespaces, denoted by the first

character of a variable’s name
• All scalar variable names begin with dollar signs ($),
• All array names begin with at signs (@), and
• all hash names (hashes are briefly described below) begin

with percent signs (%).
– Powerful, but somewhat dangerous
– Gained widespread use for CGI programming on the

Web
– Also used for a replacement for UNIX system

administration language

39

Scripting Languages for the Web

• JavaScript
– Began at Netscape, but later became a

joint venture of Netscape and Sun
Microsystems

– A client-side HTML-embedded scripting
language

– Used to dynamically create and modify
HTML documents

– Purely interpreted
– Related to Java only through similar syntax

40

Scripting Languages for the Web

• PHP
– PHP: Hypertext Preprocessor, designed by

Rasmus Lerdorf

– A server-side HTML-embedded scripting
language, often used for form processing
and database access through the Web

– Purely interpreted

41

Scripting Languages for the Web

• Python
– An OO interpreted scripting language

– Type checked but dynamically typed

– Used for CGI programming and form
processing

– Supports lists, tuples, and hashes

42

Scripting Languages for the Web

• Lua
– 1990s, Brazil
– Supports procedural and functional

programming
– An OO interpreted scripting language
– Type checked but dynamically typed
– Used for CGI programming and form

processing
– Supports lists, tuples, and hashes, all with its

single data structure—the table
– Easily extendable

43

Scripting Languages for the Web

• Ruby
– Designed in Japan by Yukihiro Matsumoto

(a.k.a, “Matz”)

– Began as a replacement for Perl and Python

– A pure object-oriented scripting language
• All data are objects

– Most operators are implemented as methods,
which can be redefined by user code

– Purely interpreted

44

The Flagship .NET Language: C#

• Part of the .NET development platform
(2000)

• Based on C++ , Java, and Delphi

• Includes pointers, delegates,
properties, enumeration types, a limited
kind of dynamic typing, and anonymous
types

• Is evolving rapidly

45

Functional Programming: Lisp

• LISt Processing language
– Designed at MIT by John McCarthy

• AI research needed a language to
– Process data in lists (rather than arrays)

– Symbolic computation (rather than
numeric)

• Only two data types: atoms and lists

• Syntax is based on lambda calculus

46

Representation of Two Lisp Lists

47

Representing the lists (A B C D)

and (A (B C) D (E (F G)))

(A B C D)

Lisp Evaluation

• Pioneered functional programming
– No need for variables or assignments

– Control via recursion and conditional expressions

• Still the dominant language for AI

• Common Lisp and Scheme are contemporary
dialects of Lisp

• ML (Meta-Language), Haskell, and F# are also
functional programming languages, but use
very different syntax

48

Scheme

• Developed at MIT in mid 1970s

• Small

• Extensive use of static scoping

• Functions as first-class entities

• Simple syntax and small size make it
ideal for educational applications

49

Common Lisp

• An effort to combine features of
several dialects of Lisp into a single
language

• Large, complex, used in industry for
some large applications

50

Programming Based on Logic: Prolog

• Prolog: Programming Logic
• Developed by Comerauer and Roussel

(University of Aix-Marseille), with help from
Kowalski (University of Edinburgh)

• Based on formal logic
• Non-procedural
• Can be summarized as being an intelligent

database system that uses an inference
process to infer the truth of given queries

• Comparatively inefficient
• Few application areas

51

Markup/Programming Hybrid
Languages

• XSLT
– eXtensible Markup Language (XML): a

metamarkup language

– eXtensible Stylesheet Language
Transformation (XSLT) transforms XML
documents (to HTML) for display

– Programming constructs (e.g., looping and
control flow)

52

Markup/Programming Hybrid
Languages

• JSP
– Java Server Pages: a collection of

technologies to support/create dynamic
Web documents

– JSTL, a JSP library, includes programming
constructs in the form of HTML elements

53

Computerizing Business Records: COBOL

• COBOL design process
– First Design Meeting (Pentagon) - May 1959
– Design goals

• Must look like simple English
• Must be easy to use, even if that means it will be less

powerful
• Must broaden the base of computer users
• Must not be biased by current compiler problems

– Design committee members were all from
computer manufacturers and DoD branches

– Design Problems: arithmetic expressions?
subscripts? Fights among manufacturers

54

COBOL Evaluation

• Contributions
– First macro facility in a high-level language

(DEFINE verb)

– Hierarchical data structures (records)

– Nested selection statements

– Long names (up to 30 characters), with
hyphens

– Separate data division

55

COBOL: DoD Influence

• First language required by DoD
– would have failed without DoD

• Still the most widely used business
applications language

56

The Beginning of Timesharing: Basic

• Designed by Kemeny & Kurtz at Dartmouth
• Design Goals:

– Easy to learn and use for non-science students
– Must be “pleasant and friendly”
– Fast turnaround for homework
– Free and private access
– User time is more important than computer

time

• Current popular dialect: Visual Basic
• First widely used language with time sharing

57

Everything for Everybody: PL/I

• Designed by IBM and SHARE
• Computing situation in 1964 (IBM's point

of view)
– Scientific computing

• IBM 1620 and 7090 computers
• FORTRAN
• SHARE user group

– Business computing
• IBM 1401, 7080 computers
• COBOL
• GUIDE user group

58

PL/I: Background

• By 1963
– Scientific users began to used floating-

point data and arrays extensively; business
users began to need more elaborate I/O

– It looked like many shops would begin to
need two kinds of computers, languages,
and support staff--too costly

59

PL/I: Background

• The obvious solution
– Build a new computer to do both kinds of

applications

– Design a new language to do both kinds of
applications

60

PL/I: Design Process

• Designed in five months by the 3 X 3
Committee
– Three members from IBM, three members

from SHARE

• Initial concept
– An extension of Fortran IV

• Initially called NPL (New Programming
Language)

• Name changed to PL/I in 1965

61

PL/I: Evaluation

• PL/I contributions
– First unit-level concurrency
– First exception handling
– Switch-selectable recursion
– First pointer data type
– First array cross sections

• Concerns
– Many new features were poorly designed
– Too large and too complex

62

