
The Design and Implementation
of Programming Languages

In Text: Chapter 1

Slides created by Na Meng, Faryaneh Poursardar

Language Implementation Methods

• Compilation

• Interpretation

• Hybrid

2

Compilation

• Translate high-level programs to
machine code

• Slow translation

• Fast execution

• E.g. C, C++

3

Interpretation

• Interpret one statement and then
execute it on a virtual machine

• No translation

• Slow execution

• E.g., Basic

4

Compilation vs. Interpretation

• Compilation
– Better performance

• No runtime cost for interpretation

• Program optimization

• Interpretation
– Better diagnosis (with excellent source-

level debugger)

– Earlier diagnosis (execute erroneous
program)

5

6

Compilation
Process

Scanning (Lexical Analysis)

• Break the program into “tokens”—the
smallest meaningful units
– This can save time, since character-by-

character processing is slow

• We can tune the scanner better
– E.g., remove spaces & comments

• A scanner uses a Deterministic Finite
Automaton (DFA) to recognize tokens

7

Tokens

Or lexical units are:

• Identifiers

• Special words

• Operators

• Punctuation symbols

• Scanner ignores comments

8

• Example of DFA

• Accepting strings having 001 substring

9

A running example: Greatest Common
Divisor (GCD)

int main() {
int i = getint(),

j = getint();
while (i != j) {

if (i > j) i = i – j;
else j = j – i;

}
putint(i);

}

10

Token sequence:
int main () {

int i = getint

() , j =

getint () ; while

(i != j)

{ if (i >

j) i = i

- j ; else j

= j - i ;

} putint (i)

; }

Parsing (Syntax Analysis)

• Organize tokens into a parse tree that
represents higher-level constructs
(statements, expressions, subroutines)
– Each construct is a node in the tree
– Each construct’s constituents are its

children

• Parse tree represents the syntactic
structure of the program

11

GCD Parsing Tree

12

Semantic Analysis

• Determine the meaning of a program

• Checks for type errors

• A semantic analyzer builds and
maintains a symbol table data structure
that maps each identifier to the
information known about it, such as the
identifier’s type, internal structure, and
scope

13

Semantic Analysis

• With the symbol table, the semantic
analyzer can enforce a large variety of
rules to check for errors

• Sample rules:
– Each identifier is declared before it is

used
– Any function with a non-void return type

returns a value explicitly
– Subroutine calls provide the correct

number and types of arguments

14

Symbol Table

• The symbol table serves as a database for
the compilation process.

• The primary contents of the symbol table
are the type and attribute information of
each user-defined name in the program.

• This information is placed in the symbol
table by the lexical and syntax analyzers
and is used by the semantic analyzer and
the code generator.

15

Intermediate Form

• Generated after semantic analysis

• A code between source program and
machine language

• In many compilers, it is in assembly
language

16

Optimization

• Goal: perform analysis and optimization
of programs

• Make code faster and smaller

• Optimizing code in machine language is
hard

• Best place to perform optimization is in
intermediate code

17

Code generator

• Goal: produce assembly/machine code from
optimized low-level representation of program

• Input: optimized low-level representation of
program from low-level optimizer

• Output: assembly/machine code for real or virtual
machine

• Tasks:
– Register allocation
– Instruction selection

18

Discussion

• Traditionally, all phases of compilation were completed
before program was executed

• New twist: virtual machines
– Offline compiler:

• Generates code for virtual machine like JVM

– Just-in-time compiler:
• Generates code for real machine from VM code while program is

executing

• Advantages:
– Portability
– JIT compiler can perform optimizations for particular input

19

Front end & back end

• Front end
– To analyze the source code in order to build

an internal representation (IR) of the
program

– It includes: lexical analysis, syntactic
analysis, and semantic analysis

• Back end
– To gather and analyze program information

from IR, to optimize the code, and to
generate machine code

– It includes: optimization and code generation
20

21

Pure Interpretation

Hybrid Implementation

• Quick start in “Interpretation” mode
• Compile code on hot paths to speed up

– E.g., Just-in-Time (JIT) compiler in Java Virtual
Machine (JVM)

• Small translation cost
• Medium execution speed

22

23

Hybrid
Implementation
System

24

Hybrid Implementation (Java)

Implementation Strategies in
Practice

• Preprocessing

• Library routines and linking

• Post-compilation assembly

• Source-to-source translation

• Bootstrapping

25

Preprocessing (Basic)

• An initial translator
– to remove comments and white spaces,
– to group characters together into tokens such as

keywords, identifiers, numbers, and symbols,
– to expand abbreviations in the style of a macro

assembler, and
– to identify higher-level syntactic structures,

such as loops and subroutines
• Goal

– To provide an intermediate form that mirrors
the structure of the source, but can be
interpreted more efficiently

26

Preprocessing (C)

• Conditional compilation
– Delete portions of code to allow several

versions of a program to be built from the
same source

– Copy the extra content(library/header)
into the program

27

Library routines and linking (Fortran)

• The compilation of source code counts
on the existence of a library of
subroutines invoked by the program

28

Post-compilation assembly

• Source code is first compiled to assembly
code, and then the assembler translates it
to machine code
– To facilitate debugging (assembly code is

easier to read)

– To isolate the compiler from changes in the
format of machine language files (only the
commonly shared assembler must be changed)

29

Source-to-Source Translation

• AT&T C++ compiler
– To translate C++ programs to C programs

– To facilitate reuse of compilers or language
support

30

Bootstrapping

• Many compilers are self-hosting:
– They are written in the language they

compile

– Bootstrapping is used to compile the
compiler in the first place

31

