The Design and Implementation
of Programming Languages

In Text: Chapter 1

Slides created by Na Meng, Faryaneh Poursardar

Language Implementation Methods

« Compilation
* Interpretation
 Hybrid

Compilation

-

: ; ‘ ™ -
Source prograin —}\ Compiler j—b'lnrg{.‘rt program

Input — » (Target program >4} Output

Translate high-level programs to
machine code

Slow translation

Fast execution
E.g.C, C++

Interpretation

Source prograi —_

H"‘“(Interpreter > —> Output

——

Input —

Interpret one statement and then
execute it on a virtual machine

No translation
Slow execution
E.g., Basic

Compilation vs. Interpretation

« Compilation
— Better performance
* No runtime cost for interpretation
* Program optimization
* Interpretation

— Better diagnosis (with excellent source-
level debugger)

— Earlier diagnosis (execute erroneous
program)

Compilation
Process

Source

_ program _/,u'

l

Lexical
analyzer

Lexical units

3

Symbol
table

Syntax
analyzer

Parse trees

code generator

L 3

and semantic

Intermediate

analyzer

Optimization
{optional)

Intermediate
code

Code
generator

Machine

Computer

l

Results

language Input data
| g 9/_

Scanning (Lexical Analysis)

* Break the program into "tokens"—the
smallest meaningful units

— This can save time, since character-by-
character processing is slow

« We can tune the scanner better
— E.g., remove spaces & comments

* A scanner uses a Deterministic Finite
Automaton (DFA) to recognize tokens

Tokens

Or lexical units are:
« Tdentifiers

Special words
Operators
Punctuation symbols

Scanner ignores comments

» Example of DFA
« Accepting strings having 001 substring

1 () (0,1

A running example: Greatest Common

Divisor (GCD)
int main() { Token sequence:
int i = getint(), ST e
j = getint(); C) S R
While (i |: J){ Q({etlnt i)': ; Y;\Ihlle
if(i>j)i=i-j; | | if (o
} else j=j-i; i ; . elee
=] - i ;
} putint(i); } Pt L)

Parsing (Syntax Analysis)

* Organize tokens into a parse tree that
represents higher-level constructs
(statements, expressions, subroutines)
— Each construct is a node in the tree

— Each construct's constituents are its
children

* Parse tree represents the syntactic
structure of the program

GCD Parsing Tree

translation-unit
5 |

function-definition

declarator declaration-list_opt compound-statement
pointer_opt direct-declarator € { block-item-list_opt }

| P e

€ direct-declarator ~ (identifier-list_opt) block-item-list

declaration-specifiers ident (main) e block-item-list bloc
type-specifier declaration-specifiers_opt block-item-list block-item
int ¢ declaration
declaration-specifiers init-declarator-list_opt

el ™ |

type-specifier declaration-specifiers_opt init-declarator-list
| I T~

Semantic Analysis

» Determine the meaning of a program
* Checks for type errors

« A semantic analyzer builds and
maintains a symbol table data structure
that maps each identifier to the
information known about it, such as the
identifier's type, internal structure, and

scope

Semantic Analysis

« With the symbol table, the semantic
analyzer can enforce a large variety of
rules to check for errors

» Sample rules:

— Each identifier is declared before it is
used

— Any function with a non-void return type
returns a value explicitly

— Subroutine calls provide the correct
number and types of arguments

Symbol Table

* The symbol table serves as a database for
the compilation process.

* The primary contents of the symbol table
are the type and attribute information of
each user-defined name in the program.

» This information is placed in the symbol
table by the lexical and syntax analyzers
and is used by the semantic analyzer and
the code generator.

Tntermediate Form

» Generated after semantic analysis

* A code between source program and
machine language

* In many compilers, it is in assembly
language

Optimization

* Goal: perform analysis and optimization
of programs

 Make code faster and smaller

« Optimizing code in machine language is
hard

* Best place to perform optimization is in
infermediate code

Code generator

Goal: produce assembly/machine code from
optimized low-level representation of program

Input: optimized low-level representation of
program from low-level optimizer

Ou’rE‘u‘r: assembly/machine code for real or virtual
machine

Tasks:

— Register allocation
— Instruction selection

Discussion

Traditionally, all phases of compilation were completed
before program was executed

New twist: virtual machines

— Offline compiler:
« Generates code for virtual machine like JVM
— Just-in-time compiler:
* Generates code for real machine from VM code while program is
executing

Advantages:
— Portability
— JIT compiler can perform optimizations for particular input

Front end & back end

* Front end

— To analyze the source code in order to build
an internal representation (IR) of the
program

— It includes: lexical analysis, syntactic
analysis, and semantic analysis

* Back end

— To gather and analyze program information
from IR, to optimize the code, and to
generate machine code

— It includes: optimization and code generation

Pure Interpretation

21

Hybrid Implementation

Source program ——» (Translator >4} Intermediate program

Intermediate program

\\
Tnput ——

Quick start in "Interpretation” mode

Compile code on hot paths to speed up

— E.g., Just-in-Time (JIT) compiler in Java Virtual
Machine (JVM)

Virtual machine)4* Output

Small translation cost
Medium execution speed

Hybrid
Implementation
System

I-’/ _ Source _\\\

program /

vy

Y

Lexical
analyzer

Lexical units

b

Symitax
analyzer

Parse trees

Y

Intermediate
code generator

Intermediate
code

/ \/Inputdata

Interpreter

o/
!

Resulis

23

Hybrid Implementation (Java)

Java program

l

< Java compiler > Input

Java byte code —>(Bytecode interpreter)

(JIT compiler) Output

—— — —— — — — — — — — — —— —

Input—»f\/ Machine language)—»Output

24

Implementation Strategies in
Practice

Preprocessing

Library routines and linking
Post-compilation assembly
Source-to-source translation
Bootstrapping

Preprocessing (Basic)

* An initial translator
— to remove comments and white spaces,

— to group characters together into tokens such as
keywords, identifiers, numbers, and symbols,

— to expand abbreviations in the style of a macro
assembler, and

— Yo identify higher-level syntactic structures,
such as loops and subroutines

* Goal

— To provide an intermediate form that mirrors
the structure of the source, but can be
interpreted more efficiently

Preprocessing (C)

» Conditional compilation

— Delete portions of code to allow several
versions of a program to be built from the
same source

— Copy the extra content(library/header)
intfo the program

Library routines and linking (Fortran)

» The compilation of source code counts
on the existence of a library of
subroutines invoked by the program

Fortran program —h—(Compiler)—} Incomplete machine language

Incomplete machine

language T
//ﬂ

< Linker)—h Machine language program

Library routines

Post-compilation assembly

» Source code is first compiled to assembly
code, and then the assembler translates it
to machine code

— To facilitate debugging (assembly code is
easier to read)

— To isolate the compiler from changes in the
format of machine language files (only the
commonly shared assembler must be changed)

Source program —1-< Compiler)—} Assembly language

~

Assembly language ——> K Assembler /]—:- Machine language

Source-to-Source Translation

« AT&T C++ compiler
— To translate C++ programs to C programs

— To facilitate reuse of compilers or language
support

Source program 41-< Preprocessor >4} Modified source program

Modified source program —— > ((:T++ ;j-{_}mpilm‘) — » (' code

C code —» (C compiler)4"‘ Assembly language

Bootstrapping

* Many compilers are self-hosting:
— They are written in the language they
compile
— Bootstrapping is used to compile the
compiler in the first place

