
Name, Scope and Binding

In Text: Chapter 5

N. Meng, F. Poursardar, S. Arthur

Outline

• Names

• Variable

• Binding

• Type bindings
• Type Checking, type conversion

• Storage bindings and lifetime

• Scope

• Lifetime vs. Scope

• Referencing Environments

2

Introduction

• Imperative languages are abstractions of von
Neumann architecture

• Memory

• Processor

• Variables are characterized by attributes

• To design a type, must consider scope, lifetime, type
checking, initialization, and type compatibility

3

Names

• Design issues for names:

• Are names case sensitive?

• Are special words of the language reserved words or
keywords?

• Length

• If too short, they cannot be connotative

• Language examples:
• Fortran I: up to six characters

• C# and Java: no limit

4

Names (continued)

• Case sensitivity

• Disadvantage: readability (names that look alike are
different)
• Names in the C-based languages are case sensitive

• Names in others are not

5

Names (continued)

• Special words

• An aid to readability; used to delimit or separate statement
clauses

• A keyword is a word that is special only in certain contexts

• A reserved word is a special word that cannot be used as a
user-defined name

• Potential problem with reserved words: If there are too
many, many collisions occur (e.g., COBOL has 300 reserved
words!)

6

Names (continued)

• Special characters

• PHP: all variable names must begin with dollar signs

• Perl: all variable names begin with special characters, which
specify the variable’s type

• Ruby: variable names that begin with @ are instance variables;
those that begin with @@ are class variables

7

Variable

• A program variable is an abstraction of a memory cell
or a collection of cells

• It has several attributes

• Name: A mnemonic character string

• Address
• Points to location memory

• May vary dynamically

• Type
• Range of values + legal operations

• E.g., int type in Java specifies a value range of -2147483648 to
21473647, and arithmetic operations for +, -, *, /, %

8

Variable

• Scope

• Range over which the variable is accessible

• Static/dynamic

• Lifetime

• Time during which the variable is bound to a specific
location

9

Scope and Lifetime

• The scope and lifetime of a variable appear to be
related

• The scope defines how a name is associated with a
variable

• The lifetime of a variable is the time during which the
variable is bound to a specific memory location

10

Scope and Lifetime

• Consider a variable v declared in a Java method that
contains no method calls

• The scope of v is from its declaration to the end of the
method

• The lifetime of v begins when the method is entered and
ends when execution of the method terminates

• The scope and lifetime seem to be related

11

Scope and Lifetime

• In C and C++, a variable is declared in a function
using the specifier static

• The scope is static and local to the function

• The lifetime extends over the entire execution of the
program of which it is a part

• Static scope is a textual and spatial concept, while
lifetime is a temporal concept

12

Variables Attributes

• Name - not all variables have them

• Address - the memory address with which it is
associated
• A variable may have different addresses at different times

during execution

• A variable may have different addresses at different places
in a program

• If two variable names can be used to access the same
memory location, they are called aliases

13

Aliases

• Aliases are created via pointers, reference variables,
C and C++ unions

• Aliases are harmful to readability (program readers
must remember all of them)

14

Variables Attributes (continued)

• Type

• determines the range of values of variables and the set of
operations that are defined for values of that type; in the case
of floating point, type also determines the precision

• Value - the content of the location with which the
variable is associated

15

Variables Attributes (continued)

• Abstract memory cell - the physical cell or collection
of cells associated with a variable

16

Binding

• A binding is an association between two things (an
attribute and an entity), such as a name and the
thing it names

• E.g. a variable and it’s type or name

• An operation and a symbol

• Binding time is the time at which a binding takes
place

17

Possible Binding Time

• Language design time
• Bind operator symbols to operations

• Language implementation time
• Bind floating point type to a representation

• Compile time
• Bind a variable to a type in C or Java

• Load time
• Bind a variable to a memory cell (C static variable)

• Runtime
• Bind a nonstatic local variable to a memory cell (method

variables)

18

An Example

count = count + 5

• count is a local variable

• When is the type of count bound?

• When is + bound to addition?

• When is the value of count bound to the variable?

19

Static and Dynamic Binding

• A binding is static if it occurs before run time and

remains unchanged throughout program execution

• A binding is dynamic if it occurs during execution and

can change during execution of the program

20

An Example of Dynamic Binding

• In JavaScript and PHP,

list = [10.2, 3.5];

… …

list = 47;

21

Static and Dynamic Binding

• As binding time gets earlier:

• execution efficiency goes up

• safety goes up

• flexibility goes down

• Compiled languages tend to have early binding times

• Interpreted languages tend to have later bindings

22

ONE CANNOT OVERSTATE THE IMPORTANCE OF
BINDING TIMES IN PROGRAMMING LANGUAGES

23

Static Type Binding

• An explicit declaration is a program statement that
lists variable names and specifies their types

• var x: int

• Advantage: safer, cheaper

• Disadvantage: less flexible

24

Static Type Binding

• An implicit declaration is a means of associating
variables with types through default conventions, rather
than declaration statements

• First use of variable: X := 1.2;
• X is a float and will not change afterwards

• In C# or Swift, a var declaration of a variable must include an initial
value, whose type is taken as a type of the variable

25

Static Type Binding

• Default rules
• In Fortran, if an undeclared identifier begins with one of the letters

I, J, K, L, M, or N, or their lower case versions, it is implicitly
declared to be Integer type

• C# - a variable can be declared with var and an initial value. The
initial value sets the type

• Visual Basic 9.0+, ML, Haskell, and F# use type inferencing. The
context of the appearance of a variable determines its type

• Advantage: convenience

• Disadvantage: reliability

26

Dynamic Type Binding

• The type of a variable is not specified by a declaration
statement, nor can it be determined by the spelling of
its name

• JavaScript, Python, Ruby, PHP, and C# (limited)

• Specified through an assignment statement

• E.g., list = [10. 2, 3.5]; (JavaScript)

• Regardless of its previous type, list has the new type of single-
dimension array of length 2

27

Dynamic Type Binding (continued)

• Advantage

• flexibility (can change type dynamically)

• Disadvantage

• Type error detection by the compiler is difficult

• High cost
• Type checking must be done at runtime

• Every variable must have a runtime descriptor to maintain the current
type

• The storage used for the value of a variable must be of varying size

28

Type Checking

• Type checking is the activity of ensuring that the
operands of an operator are of compatible types

• The definition of an operator can be generalized to include
• Subprograms (argument types, return type)

29

Type Checking

• A compatible type is one that

• is legal for the operator, or

• is allowed under language rules to be implicitly converted
to a legal type
• The automatic conversion is called (implicit) coercion

• Mixed mode arithmetic (2 + 3.5)

30

Type Error

• A type error is the application of an operator to an
operand of an inappropriate type

• 1.5 + “Just say NO! to UVA”

31

Type Checking

• If all bindings of variables to types are static in a
language, then type checking can nearly always be
done statically

• Dynamic type binding requires type checking at
runtime, which is called dynamic type checking

• Dynamic type binding only allows dynamic type checking

32

Type Checking

• Type checking is complicated when a language allows a
memory cell to store values of different types at
different times during execution

• E.g., C and C++ unions

• Even though all variables are statically bound to types,
not all type errors can be detected by static type
checking

33

Type Checking

• It is better to detect errors at compile time than at
runtime

• The earlier correction is usually less costly

• Penalty for static checking

• Reduced programmer flexibility

• Fewer shortcuts and tricks are possible

34

Strong Typing

• A programming language is strongly typed if type
errors are always detected

• Advantages of strong typing

• Ability to detect all misuses of variables that result in type
errors

35

Language Comparison for Strong Typing

• FORTRAN 95 is not strongly typed

• The use of Equivalence between variables of different types
allows a variable of one type to refer to a value of a
different type

• C and C++ are not strongly typed

• Both include union types, which are not type checked

• Support implicit type conversions

36

Language Comparison for Strong Typing

• Ada, Java, and C# are more strongly typed than C

• With fewer kinds of implicit conversions

• ML is strongly typed

37

Coercion Rules

• Coercion rules can weaken strong typing

• E.g., int a = 3, b = 5;
float d = 4.5;

• If a developer meant to type a + b, but mistakenly typed a +
d, the error would not be detected by the compiler due to
coercion

• Languages with more coercion are less reliable than
those with little coercion

• Reliability comparison
• Fortran/C/C++ < Ada

• C++ < Java/C#

38

Type Compatibility

• The rules dictate the type of operands that are
acceptable for each operator and thereby specify the
possible type errors of the language

• Type rules are called compatibility because in some
cases, the type of an operand can be implicitly
converted by the compiler or runtime system to
make it acceptable to the operator

39

Type Equivalence

• A strict form of type compatibility—compatibility
without coercion

• Two approaches to defining type equivalence

• Name type equivalence (Type equivalence by name)

• Structure type equivalence (Type equivalence by structure)

40

Name Type Equivalence

• Two variables have equivalent types if they are
defined in the same declaration or in declarations
using the same type name

• Ex. 1, int a, b;

• Ex. 2, int a; int b;

41

Name Type Equivalence

• Easy to implement but is more restrictive

• In Ada

• The type of index is a subrange of the integers, which is not
equivalent to the integer type

• The two variables cannot be assigned to each other

type Indextype is 1..100;

count : Integer;

index: IndexType;

42

Name Type Equivalence

• In Pascal

• Although J and X have the same type structure, they are considered as
two types

• Y cannot be passed as a valid parameter to call K

Type X: array[1..5] of integer

Y: X;

Procedure K(J: array[1..5] of integer

…

K(Y) /* Y incompatible with J */

43

Structure Type Equivalence

• Two variables have equivalent types if their types have
identical structures

• Ex 1., type celsius = float;
fahrenheit = float;

• The two types are considered equivalent

44

Structure Type Equivalence

• More flexible, but harder to implement

• The entire structures of two types must be compared

• Developers are not allowed to differentiate between
types with the same structure

45

