
Programming Environment

Your programming environment is the computer you do your work on,

and all the software that's installed on your system which helps you

write and run programs. Some systems are better for programming than

others, but the best system to learn on is probably the one you are

using right now. This section will help you get your system set up so

you can start writing programs quickly.

Overview
The goal is to help you get Python up and running on your computer,

so that you can write and run your own programs. To do this, we want

to:

• Find out if Python is already installed on your computer.

• Install Python, if it is not already installed.

• Install a text editor that will make it easy to run your first programs.

• Help you enter and run Hello World, your first Python program.

• Congratulate you if it works, and give you some options for

troubleshooting if it doesn't work.

Linux
If you already know that you'd like to take programming seriously, you

might want to consider learning to use Linux. The people who build

Linux expect you to program at some point, so they've built the system

to make it as easy as possible to get started.

Most Linux systems already have Python installed, so we'll just verify

that it's installed, and then install Geany.

Setting up a Linux system

Mac
If you go to a Python conference or meetup, you're likely to see more

Macbooks than any other computer. So Macs are certainly a good

platform on which to learn Python. Many of the people you see using

Macbooks are actually running some distribution of Linux on their Mac,

and running Python within a virtual Linux machine. You don't have to

worry about that yet, just know that if you continue to grow as a

programmer your Mac will probably continue to serve you quite well.

Python 2.7 is probably already installed on your Mac, so we'll just verify

that it is installed, and then install Sublime Text. If you want to start with

Python 3, we'll walk you through setting up Python 3 on your system as

well.

Setting up an OS X system

Windows
Python doesn't come pre-installed on most Windows computers, but

you can download an installer that will set Python up for you. Once you

have Python installed and running, it's pretty straightforward to install

Geany, and then configure it to run Python programs.

Setting up a Windows system

http://introtopython.org/programming_environment_linux.html
http://introtopython.org/programming_environment_osx.html
http://introtopython.org/programming_environment_windows.html

Some simple programming projects

for beginners

1) Hello World

Ah, the all familiar "hello world," exercise that you do every

time you start learning a new programming language. The goal

here is to output a small message to introduce yourself to the

language.

In Python, this is incredibly simple. All you need to do is open

the interpreter and type the following:

print("Hello World")

print("My name is") #add your name after the word "is"

obviously

If all goes well, you should see something like this:

> python3 #to call upon Python on MAC OS X use this

command, for Windows use "python"

Python 3.5.1 (default, Jan 14 2016, 06:54:11)

[GCC 4.2.1 Compatible Apple LLVM 7.0.2 (clang-700.1.81)] on

darwin

Type "help", "copyright", "credits" or "license" for more

information.

>>> print("Hello World")

>>> print("My name is Bob")

Hello World

My name is Bob

Clearly, the command print is used to display content on the

screen. Remember this command because you'll be using it

often.

The text you see after the # symbol is called a comment.

Comments do not appear at runtime, and are instead meant

for the developers who will be working with the code. The

comment we left above provides instructions for adding your

name to the message. More often than not, comments will

provide labels or quick descriptions for a snippet of code, so

you can easily identify what a particular section is for.

2) Performing Calculations

Next, let's take a simple calculation and feed it through the

interpreter to see what happens. Enter the following:

7 + 2

After typing in the equation above and hitting enter - to

submit - you should see something like the following:

>>> 7 + 2

9

Notice how the interpreter automatically answers the equation

and spits out the result?

3) Creating Your First String

A string is a sequence of characters that can be processed by a

computer. The string is usually stored for manipulation later.

Strings must always begin and end with the same character,

this is a requirement. In addition you can use either single or

double quotations to signify a string, there is no difference

between the two. The quotation marks only serve to inform

Python that what's inside of them is a string.

Let's save your name as a string to call upon later. To do that,

type the following into the interpreter:

>>> "Bob"

'Bob'

Congrats! You just created your first string, and this is signified

by the information sent back to you. We can see that the name

was saved as a string.

Now, we want to test out this string and see what kinds of

things we can do with it. First, let's use multiple strings in

tandem. Enter the following into the interpreter:

>>> "Hello there " + "my name is " + "Bob"

'Hello there my name is Bob'

Notice how Python adds the strings together before outputting

the content?

Another neat trick you can do is multiply strings or manipulate

them through equations.

>>> "Bob" * 4

'BobBobBobBob'

This may seem silly right now, as you would probably never

need to multiply your name like this in the real world.

However, this type of manipulation can really come in handy

when you're working on large projects in Python that have a

lot of strings.

To see your name in upper case - instead of using caps - try

working with the following command:

>>> "Bob".upper()

'BOB'

 Pretty cool, right?

4) Return the Length of a Phrase or Word

Normally, if you want to know the number of letters in a word

or phrase you would just count them yourself, but that's no

fun! There's actually a dedicated command to do just this!

To determine the number of letters in a word or string, type

the following into the interpreter:

>>> len("BobIsTheGreatestEver")

20

You can also calculate the length (size) of a list using the same

command.

>>> players = ['bryan', 'john', 'chris']

>>> len(players)

3

5) Storing Variables

Each entry in the list of "players" we created above is called a

variable. Variables are nothing more than names or titles for a

particular set of data so that you can store them and call upon

them later. For example, the variable in the tutorial above was

"players" because that's what we used to store the names of

the players.

Let's create a new variable of our own:

>>> movie = "Terminator"

Our variable is "movie" and in that variable we stored the data

"Terminator," as you can see.

One thing you'll notice about variables is that the interpreter

doesn't return anything once the information is stored. You

may be wondering how we know the variable was actually

stored?

You can test this by simply entering "movie" in the interpreter

and hitting enter. It should return the data stored in that

particular variable, like so:

>>> movie

'Terminator'

Good job! You created your first variable! Feels great, doesn't

it?

But, let's say we get sick of seeing "Terminator" as the data

stored in that variable. We can change this easily.

>>> movie = "Cinderella"

>>> movie

'Cinderella'

Sweet! No more crazy robots or androids! Just a

compassionate, naive girl named Cinderella who will finish all

our chores for us!

You can store just about anything inside a variable, including

numbers, equations, and more.

6) Comparisons

One remarkably useful - yet underrated - thing you can do

with a programming language is compare sets of data. Let's try

that now, using numbers.

>>> 7 > 2

True

>>> 9 < 1

False

>>> 6 > 2 * 4

False

>>> 3 == 3

True

>>> 5 != 2

True

Notice how we used two equal signs (==) to check if sets of

data are equal? You must always use two equal signs if that's

what you are trying to do. This is because a single equal sign,

or "=" is used to assign a value to a variable.

In addition, if you want to check whether or not two values are

unequal you can use an exclamation mark followed by an

equal sign like so: "!="

6) Define (main) functions

def squareit(n):

 return n * n

def cubeit(n):

 return n*n*n

def main():

 anum = int(input("Please enter a number"))

 print(squareit(anum))

 print(cubeit(anum))

if __name__ == "__main__":

 main()

Some useful Python libraries

1. NumPy. How can we leave this very important library? It
provides some advance math functionalities to python.

2. SciPy. When we talk about NumPy then we have to talk about
scipy. It is a library of algorithms and mathematical tools for python
and has caused many scientists to switch from ruby to python.

3. Pillow. A friendly fork of PIL (Python Imaging Library). It is more
user friendly than PIL and is a must have for anyone who works
with images.

4. BeautifulSoup. I know it’s slow but this xml and html parsing
library is very useful for beginners.

http://numpy.scipy.org/
http://www.scipy.org/
https://github.com/python-imaging/Pillow
http://www.crummy.com/software/BeautifulSoup/

5. Twisted. The most important tool for any network application
developer. It has a very beautiful api and is used by a lot of famous
python developers.

6. matplotlib. A numerical plotting library. It is very useful for any
data scientist or any data analyzer.

7. nltk. Natural Language Toolkit – I realize most people won’t be
using this one, but it’s generic enough. It is a very useful library if
you want to manipulate strings. But its capacity is beyond that. Do
check it out.

Some useful links:

Official Python site. Find a complete list of all documentation,

installation, tutorials, news etc.

https://docs.python.org/3.6/tutorial/index.html

https://www.python.org/about/gettingstarted/

https://wiki.python.org/moin/BeginnersGuide

A Gentle Introduction to Programming Using Python

https://ocw.mit.edu/courses/electrical-engineering-and-computer-science/6-189-
a-gentle-introduction-to-programming-using-python-january-iap-2008/

Resources for learning python (libraries, examples, tutorials)

https://opensource.com/education/16/4/teaching-python-and-more-with-oer

http://twistedmatrix.com/
http://matplotlib.sourceforge.net/
http://www.nltk.org/
https://docs.python.org/3.6/tutorial/index.html
https://www.python.org/about/gettingstarted/
https://wiki.python.org/moin/BeginnersGuide
https://ocw.mit.edu/courses/electrical-engineering-and-computer-science/6-189-a-gentle-introduction-to-programming-using-python-january-iap-2008/
https://ocw.mit.edu/courses/electrical-engineering-and-computer-science/6-189-a-gentle-introduction-to-programming-using-python-january-iap-2008/
https://opensource.com/education/16/4/teaching-python-and-more-with-oer

Useful Books on Python
1. Learning Python, 5th Edition
2. Python Programming for the Absolute Beginner, 3rd Edition
3. The Quick Python Book, Second Edition
4. Python Essential Reference
5. Python Programming: An Introduction to Computer Science

Update (3/6/2018)

Installing PyDev for Eclipse
PyDev is a plug-in for eclipse which let you to program in Python.

The link below has a step by step guide for installing eclipse, and PyDev for

Python:

https://www.ics.uci.edu/~pattis/common/handouts/pythoneclipsejava/eclips
epython%20neon.html

After setting it up, you can use eclipse IDE for your Python programs and run them

from there.

More Examples:
https://www.programiz.com/python-programming/examples

https://wiki.python.org/moin/SimplePrograms

https://www.amazon.com/gp/product/1449355730/ref=as_li_tl?ie=UTF8&camp=1789&creative=9325&creativeASIN=1449355730&linkCode=as2&tag=aiop04-20&linkId=d2fadfc7e8244307a2d9091ac7d1d5ee
https://www.amazon.com/gp/product/1435455002/ref=as_li_tl?ie=UTF8&camp=1789&creative=9325&creativeASIN=1435455002&linkCode=as2&tag=aiop04-20&linkId=0c9996c1c2b5c21d733670f23944f47e
https://www.amazon.com/gp/product/193518220X/ref=as_li_tl?ie=UTF8&camp=1789&creative=9325&creativeASIN=193518220X&linkCode=as2&tag=aiop04-20&linkId=3d4e5df00b8891265368bd7050a6cffe
https://www.amazon.com/gp/product/0672329786/ref=as_li_tl?ie=UTF8&camp=1789&creative=9325&creativeASIN=0672329786&linkCode=as2&tag=aiop04-20&linkId=818a9c7fe0fe7153cb9f1182a7dd4d2e
https://www.amazon.com/gp/product/1590282418/ref=as_li_tl?ie=UTF8&camp=1789&creative=9325&creativeASIN=1590282418&linkCode=as2&tag=aiop04-20&linkId=34a4eb6df5c35281271b059d98522aa9
https://www.ics.uci.edu/~pattis/common/handouts/pythoneclipsejava/eclipsepython%20neon.html
https://www.ics.uci.edu/~pattis/common/handouts/pythoneclipsejava/eclipsepython%20neon.html
https://www.programiz.com/python-programming/examples
https://wiki.python.org/moin/SimplePrograms

