
Recursion

Intro Problem Solving in Computer ScienceCS@VT ©2012 Barnette, McQuain

Tail Recursion 1

Tail Recursion: working from the beginning towards the end.

X list of integers to be summed

Start start summing at this index . . .

Stop . . . and stop summing at this index

Pre: X is a list of integers,

Start & Stop are valid list indexes

algorithm SumArray takes list number X, number Start, number Stop

if (Start = Stop) # base case

return X[Stop]

else # recursion

return (X[Start] + SumArray(X, Start + 1, Stop))

endif

Recursion

Intro Problem Solving in Computer ScienceCS@VT ©2012 Barnette, McQuain

Recursive Array Summation Trace 2

The invocation:

List number x

x := [37, 14, 22, 42, 19]

display SumArray(X, 1, 5)

would result in the recursive trace:

return values:

SumArray(X, 1, 5) # 134

return(X[1]+SumArray(X,2,5)) # 37 + 97

return(X[2]+SumArray(X,3,5)) # 14 + 83

return(X[3]+SumArray(X,4,5)) # 22 + 61

return(X[4]+SumArray(X,5,5)) # 42 + 19

return X[5] # 19

Recursion

Intro Problem Solving in Computer ScienceCS@VT ©2012 Barnette, McQuain

Head Recursion 3

Head Recursion: working from the end towards the front.

X list of integers to be summed

Start stop summing at this index . . .

Stop . . . and start summing at this index

Pre: X is a list of integers,

Start & Stop are valid list indexes

algorithm SumArray2 takes list number X, number Start, number Stop

if (Start = Stop) # base case

return X[Stop]

else # recursion

return (X[Stop] + SumArray(X, Start, Stop-1))

endif

Recursion

Intro Problem Solving in Computer ScienceCS@VT ©2012 Barnette, McQuain

Recursive Array Summation2 Trace 4

The invocation:

List number x

x := [37, 14, 22, 42, 19]

display SumArray2(X, 1, 5)

would result in the recursive trace:

return values:

SumArray2(X, 1, 5) # 134

return(X[5]+SumArray2(X,1,4)) # 19 + 115

return(X[4]+SumArray2(X,1,3)) # 42 + 73

return(X[3]+SumArray2(X,1,2)) # 22 + 51

return(X[2]+SumArray2(X,1,1)) # 14 + 37

return X[1] # 37

Recursion

Intro Problem Solving in Computer ScienceCS@VT ©2012 Barnette, McQuain

Middle Decomposition 5

Middle Recursion: working from middle towards both ends.

X list of integers to be searched

Find integer to be located

Start start searching at this index . . .

Stop . . . and stop searching at this index

Pre: X is an ascending ordered list of integers,

Find is an integer, Start & Stop are valid list indexes

algorithm BinarySearch takes list number X , number Find,

number Start, number Stop

if (Start > Stop) # base case, value not found

return -1

endif

number mid := trunc((Start + Stop) / 2)

if (Find = list[mid]) # base case

return mid

endif

if (Find < list[mid]) # search lower half

return BinarySearch(X, Find, Start, mid-1)

else # search upper half

return BinarySearch(X, Find, mid+1, Stop)

endif

Recursion

Intro Problem Solving in Computer ScienceCS@VT ©2012 Barnette, McQuain

Edges & Center Decomposition 6

Edges & Center Recursion: working from both ends towards the middle.

Problem:

– sort a subset, (m:n), of an array of integers (ascending order)

Solution:

– Find the smallest and largest values in the subset of the array (m:n) and

swap the smallest with the mth element and swap the largest with the nth

element, (i.e. order the edges).

– Sort the center of the array (m+1: n-1)

Solution Trace:
[0] [1] [2] [3] [4] [5] [6] [7] [8] [9]

56 23 66 44 78 99 30 82 17 36 unsorted list

[0] [1] [2] [3] [4] [5] [6] [7] [8] [9]

17 23 66 44 78 36 30 82 56 99 after call#1

[0] [1] [2] [3] [4] [5] [6] [7] [8] [9]

17 23 30 44 56 36 66 78 82 99 after call#3

m n

•

•

•

Variation of the

“selection” sort

algorithm

Recursion

Intro Problem Solving in Computer ScienceCS@VT ©2012 Barnette, McQuain

Recursive Sorting 7

ray list of integers to be sorted

Start start sorting at this index . . .

Stop . . . and stop sorting at this index

Pre: ray is a list of integers,

Start & Stop are valid list indexes

algorithm DuplexSelection takes list number ray,

number Start, number Stop

if (Start < Stop) #start=stop -> only 1 elem to sort

number mini := FindMinNumIndex(ray, Start, Stop)

number maxi := FindMaxNumIndex(ray, Start, Stop)

SwapEdges(ray, Start, Stop, mini, maxi)

DuplexSelection(ray, start+1, stop-1)

endif

Alternatively, the calls to the Find functions can be replaced by a single loop through the

list to locate the minimum and maximum indexes.

Recursion

Intro Problem Solving in Computer ScienceCS@VT ©2012 Barnette, McQuain

Recursive Sorting; SwapEdges 8

ray list of integers

Start left element index

Stop right element index

mini index for left swapping

maxi index for rightswapping

Pre: ray is a list of integers,

Start, Stop mini, maxi are valid list indexes

algorithm SwapEdges takes list number ray,

number Start, number Stop, number mini, number maxi

#check for double swap interference

if ((mini=Stop) and (maxi=Start)) #double interference

Swap(ray, Start, Stop)

else if (maxi=Start) #low 1/2 interference

Swap(ray, maxi, Stop)

Swap(ray, mini, Start)

else #(mini=Stop) or no interference

Swap(ray, mini, Start)

Swap(ray, maxi, Stop)

endif

endif

