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Recursion 1

Around the year 1900 the illustration of the 

"nurse" appeared on Droste's cocoa tins. 

This is most probably invented by the 

commercial artist Jan (Johannes) Musset, who 

had been inspired by a pastel of the Swiss 

painter Jean Etienne Liotard, La serveuse de 

chocolat, also known as La belle chocolatière. 

The illustration indicated the wholesome effect 

of chocolate milk and became inextricably 

bound with the name Droste. 

- Wikipedia Commons
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Recursive Definitions 2

recursion a method of defining functions in which the function being defined is 

applied within its own definition
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factorial(5)  =  5 * factorial(4)

=  5 * (4 * factorial(3))

=  5 * (4 * (3 * factorial(2)))

=  5 * (4 * (3 * (2 * factorial(1))))

=  5 * (4 * (3 * (2 * 1)))

=  120
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Recursive Definitions 3
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fibonacci(4)  =  fibonacci(3) + fibonacci(2)

=  fibonacci(2) + fibonacci(1) +

fibonacci(1) + fibonacci(0)

=  fibonacci(1) + fibonacci(0) +

fibonacci(1) + fibonacci(1) + fibonacci(0)

=  1 + 1 + 1 + 1 + 1

=  5
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Recursion Necessities 4

Every recursive algorithm must possess:

- a base case in which no recursion occurs

- a recursive case

There must be a logical guarantee that the base case is eventually reached, otherwise the 

recursion will not cease and we will have an infinite recursive descent.

Recursive algorithms may compute a value, or not.
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Extended Pseudo-code 5

To express recursive algorithms, we need to extend the pseudo-code notation to incorporate 

the notion of an interface to an algorithm:

algorithm <name> takes <list of inputs>

algorithm XtoN takes number X, number N

# Computes the value of X^N.

# Pre:  X, N are integers, N >= 0.

#

number XtoN # result

. . .

display XtoN # report result

halt

For example:
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Extended Pseudo-code 6

We must also be able to express the invocation of an algorithm:

<name> ( <list of input values to algorithm> )

For example: algorithm fiboN takes number N

# Computes the value of the N-th Fibonacci number.

# Pre:  N is a non-negative integer.

#

if N < 2                        # base case

display 1

endif

display fiboN(N-1) + fiboN(N-2)  # recursive case

halt
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Printing a Large Integer 7

Very large integers are (somewhat) easier to read if they are not simply printed as a 

sequence of digits:

12345678901234567890 vs   12,345,678,901,234,567,890

How can we do this efficiently?  The basic difficulty is that printing proceeds from left to 

right, and the number of digits that should precede the left-most comma depends on the 

total number of digits in the number.

Here's an idea; let N be the integer to be printed, then:

if N has no more than 3 digits, just print it normally

otherwise

print all but the last 3 digits

print a comma followed by the last 3 digits
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Printing a Large Integer 8

algorithm printWithCommas takes number N

# Prints N with usual comma-separation.

# Pre:  N is an integer.

#

if N < 0        # handle negative sign, if necessary

display '-'

N := -N 

endif

if ( N < 1000 ) # base case

display N

else

printWithCommas( N / 1000) # integer division!

display ','

display N % 1000

endif

halt
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Recursion vs Iteration 9

It is a mathematical theorem that any recursive algorithm can be expressed without 

recursion by using iteration, and perhaps some auxiliary storage.

The transformation from recursion to iteration may be simple or very difficult.

algorithm facN takes number N

# Computes the value of N!.

# Pre:  N is a non-negative integer.

#

if N < 2            # base case

display 1

endif

display N * facN(N-1) # recursive case

halt

algorithm facN takes number N

# Computes the value of N!.

# Pre:  N is a non-negative integer.

#

number Fac # result

Fac := 1

while N > 0

Fac := N * Fac

N   := N - 1

enwhile

display Fac

halt
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Tail Recursion 10

(pure) tail recursion

there is a single recursive call, and when it returns there are no subsequent 

computations in the caller

algorithm GCD takes number M, number N

# Computes the largest integer that divides both M and N.

# Pre:  M,N are a non-negative integers, not both 0.

# Credit:  Euclid

#

if N = 0                # base case

display M

endif

display GCD(N, M % N)    # recursive case

halt

Tail-recursive algorithms are particularly easy to transform into an iterative form.
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"Near" Tail Recursion 11

"near" tail recursion

there is a single recursive call, and when it returns there are only trivial subsequent 

computations in the caller; often called augmenting recursion

algorithm facN takes number N

# Computes the value of N!.

# Pre:  N is a non-negative integer.

#

if N < 2            # base case

display 1

endif

display N * facN(N-1) # recursive case

halt

"Near" tail-recursive algorithms are often easy to transform into an iterative form.
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K Queens Problem 12

Given a KxK chessboard, find a way to place K queens on the board so that no queen can 

attack another queen.

A queen can move an arbitrary number of squares vertically, horizontally or diagonally.

It's immediately clear that there must be 

one queen in every row and one queen in 

every column.

Here is one solution:

There are over 4 billion different ways to 

drop 8 queens onto an 8x8 board.

It's known that there are exactly 92 

distinct solutions to the problem.
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4 Queens Problem 13

Let's consider a variant on a 4x4 board… how to start?

Let's flag squares that are under attack with Xs, since we 

cannot put a queen there.

Let's process the board row by row, from the top down.

Let's start by putting a queen in the first square in row 1:
X X X

X X

X X

X X

Now for row 2… we have two choices, let's try the first one:

Oops… now all the squares in row 3 are under attack, so this 

cannot lead to a solution…
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4 Queens Problem 14

What to try next?

Let's backtrack… take back the last move and try a 

different one:

OK, now we have possibilities… let's fill the free 

square in row 3:

Rats!  Now there are no free squares left in row 4.

We can backtrack again, but that means we must now 

remove the 2nd and 3rd queens, since we've already 

tried all the possibilities for the 2nd one, and then we 

must consider a different spot for the 1st one…

X X X

X X X

X X X

X X X X
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4 Queens Problem 15

So, we'll try the 1st queen in column 2:

That leaves just one place for a queen in row 2:
X X X

X X X

X X X

X X
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4 Queens Problem 16

And, that leaves just one place for a queen in row 3:
X X X

X X X

X X X

X X X

And, that leaves just one place for a queen in row 4:
X X X

X X X

X X X

X X X

And, we have a solution… now can we deduce an algorithm?
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K Queens Problem 17

Let's suppose we have some way to represent a board configuration (size, location of 

queens, number of queens, etc.)

K Queens Algorithm

Try_config takes configuration C, number m

if C contains K queens

display C

halt

endif

for each square in row m of C

if square is free

place a queen in square

Try_config(C, m + 1)       # leads to soln?

remove queen from square   # no, backtrack

endif
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Towers of Hanoi 18

Move one disk at a time

No disk can sit on a smaller disk

Get all disks from pole 1 to pole 3

1 2 3

Algorithm idea:

Move top n-1 disks to pole 2

Move bottom disk to pole 3

Move disks from pole 2 to pole 3
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Analyzing Cost 19

How many times must a disk be moved from one pole to another to solve the problem?

Call this hanoi(n) where n is the number of disks; then from the preceding slide we have:
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n
hanoi n

hanoi n n


 

  

Hmm… recursion again.

This is an example of a recurrence relation (as are factorial and fibonacci seen earlier).

Now this does indicate that adding one more disk causes the number of disk moves to more 

or less double.
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Closed-form Solutions 20

But, we'd really like to have a closed-form (non-recursive) formula for hanoi(n) since that 

might be faster to evaluate.

Here it is:

For more information on useful techniques for solving recurrence relations, take Math 3134 

or CS 4104.

( ) 2 1nhanoi n  


