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Memory Reclamation Problem

● Concurrent programming is hard
– Non-blocking (lock-free) data structures require special 

treatment of deleted memory objects
– Garbage collectors are often impractical in C/C++

● Desirable properties for memory reclamation
– Non-blocking: protecting non-blocking data structures
– Robust: bound memory usage even when threads are 

stalled or preempted
– Transparent: avoid implicit assumptions about threads; 

they can be created/deleted dynamically



Hyaline
● General idea

– Distributed reference counting, triggered only when 
deleting objects

– Maintains multiple global lists of deleted objects
– Each list is used by a subset of threads
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Comparison
Scheme Performance Robust Transparent Extra 

Memory
API 

complexity

Reference 
Counting

Very Slow Yes Partially (swap) Double each 
pointer

Intrusive

Hazard Pointers Slow Yes No (deletion) 1 word Hard

Epoch Based 
Reclamation

Fast No No (deletion) 1 word Easy

Hazard Eras Fast Yes No (deletion) 3 words Hard

Interval Based 
Reclamation 
(2GEIBR)

Fast Yes No (deletion) 3 words Medium

Hyaline Very Fast No Yes 3 words Easy

Hyaline-1 Very Fast No Almost 3 words Easy

Hyaline-S Fast Yes Yes 3 words Medium

Hyaline-1S Fast Yes Almost 3 words Medium



Evaluation
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More details
● Code is open-source and available at:

– https://github.com/rusnikola/lfsmr
● Full paper is available as an arXiv report:

– https://arxiv.org/pdf/1905.07903.pdf

Thank you!

https://github.com/rusnikola/lfsmr
https://arxiv.org/pdf/1905.07903.pdf
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