
Brief Announcement
Hyaline: Fast and 
Transparent Memory 
Reclamation
Ruslan Nikolaev and Binoy Ravindran
rnikola@vt.edu, binoy@vt.edu

Systems Software Research Group
Virginia Tech, USA



Memory Reclamation Problem

● Concurrent programming is hard
– Non-blocking (lock-free) data structures require special 

treatment of deleted memory objects
– Garbage collectors are often impractical in C/C++

● Desirable properties for memory reclamation
– Non-blocking: protecting non-blocking data structures
– Robust: bound memory usage even when threads are 

stalled or preempted
– Transparent: avoid implicit assumptions about threads; 

they can be created/deleted dynamically



Hyaline
● General idea

– Distributed reference counting, triggered only when 
deleting objects

– Maintains multiple global lists of deleted objects
– Each list is used by a subset of threads

Handle 
(Thread i)

...

Handle 
(Thread j)

NRef

+ HRef 

0 NRef NRef

...NRefNRef NRef NRef

≤ 00

0

Head [HRef, HPtr]

New Head

NRef NRef NRef...

(1)

(2)

(3)



Comparison
Scheme Performance Robust Transparent Extra 

Memory
API 

complexity

Reference 
Counting

Very Slow Yes Partially (swap) Double each 
pointer

Intrusive

Hazard Pointers Slow Yes No (deletion) 1 word Hard

Epoch Based 
Reclamation

Fast No No (deletion) 1 word Easy

Hazard Eras Fast Yes No (deletion) 3 words Hard

Interval Based 
Reclamation 
(2GEIBR)

Fast Yes No (deletion) 3 words Medium

Hyaline Very Fast No Yes 3 words Easy

Hyaline-1 Very Fast No Almost 3 words Easy

Hyaline-S Fast Yes Yes 3 words Medium

Hyaline-1S Fast Yes Almost 3 words Medium



Evaluation

●●●●●

●●●●●

●●●●● ●●●●●

●●●●● ●●●●●
●●●●● ●●●●●

●●●●● ●●●●●
●●●●●

●●●●● ●●●●● ●●●●● ●●●●● ●●●●● ●●●●●

>>>>>

>>>>>
>>>>>

>>>>> >>>>> >>>>> >>>>> >>>>> >>>>> >>>>> >>>>> >>>>> >>>>> >>>>> >>>>> >>>>> >>>>>

0

25

50

75

100

125

1 9 18 27 36 45 54 63 72 81 90 99 108 117 126 135 144

Threads

T
hr

ou
gh

pu
t (

M
 o

ps
/s

ec
)

● >Leak Memory
Epoch

Hyaline
Hyaline−1

Hyaline−S
Hyaline−1S

IBR
HE

HP

●●●●● ●●●●● ●●●●● ●●●●● ●●●●● ●●●●● ●●●●● ●●●●● ●●●●●

●●●●●

●●●●●
●●●●●

●●●●●

●●●●●

●●●●●

●●●●● ●●●●●

>>>>> >>>>> >>>>> >>>>> >>>>> >>>>> >>>>> >>>>> >>>>> >>>>> >>>>> >>>>> >>>>> >>>>> >>>>> >>>>> >>>>>0

1000

2000

3000

1 9 18 27 36 45 54 63 72 81 90 99 108 117 126 135 144

Threads

R
et

ire
d 

O
bj

ec
ts

 p
er

 O
pe

ra
tio

n ●

>
Epoch
IBR

Hyaline
Hyaline−1

Hyaline−S
Hyaline−1S

HE
HP

●●●●●
●●●●●

●●●●●

●●●●●
●●●●●

●●●●● ●●●●● ●●●●● ●●●●●
●●●●● ●●●●● ●●●●● ●●●●● ●●●●● ●●●●● ●●●●●

●●●●●

0.10

0.15

0.20

0.25

1 9 18 27 36 45 54 63 72 81 90 99 108 117 126 135 144

Threads

T
hr

ou
gh

pu
t (

M
 o

ps
/s

ec
)

●Leak Memory
Epoch

Hyaline
Hyaline−1

Hyaline−S
Hyaline−1S

IBR

●●●●● ●●●●● ●●●●● ●●●●● ●●●●● ●●●●● ●●●●● ●●●●● ●●●●●

●●●●●

●●●●● ●●●●●
●●●●● ●●●●● ●●●●● ●●●●●

●●●●●

0

500

1000

1500

1 9 18 27 36 45 54 63 72 81 90 99 108 117 126 135 144

Threads

R
et

ire
d 

O
bj

ec
ts

 p
er

 O
pe

ra
tio

n ●Epoch
IBR

Hyaline
Hyaline−1

Hyaline−S
Hyaline−1S

Bonsai Tree

Hash Map

Xeon E7-8880 v3 2.30 GHz, 72 cores



More details
● Code is open-source and available at:

– https://github.com/rusnikola/lfsmr
● Full paper is available as an arXiv report:

– https://arxiv.org/pdf/1905.07903.pdf

Thank you!

https://github.com/rusnikola/lfsmr
https://arxiv.org/pdf/1905.07903.pdf

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6

