
Perfctr-Xen: A Framework for Performance Counter Virtualization
Ruslan Nikolaev, Godmar Back

Department of Computer Science

Virginia Tech, Blacksburg, VA 24061

Background and Motivation

Implementation

Results

Contributions

Figure 13. SPEC CPU2006: Relative

error for L2 cache misses

Figure 12. SPEC CPU2006: Relative

error for L2 cache references

· We used native execution environment as the baseline

· Exercised multiple VCPU/PCPU scenarios

· We ran our framework using different virtualization modes: paravirtualization and

hardware-assisted virtualization (HVM)

· A specially developed microbenchmark verified correctness and accuracy of a-mode

counters (Figure 9)

· PAPI built-in test verified correctness and accuracy of i-mode counters (Figures 7, 8)

· We executed macrobenchmarks from SPEC CPU 2006 to test our framework with real-

life applications (Figures 10-13)

· To verify profiling, we have chosen 429.mcf benchmark and used HPCToolkit (Table 2)

1. Each domain on 2
dedicated PCPUs; each
thread on a dedicated
VCPU.

2. Each domain on a
dedicated PCPU; all
threads in a domain on a
shared VCPU.

3. All domains on a shared
PCPU; all threads on a
shared VCPU.

4. Random migration
PCPUs and VCPUs

1. Native mode
2. Fully-virtualized Dom1

and Dom2, each on a
dedicated core

3. Fully-virtualized Dom1
and Dom2 on the same
core

4. Paravirtualized Dom0
and Dom1, each on a
dedicated core

5. Paravirtualized Dom0
and Dom1 on the same
core

Component Number of lines Details

Perfctr 563 VCPU support, hypervisor communication, etc.

Linux 36 shared info management, VIRQ PERFCTR

Xen 3488 perfctr-xen, shared info management, VIRQ PERFCTR

Table 3. Added or Modified code

Table 1. Libraries and frameworks for performance measurement

Sumthread,
Startthread

Sumthread,
Startthread

Sumvcpu,
Startvcpu

Sumvcpu,
Startvcpu

Sumthread,
Startthread

CPU

VCPUs

Threads
Guest

Hypervisor

Hardware

Sumvcpu,
Startvcpu

Interrupt mode (i-mode) counters

· We use save-and-restore mechanism to preserve proper interrupt capabilities

· Hypervisor delivers overflow interrupts to guest via VIRQ_PERFCTR virtual interrupts.

Upon receipt, guest kernel signals user thread

· Since virtual interrupts are delivered asynchronously (as soft interrupts), guest must

ensure that overflow interrupt is delivered to correct thread by rechecking overflow

status. If the thread causing overflow is suspended before virtual interrupt arrives at

guest, mark as pending and deliver on the next resume

· Our framework is based on perfctr library (which is widely used for non-virtualized

environments) and is fully compatible with many well-known toolkits such as PAPI and

HPCToolkit

· All above-mentioned toolkits can run unmodified as shown in Figure 3. Modifications

are only needed for the low-level performance counter layer as shown with (*)

· Guest’s and hypervisor’s states are maintained as shown in Figure 4

Accumulative mode (a-mode) counters

· Logical per-thread value

· Adjusted physical value for possible VCPU preemption

· Compensation for the hypercall

· Hypercall necessary for the new configuration only

)*)(*()(threadthreadthread StarttPhysSumtLog 

))(()(* vcpuvcpu StarttPhysSumtPhys 

)(** rthread tPhysStart 

· IaaS (Infrastructure as a Service) systems are gaining significant leverage among

developers. These systems widely use virtual machine monitors such as Type-I

hypervisors: Xen, KVM, VMWare ESX (Figure 1)

· Developers working in these systems need powerful tools for performance evaluation.

Commonly used performance analysis tools (e.g., PAPI) cannot be used because

existing VMM and guests do not provide necessary per-thread virtualization support

for hardware event counters. There are only a few existent solutions

· Widely used XenoProf is an extension of OProfile system-wide profiler. It does not

provide per-domain abstraction of hardware counter facilities (supports only 1 domain

at a time)

· Xen’s VPMU driver works only with hardware assisted virtualization and currently

supports very limited number of architecture generations. Each CPU generation code

for performance counting is completely incompatible with the other one, and VMM

must contain a great deal of architecture-specific code. In addition, Xen hypervisor is

commonly used in paravirtualized mode which does not use hardware assistance

Library or
Framework

Type Monitoring Direct
access

Interface used

Perf_events Low level Per thread Yes ioctl, mmap, sysctl, prctl

Perfctr Low level Per thread Yes ioctl, mmap, dev

Perfmon High and
low level

Per thread No syscalls, mmap, signals

PAPI High level Per thread Yes (w/
perfctr)

perfctr, perf events, perfmon

OProfile Profiler System wide N/A oprofilefs

TAU PerfExplorer Profiler Per thread N/A PAPI

HPCToolkit Profiler Per thread N/A PAPI

· To support per-thread monitoring in virtualized environments, the hardware event

counters must be virtualized. It may be challenging because of the mutual blindness of

the hypervisor and guest threads. Both inter-domain and intra-domain context switches

must be taken into account as shown in Figure 2

· Table 1 presents commonly used libraries and frameworks (in non-virtualized

environments) and their corresponding characteristics. These libraries work with

hardware event counters, and many of them provide per-thread virtualization (i.e. a

thread can obtain its logical event count from the global hardware event count). Notice

that some libraries provide “Direct Access” which means that a thread can obtain its

per-thread event count directly without using expensive system calls

· We want to provide an efficient and universal framework that can work in any mode of

virtualization. It must be compatible with commonly used toolkits (in non-virtualized

environments) such as PAPI, HPCToolkit, TAU PerfExplorer, so that they can be used

in virtualized environements. Performance Monitoring Unit (PMU) is extremely

architecture-specific. We want to reuse as much architecture-dependent code as

possible, so that new architectures can be added easily to our framework from the

existent codebase

Figure 2. Inter-domain and Intra-domain context switches must be

taken into account for proper virtualization

Figure 9.Microbenchmark for a-mode counters

This work was supported by NSF Award CSR #0720673

The work is published in the Proceedings of the 7th ACM

SIGPLAN/SIGOPS international conference on Virtual execution

environments (VEE 2011)

· We developed a framework for performance counter virtualization which is fully

compatible with widely used perfctr library. Our framework is very efficient, accounts for

overhead caused by hypercalls

· We have shown the validity of our frameworks using a number of different applications

such as SPEC CPU 2006 and HPCToolkit profiler

· Our framework is available under an open source license at

http://people.cs.vt.edu/~rnikola

Figure 8. PAPI overflow: Relative error

for i-mode counters (total cycles)

Figure 7. PAPI overflow: Relative error

for i-mode counters (FP instructions)

Table 2. HPCToolkit profiling results for

429.mcf, ratio virtualized/native (a) Branch

instructions, (b) Total cycles

a)

b)

Figure 11. SPEC CPU2006: Relative

error for Instructions Retired

Figure 10. SPEC CPU2006:

Relative error for TSC

1. Dom0 and Dom1 run
on separate PCPUs.
2. Dom0 and Dom1 run
on a shared PCPU.

Figure 3. Software layers in perctr-xen

Figure 4. Guest’s and hypervisor’s state values

Figure 5. Example scenario for virtualized counters

Figure 5 shows an example scenario. Initially, thread 0 in domain 0 is running.

· At point T0, thread 0 is suspended by the guest kernel and its accumulated event

count is recorded in Sumthread

· At T1, thread 0 is resumed. The hypervisor sets Sumvcpu = 0; upon return from the

hypercall, the guest records Startthread

· At point T2, the domain is suspended; the hypervisor records the number of events

elapsed in Sumvcpu and later resumes the domain at point T3. At this point the

hypervisor samples Startvcpu as Phys(T3)

· The logical value computed at time T4 reflects the sum of the three segments during

which the thread was active, while excluding those time periods during which the

thread or domain was suspended

Figure 6. Page mapping (a) in paravirtualized mode; (b) in HVM mode

Software Engineering Considerations

· In paravirtualized mode, shown in Figure 6 (a), the shared_info structure does not

appear as physical memory to the guest kernel. It is allocated by the hypervisor in

machine memory and appears at a fixed virtual address in the guest kernel’s address

space. The guest kernel uses a Xen Guest API (xen_remap_domain mfn_range) to

create an additional mapping to these machine frames

· In hardware-assisted mode, shown in Figure 6 (b), the guest can allocate the

shared_info in any of its physical page frames. The chosen physical address is

communicated from the guest kernel to the hypervisor. Linux’s standard mapping API

(vm_insert_page) can be used to add mappings into the user threads’ address spaces

· We expose the per-VCPU data structures of all VCPUs to every user thread. We also

added an additional field smp_id to the per-thread structure to record the VCPU on

which the thread is resumed. The user-level library uses this field as an index to

access the correct per-VCPU structure

· Thread or domain migrations may occur while accessing counters. We implemented an

optimistic approach in which we check if the values of the Startthread and Startvcpu fields

corresponding to the TSC counter changed between before and after the attempted

access. Such a change indicates a domain and/or thread migration, in which case we

retry the access until we succeed

· For the guest kernel driver, we replaced the functions that assumed direct access to

the hardware with the appropriate hypercalls

· For the hypervisor driver, we needed to provide glue code so that it could function

within the Xen hypervisor rather than the Linux kernel for which it was designed. It is

written in the form of preprocessor macros and inlined functions contained in a

separate header file, allowing us to avoid changes to most of the perfctr code

App1 App2 App3

Kernel 1 Kernel n

Hypervisor

Hardware

Figure 1. Type-I hypervisor architecture

a) b)

	poster.vsd
	Page-1

