Algorithm Design: GCD

- Problem solution through refinement
— GCD Example of use of loops
— Arguing the complexity of an algorithm

— Greek mathematics achievement: Euclid’'s
Algorithm

Barbara G. Ryder © Spring 1998 Algorithm Design: GCD(12)



How to find the GCD of 2 ints?

. Greatest common divisor
— Given two numbers. small , large
— Writeaclass method to find their GCD

- Example of refining a solution procedure
for a problem until you get it RIGHT!
(cheap and elegant)

- First approach: try largest possible guess
and try it; If doesn’t work, decrement guess
and try again. repeat.
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GCD - Algorithm 1

public static int GCD(int snmall, Iint |arge){
| nt div,
for (div=large; div>0; div--){
1f( ((large%iv))==0) &&
((smal 1 %div))==0) ) return div;

How many checksdo we do in theloop in the wor st
case? at most largeif checks

But largest common factor can’t belarger than small!
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GCD - Algorithm 2

public static int GCD(int snall, Iint |arge){
| nt div,
for (div=snall; div>0; div--){
1f ( ((large%i v)==0) &&
((smal |l %di v)==0) ) return div;
}
}

Do in worst case small iIf checks.
|stherea better way to do this?
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How GCD wor ks?

- Takel5and 18in algorithm 1

—when divis15- 15% 15==07? yes, 18% 15==07? no,
14 (no,no), 13 - (no,n0)

-12,11, 10,9, 8, 7, 6, 5, 4 all fail to produce (yes,yes)
— 3 succeeds

- Should only test the following
(divisor ,quotient) pairs. (1, 15), (2, 7.5), (3, 5)
— Then (4, 3.75) will have been already tested

— Sowhen div > quotient means you have already
checked thisdivisor, quotient pair If they are both
Integers
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GCD - Algorithm 3

public static int GCD(int small, int |large){
| nt di v=0, best=1, quo;
| oopLabel : while (true){
di v++;
quo = small/div;
|f (quo < div) break | oopLabel;
1f ( ((large%guo) == 0) &&
((smal | %guo) == 0) ) return quo;
1f ( ((large%iv) == 0) &&
((smal 1 %div) == 0) ) best = div;
}

return best:

}
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Algorithm 3 - trace

small =15, large= 18

div quo % quo
0 _ _

1 15 false
2 I false
3 5 false
4 3

loop exitsand returns 3.
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% div

true
false
true

OOHHH‘U
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Performance of Algm 3

- How many If checks? 2*sgrt(small)

- Can we use another form of loop for this
code?

— Want no redundant statements or messy
control flow
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Algorithm 3 -with While

I nt div=1l, best=1, quo=snall/div;
| oopLabel : while (div<quo){

1f ( ((large%guo) == 0) &&
((smal | %gguo) == 0) ) return quo;

1f ( ((large%iv) == 0) &&
((smal 1 %div) == 0) ) best = div;

di v++;

quo = smal |l /div;

}

return best:
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Algorithm 3 -with For

I nt best = 1, quo;

f1:. for (int div =1, true ; div++){
quo = snal |/ div;
I f (quo < div) break f1;

seems to add no code, but stopping condition harder to
understand with check being true
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Algorithm 3 - with Do-while

I nt div=1l, quo=snall/div;
dol: dof
1f ( ((large%guo...

di v++;
quo = smal |l /div;

}
while (div < quo):
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Which loop to use?

- Most straight forward to understand code
- Can makethem all work, but why?

. Redundant code or obscured control flow
are not desirable

- Generalized loop construct iswhat was used
In first code for algorithm
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General Loop Structure

public static int GCD(int small, int |large){
| nt di v=0, best=1, quo;
| oopLabel : while (true){

di v++;

quo = smal |l /div;

|f (quo < div) break | oopLabel;

y 1 ((large%guo) == 0) &&

stmtl i

((smal | 9%gquo) == 0) ) return quo;
stmt2| 1T ( ((large%div) == 0) &&
Y ((small %div) == 0) ) best = div;
}
return best;

}
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Bishop’s Method for GCD

. If large and small are both multiples of k,
then large - small isa multiple of k

— Note: large-small issmaller than large, so we
have reduced the problem to one easier to solve

— Need greatest multiple of large - small and
small.

-« Why? Ig=k*n; sm=k * m;
Solg-sm=k* (n-m) =k * diff
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Algorithm 4 - Bishop

public int static GCD (int snall,int |large){

| nt snmsave=snall, | gsave=l arge;
while (small = large) {
I1f (large > small) large = |large-snal | ;
el se {
Int tnp = small;//swap | arge and
small = large; //small
| arge = tnp;
}

} return sm
}//save of original argunents on entry I s not
/| | necessary
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How does thiswor k?

. large Isreduced by successive subtraction
(1.e., division) until it issmaller than small

- small and large arethen swapped

- Continuesuntil large == small
—then large i1sthe GCD (it can be 1)

. Bishop’sprogram isavariant of Algorithm
4
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Algorithm 4 Trace

small -6, large- 21

large small

21 6 How long does it take?

15 5 at least large/small steps
Which is better,

9 6

3 X large/small or sgrt(small) ?
Neither.

6 . lar ge - 2000, small - 2

3 3 lar ge - 2000, small - 1000

3isreturned
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Euclid’'s Method

- Recognizethat repeated subtraction is
division

- Exchangesmall andlarge whenlarge Is
replaced by large%small

. Greek mathematician Euclid discovered this
algorithm around 300 B.C.

— Father of Geometry

- Moral: in mathematicswe can’t ignore the
past
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Algm 5: Euclid’s M ethod

public static int GCD(int snmall, Iint |arge){
while ((large%nall) !'= 0){
Int tnp = |large%nal | ;
| arge = snal | ;
smal |l = tnp;
) i small - 6, large 28
return snmall; large small tmp
} 28 6 4
6 4 2
4 2
2 1sreturned
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Algm 6: Another Formulation

In class A define:
public static int GCD(int snall,int |arge){

Int rem= |large%mall;
If (rem==0) return small;
return A GCD(rem snmall);

small-6, large-28

Bert: What isGCD of 28, 67 ask Ernie 6,4
Erniec What isGCD of 6,47 ask Elmo 4,2
Elmo: What isGCD of 4, 2? 1t’s2!!
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Algorithm 6

- Problem decomposition in terms of function
calls

. Particular usage called recursion

. Succinct statement of solution of one
problem in terms of another reduced
problem
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