
Barbara G. Ryder Spring 1998
1

Algorithm Design: GCD(12)

Algorithm Design: GCDAlgorithm Design: GCD
• Problem solution through refinement

– GCD Example of use of loops

– Arguing the complexity of an algorithm

– Greek mathematics achievement: Euclid’s
Algorithm

Barbara G. Ryder Spring 1998
2

Algorithm Design: GCD(12)

How to find the GCD of 2 ints?How to find the GCD of 2 ints?
• Greatest common divisor

– Given two numbers: small , large

– Write a class method to find their GCD

• Example of refining a solution procedure
for a problem until you get it RIGHT!
(cheap and elegant)

• First approach: try largest possible guess
and try it; if doesn’t work, decrement guess
and try again. repeat.

Barbara G. Ryder Spring 1998
3

Algorithm Design: GCD(12)

GCD - Algorithm 1GCD - Algorithm 1
public static int GCD(int small, int large){

int div;

for (div=large; div>0; div--){

if(((large%div))==0) &&

 ((small%div))==0)) return div;

}

}

How many checks do we do in the loop in the worst
case? at most large if checks

But largest common factor can’t be larger than small!

Barbara G. Ryder Spring 1998
4

Algorithm Design: GCD(12)

GCD - Algorithm 2GCD - Algorithm 2
public static int GCD(int small, int large){

int div;

for (div=small; div>0; div--){

if (((large%div)==0) &&

((small%div)==0)) return div;

}

}

Do in worst case small if checks.

Is there a better way to do this?

Barbara G. Ryder Spring 1998
5

Algorithm Design: GCD(12)

How GCD works?How GCD works?
• Take 15 and 18 in algorithm 1

– when div is 15 - 15%15==0? yes, 18%15==0? no,
14 (no,no), 13 - (no,no)

– 12, 11, 10, 9, 8, 7, 6, 5, 4 all fail to produce (yes,yes)
– 3 succeeds

• Should only test the following
(divisor,quotient) pairs: (1, 15), (2, 7.5), (3, 5)
– Then (4, 3.75) will have been already tested
– So when div > quotient means you have already

checked this divisor, quotient pair if they are both
integers

Barbara G. Ryder Spring 1998
6

Algorithm Design: GCD(12)

GCD - Algorithm 3GCD - Algorithm 3
public static int GCD(int small, int large){

int div=0, best=1, quo;

loopLabel: while (true){

div++;

quo = small/div;

if (quo < div) break loopLabel;

if (((large%quo) == 0) &&

((small%quo) == 0)) return quo;

if (((large%div) == 0) &&

((small%div) == 0)) best = div;

}

return best;

}

Barbara G. Ryder Spring 1998
7

Algorithm Design: GCD(12)

Algorithm 3 - traceAlgorithm 3 - trace
small = 15, large = 18
div quo %quo %div best
0 __ __ __ 1
1 15 false true 1
2 7 false false 1
3 5 false true 3
4 3
loop exits and returns 3.

Barbara G. Ryder Spring 1998
8

Algorithm Design: GCD(12)

Performance of Algm 3Performance of Algm 3
• How many if checks? 2*sqrt(small)
• Can we use another form of loop for this

code?
– Want no redundant statements or messy

control flow

Barbara G. Ryder Spring 1998
9

Algorithm Design: GCD(12)

Algorithm 3 -with WhileAlgorithm 3 -with While
int div=1, best=1, quo=small/div;

loopLabel: while (div<quo){

if (((large%quo) == 0) &&

((small%quo) == 0)) return quo;

if (((large%div) == 0) &&

((small%div) == 0)) best = div;

div++;

quo = small/div;

}

return best;

Barbara G. Ryder Spring 1998
10

Algorithm Design: GCD(12)

Algorithm 3 -with ForAlgorithm 3 -with For
int best = 1, quo;

f1: for (int div = 1; true ; div++){

quo = small/div;

if (quo < div) break f1;

.....

}

seems to add no code, but stopping condition harder to
understand with check being true

Barbara G. Ryder Spring 1998
11

Algorithm Design: GCD(12)

Algorithm 3 - with Do-whileAlgorithm 3 - with Do-while
int div=1, quo=small/div;

do1: do{

if (((large%quo...

...

div++;

quo = small/div;

}

while (div < quo);

Barbara G. Ryder Spring 1998
12

Algorithm Design: GCD(12)

Which loop to use?Which loop to use?
• Most straight forward to understand code
• Can make them all work, but why?

• Redundant code or obscured control flow
are not desirable

• Generalized loop construct is what was used
in first code for algorithm

Barbara G. Ryder Spring 1998
13

Algorithm Design: GCD(12)

General Loop StructureGeneral Loop Structure
public static int GCD(int small, int large){

int div=0, best=1, quo;

loopLabel: while (true){

div++;

quo = small/div;

if (quo < div) break loopLabel;

if (((large%quo) == 0) &&

((small%quo) == 0)) return quo;

if (((large%div) == 0) &&

((small%div) == 0)) best = div;

}

return best;

}

stmt1

stmt2

Barbara G. Ryder Spring 1998
14

Algorithm Design: GCD(12)

Bishop’s Method for GCDBishop’s Method for GCD
• If large and small are both multiples of k,

then large - small is a multiple of k
– Note: large-small is smaller than large, so we

have reduced the problem to one easier to solve

– Need greatest multiple of large - small and
small.

• Why? lg = k * n; sm = k * m;

So lg - sm = k* (n-m) = k * diff

Barbara G. Ryder Spring 1998
15

Algorithm Design: GCD(12)

Algorithm 4 - BishopAlgorithm 4 - Bishop
public int static GCD (int small,int large){

int smsave=small, lgsave=large;

while (small != large) {

if (large > small) large = large-small;

else {

int tmp = small;//swap large and

small = large; //small

large = tmp;

}

} return sm;

}//save of original arguments on entry is not

//necessary

Barbara G. Ryder Spring 1998
16

Algorithm Design: GCD(12)

How does this work?How does this work?
• large is reduced by successive subtraction

(i.e., division) until it is smaller than small

• small and large are then swapped

• Continues until large == small
– then large is the GCD (it can be 1)

• Bishop’s program is a variant of Algorithm
4

Barbara G. Ryder Spring 1998
17

Algorithm Design: GCD(12)

Algorithm 4 TraceAlgorithm 4 Trace
small - 6, large - 21
large small
21 6
15 6
9 6
3 6
6 3
3 3
3 is returned

How long does it take?
at least large/small steps
Which is better,
 large/small or sqrt(small) ?
Neither.
large - 2000, small - 2
large - 2000, small - 1000

Barbara G. Ryder Spring 1998
18

Algorithm Design: GCD(12)

Euclid’s MethodEuclid’s Method
• Recognize that repeated subtraction is

division

• Exchange small and large when large is
replaced by large%small

• Greek mathematician Euclid discovered this
algorithm around 300 B.C.
– Father of Geometry

• Moral: in mathematics we can’t ignore the
past

Barbara G. Ryder Spring 1998
19

Algorithm Design: GCD(12)

public static int GCD(int small, int large){

while ((large%small) != 0){

int tmp = large%small;

large = small;

small = tmp;

}

return small;

}

Algm 5: Euclid’s MethodAlgm 5: Euclid’s Method

small - 6, large 28

large small tmp
28 6 4
 6 4 2
 4 2

2 is returned

Barbara G. Ryder Spring 1998
20

Algorithm Design: GCD(12)

Algm 6: Another FormulationAlgm 6: Another Formulation
in class A define:
public static int GCD(int small,int large){

int rem = large%small;

if (rem == 0) return small;

return A.GCD(rem, small);

}

small-6, large-28
Bert: What is GCD of 28, 6? ask Ernie 6,4
Ernie: What is GCD of 6,4? ask Elmo 4,2
Elmo: What is GCD of 4, 2? It’s 2!!

Barbara G. Ryder Spring 1998
21

Algorithm Design: GCD(12)

Algorithm 6Algorithm 6
• Problem decomposition in terms of function

calls

• Particular usage called recursion

• Succinct statement of solution of one
problem in terms of another reduced
problem

