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Algorithm Design: GCD(12)

Algorithm Design: GCDAlgorithm Design: GCD
• Problem solution through refinement

– GCD Example of  use of loops

– Arguing the complexity of an algorithm

– Greek mathematics achievement: Euclid’s 
Algorithm



Barbara G. Ryder Spring 1998
2

Algorithm Design: GCD(12)

How to find the GCD of 2 ints?How to find the GCD of 2 ints?
• Greatest common divisor

– Given two numbers: small , large

– Write a class method to find their GCD

• Example of refining a solution procedure 
for a problem until you get it RIGHT! 
(cheap and elegant)

• First approach: try largest possible guess 
and try it; if doesn’t work, decrement guess 
and try again. repeat.
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GCD - Algorithm 1GCD - Algorithm 1
public static int GCD(int small, int large){

int div;

for (div=large; div>0; div--){

if( ((large%div))==0) &&

    ((small%div))==0) ) return div;

}

}

How many checks do we do in the loop in the worst 
case?    at most large if checks

But largest common factor can’t be larger than small!
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GCD - Algorithm 2GCD - Algorithm 2
public static int GCD(int small, int large){

int div;

for (div=small; div>0; div--){

if ( ((large%div)==0) &&

((small%div)==0) ) return div;

}

}

Do in worst case small if checks.

Is there a better way to do this?
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How GCD works?How GCD works?
• Take 15 and 18 in algorithm 1

– when div is 15 -  15%15==0?  yes, 18%15==0? no, 
14 (no,no), 13 - (no,no)

– 12, 11, 10, 9, 8, 7, 6, 5, 4 all fail to produce (yes,yes)
– 3 succeeds

• Should only test the following 
(divisor,quotient) pairs: (1, 15), (2, 7.5), (3, 5)
– Then (4, 3.75) will have been already tested
– So when div > quotient  means you have already 

checked this divisor, quotient pair if they are both 
integers
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GCD - Algorithm 3GCD - Algorithm 3
public static int GCD(int small, int large){

int div=0, best=1, quo;

loopLabel: while (true){

div++;

quo = small/div;

if (quo < div) break loopLabel;

if ( ((large%quo) == 0) &&

((small%quo) == 0) ) return quo;

if ( ((large%div) == 0) &&

((small%div) == 0) ) best = div;

}

return best;

}
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Algorithm 3 - traceAlgorithm 3 - trace
small = 15, large = 18
div quo %quo %div best
0 __ __ __ 1
1 15 false true 1
2  7 false false 1
3  5 false true 3
4       3
loop exits and returns 3.
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Performance of Algm 3Performance of Algm 3
• How many if checks? 2*sqrt(small)
• Can we use another form of loop for this 

code?
– Want no redundant statements or messy 

control flow
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Algorithm Design: GCD(12)

Algorithm 3 -with WhileAlgorithm 3 -with While
int div=1, best=1, quo=small/div;

loopLabel: while (div<quo){

if ( ((large%quo) == 0) &&

((small%quo) == 0) ) return quo;

if ( ((large%div) == 0) &&

((small%div) == 0) ) best = div;

div++;

quo = small/div;

}

return best;
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Algorithm 3 -with ForAlgorithm 3 -with For
int best = 1, quo;

f1: for (int div = 1; true ; div++){

quo = small/div;

if (quo < div) break f1;

.....

}

seems to add no code, but stopping condition harder to 
understand with check being true
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Algorithm 3 - with Do-whileAlgorithm 3 - with Do-while
int div=1, quo=small/div;

do1: do{

if ( ((large%quo...

...

div++;

quo = small/div;

}

while (div < quo);
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Which loop to use?Which loop to use?
• Most straight forward to understand code
• Can make them all work, but why?

• Redundant code or obscured control flow 
are not desirable

• Generalized loop construct is what was used 
in first code for algorithm
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General Loop StructureGeneral Loop Structure
public static int GCD(int small, int large){

int div=0, best=1, quo;

loopLabel: while (true){

div++;

quo = small/div;

if (quo < div) break loopLabel;

if ( ((large%quo) == 0) &&

((small%quo) == 0) ) return quo;

if ( ((large%div) == 0) &&

((small%div) == 0) ) best = div;

}

return best;

}

stmt1

stmt2
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Bishop’s Method for GCDBishop’s Method for GCD
• If large and small are both multiples of k, 

then large - small is a multiple of k
– Note: large-small is smaller than large, so we 

have reduced the problem to one easier to solve

– Need greatest multiple of large - small and 
small.

• Why?  lg = k * n; sm = k * m; 

So lg - sm = k* (n-m) = k * diff
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Algorithm 4 - BishopAlgorithm 4 - Bishop
public int static GCD (int small,int large){

int smsave=small, lgsave=large;

while (small != large) {

if (large > small) large = large-small;

else {

int tmp = small;//swap large and 

small = large;  //small

large = tmp;

}

}  return sm;

}//save of original arguments on entry is not

//necessary
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How does this work?How does this work?
• large  is reduced by successive subtraction 

(i.e., division) until it is smaller than small

• small  and large  are then swapped

• Continues until large ==  small 
– then large  is the GCD (it can be 1)

• Bishop’s program is a variant of Algorithm 
4
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Algorithm 4 TraceAlgorithm 4 Trace
small  - 6, large - 21
large small
21 6
15 6
9 6
3 6
6 3
3 3
3 is returned

How long does it take?
at least large/small  steps
Which is better, 
  large/small  or sqrt(small) ?
Neither.
large - 2000, small - 2
large - 2000, small - 1000
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Euclid’s MethodEuclid’s Method
• Recognize that repeated subtraction is 

division

• Exchange small   and large   when large   is 
replaced by large%small

• Greek mathematician Euclid discovered this 
algorithm around 300 B.C.
– Father of Geometry

• Moral: in mathematics we can’t ignore  the 
past
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public static int GCD(int small, int large){

while ((large%small) != 0){

int tmp = large%small;

large = small;

small = tmp;

}

return small;

}

Algm 5: Euclid’s MethodAlgm 5: Euclid’s Method

small - 6, large 28

large small tmp
28 6 4
  6 4 2
  4 2

2 is returned
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Algorithm Design: GCD(12)

Algm 6: Another FormulationAlgm 6: Another Formulation
in class A define:
public static int GCD(int small,int large){

int rem = large%small;

if (rem == 0) return small;

return A.GCD(rem, small);

}

small-6, large-28
Bert: What is GCD of 28, 6?  ask Ernie 6,4
Ernie: What is GCD of 6,4?  ask Elmo 4,2
Elmo: What is GCD of 4, 2?  It’s 2!!
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Algorithm 6Algorithm 6
• Problem decomposition in terms of function 

calls

• Particular usage called recursion

• Succinct statement of solution of one 
problem in terms of another reduced 
problem


