
Barbara G. Ryder Spring 1998
1

Building a Class(8)

Building A ClassBuilding A Class
• Declarations

– Objects versus variables
– Scope of a declaration

• Java statements we know
• How to build a class

– Price Tickets example

• Introduction to inheritance
– How to extend classes?

Barbara G. Ryder Spring 1998
2

Building a Class(8)

DeclarationsDeclarations
• int i,h; //sets aside storage for integer

valued variables i and h
• UStime t;// creates a reference to an

UStime object which will be dynamically
created later using a new command
for(h=1;h<13;h++)

{ ...; t=new UStime(h,0);...}

//new command sets aside storage for a
// UStime object referred to by t

Barbara G. Ryder Spring 1998
3

Building a Class(8)

Declaration ScopeDeclaration Scope
for (int h = 1; h < 13; h++)

sum += h;

System.out.println(“h= “,h);//error

//because h no longer exists

int i; int sum=0;

for (i = 1; i <13; i++)

sum += i;

System.out.println(“i = “,i); //ok

Example 1

Example 2

scope of i

scope of h

Barbara G. Ryder Spring 1998
4

Building a Class(8)

Java Statements - So FarJava Statements - So Far
<statement> <output-stmt> | <assign-stmt>

| return <expr> | <if-stmt> |
<method_call> | <for-loop>

• Any of these can be used as the statement in
the then or else clause of an if statement

if(x>0||y<-1)System.out.println(
“first case”); else y += 3;

if (num<15) foo(); else num = 0;
if (x<0) for (int i=0; i<9; i++)

System.out.println (i);

Barbara G. Ryder Spring 1998
5

Building a Class(8)

Class DesignClass Design
• Coherence - class should be concerned with

one entity in a problem
– e.g., crew members, planes

• Separation of concerns - can use several
related classes to describe a complex entity
– Geometric shapes involve use of Segment,

Point, Circle, and Polygon classes
– Object-oriented programming favors small

methods with specific functionality, that
interact with each other

•

Barbara G. Ryder Spring 1998
6

Building a Class(8)

EncapsulationEncapsulation
• Information hiding - notion that a class only

reveals what is necessary to use it
– Methods a user needs to use
– Instance variables whose values are needed
– By convention, all methods and instance

variables are private, unless designated
public

• Objects should be available to users on a
limited basis

• Protects against unwitting or intentional
changes to objects

Barbara G. Ryder Spring 1998
7

Building a Class(8)

Object-oriented ProgrammingObject-oriented Programming
• Class designer must know how her class will

be used to write the necessary methods and
define the necessary instance variables

• Class users must know class interface
– Instance variables and method signatures (i.e.,

how to call each method and what kind of value
it returns)

• Data via methods - class designer chooses
what to reveal and what to conceal

Barbara G. Ryder Spring 1998
8

Building a Class(8)

Object-oriented ProgrammingObject-oriented Programming
• Kinds of methods

– Constructors - create new objects
– Observers - getX(), getY() in Point class
– Mutators - setTolerance() in Point class
– Other - distanceTo() in Point class

• Facilitates building of large programs by
many people
– Protects data values
– Separates namespaces of different pieces of

program

Barbara G. Ryder Spring 1998
9

Building a Class(8)

How to test programs?How to test programs?
• Use println’s liberally while debugging
• Always test both the true and false branches

of an if statement
• Pick data that will exercise different paths

through a nested if statement
• Test boundary values

– in Summation, test with limit==0
– in NimState, test with cnt==0

Barbara G. Ryder Spring 1998
10

Building a Class(8)

Class Diagrams in Bishop, p75Class Diagrams in Bishop, p75

Point Object Point extends Object

p Point p is a Point object

Gives a graphical depiction of relationship between classes,
derivation of objects, and interaction of methods in classes.

Barbara G. Ryder Spring 1998
11

Building a Class(8)

Price Tickets Program, Price Tickets Program, Bishop p 79ffBishop p 79ff

• Problem: to produce tickets for an event on
the computer
– Need 1,2,5,10 denominations

– Want easily distinguishable tickets

• Design idea: have tickets state 1, 2, 5, or 10
on their face and be of different sizes

222222222
222222222
222222222

555555555
555555555
555555555
555555555
555555555

Barbara G. Ryder Spring 1998
12

Building a Class(8)

Ticket Class DesignTicket Class Design
• Decompose problem into pieces
• Each ticket composed of 2 kinds of rows:

– Top or bottom row
– Middle row

– Define aLine object to correspond to a row
– Each aLine will have a left, center, right character
– Each aLine will have a printme() method

– Printing a ticket will consist of (possibly
repeated) printing of the consituent aLine
objects

Barbara G. Ryder Spring 1998
13

Building a Class(8)

Ticket Class DesignTicket Class Design
• Decide to use 3 classes:

– ticketMaster to print the tickets
– Ticket to form the ticket

– aLine to correspond to each row of a ticket

• Ticket construction
– Decide to set width of ticket and vary the height

– Need filler characters, top/bottom and sides
characters

Barbara G. Ryder Spring 1998
14

Building a Class(8)

Class Structure Class Structure

ticketMaster
 main()

Ticket
 hori
 vert
 price
 depth
 Ticket()
 printme()

aLine
 left
 right
 centre
 width
 aLine()
 printme()

Object

uses

Barbara G. Ryder Spring 1998
15

Building a Class(8)

aLine ClassaLine Class
class aLine extends Object

 private String left,right,centre;

private int width = 20;

public aLine(String l,String c,

String r){//constructor

left = l;

 right = r;

 centre = c;

 }

public void printme()

Barbara G. Ryder Spring 1998
16

Building a Class(8)

printme in aLine classprintme in aLine class
//prints a line of the ticket

public void printme(){

 System.out.print(left);

 for (int w=2; w < width; w++)

 System.out.print (centre);

 System.out.println (right);

}

Barbara G. Ryder Spring 1998
17

Building a Class(8)

Ticket classTicket class
class Ticket extends Object{

 private String hori, vert, price;

 private int depth;

 public Ticket(String h, String v,
int d, String p){

hori = h;//always use a length 1 string as h

 vert = v;//always use a length 1 string as v

 depth = d;

 price = p;//always use a length 1 string as p

}

Barbara G. Ryder Spring 1998
18

Building a Class(8)

Ticket classTicket class

void printme(){
 aLine topbot = new aLine(hori,hori,hori);
 aLine mid = new aLine (vert, price, vert);
 //code to print the ticket
 topbot.printme();
 int d;
 for (d=2; d<depth; d++)
 {mid.printme();}
 topbot.printme();
 System.out.println();//leave a blank line
//between tickets to ease cutting apart

}

Barbara G. Ryder Spring 1998
19

Building a Class(8)

ticketMaster classticketMaster class
class ticketMaster extends Object{
 public static void main (String [] args){
 System.out.println();// skip a line
 Ticket t1 = new Ticket("+","!",10,"1");
 t1.printme();
 Ticket t2 = new Ticket("+","!",10,"2");
 t2.printme();
 Ticket t5 = new Ticket("+","!",15,"5");
 t5.printme();
 Ticket t10 = new Ticket("+","!",15,"0");
 t10.printme();
 System.out.println();// skip a line
}
}

Barbara G. Ryder Spring 1998
20

Building a Class(8)

Sample OutputSample Output
++++++++++++++++++++

!111111111111111111!

!111111111111111111!

!111111111111111111!

!111111111111111111!

!111111111111111111!

!111111111111111111!

!111111111111111111!

!111111111111111111!

++++++++++++++++++++

Barbara G. Ryder Spring 1998
21

Building a Class(8)

Possible Changes to ConsiderPossible Changes to Consider
• You decide you want to print the tickets, 3

across on each page
– How to change the program?

– Is this an easy change?

• You decide to change the design of the
tickets themselves to incorporate the date of
the event
– How to change the program?
– Is this an easy change?

Barbara G. Ryder Spring 1998
22

Building a Class(8)

Inheritance: Extending ClassesInheritance: Extending Classes
• Every class extends another (topmost class is

Object)
• Often class hierarchy expresses an “is-a”

relation

Animal

Herbavore Carnivore

CatSheep Cow Hyena

Object

superclass

subclass

Barbara G. Ryder Spring 1998
23

Building a Class(8)

Why Extend Classes?Why Extend Classes?
• To share common attributes and methods

– i.e., to share code

• To create collections of useful classes which
divide the work of problem solution
between them
– Easier to maintain and test

• To create useful packages (Java word for
libraries) which others can extend and
specialize for their own needs

Barbara G. Ryder Spring 1998
24

Building a Class(8)

Method PlacementMethod Placement
• Where to define method or instance

variable(s) to be shared by instances of
subclasses?

• needsWater() in Animal class
• forageAmount() in Herbavore class
• range() in Carnivore class
• livesLeft() in Cat class
• kitsInLitter with instances of Cat class

Barbara G. Ryder Spring 1998
25

Building a Class(8)

Method LookupMethod Lookup
• chelsea is a Cat object
• We want chelsea.needsWater()

– First lookup needsWater() in Cat class
– If not found, then lookup needsWater() in

parent class to Cat, Carnivore
– If not found, then lookup needsWater() in

parent class of Carnivore, Animal.
– Apply found method to receiver chelsea

• Lookup proceeds up the tree from class of
object until a same-named method is found.

