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Building a Class(8)

Building  A ClassBuilding  A Class
• Declarations

– Objects versus variables
– Scope of a declaration 

• Java statements we know
• How to build a class 

– Price Tickets example

• Introduction to inheritance
– How to extend classes?
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Building a Class(8)

DeclarationsDeclarations
• int i,h; //sets aside storage for integer 

valued variables i and h
• UStime t;// creates a reference to an 

UStime object which will be dynamically 
created later using a new command
for(h=1;h<13;h++)

{ ...; t=new UStime(h,0);...}

//new command sets aside storage for a
// UStime object  referred to by t
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Building a Class(8)

Declaration ScopeDeclaration Scope
for (int h = 1; h < 13; h++)

sum += h;

System.out.println(“h= “,h);//error 

//because h no longer exists

int i; int sum=0;

for (i = 1; i <13; i++)

sum += i;

System.out.println(“i = “,i); //ok

Example 1 

Example 2 

scope of i

scope of h



Barbara G. Ryder Spring 1998
4

Building a Class(8)

Java Statements - So FarJava Statements - So Far
<statement> <output-stmt> | <assign-stmt> 

| return <expr> | <if-stmt> |
<method_call> | <for-loop>

• Any of these can be used as the statement in 
the then or else clause of an if statement

if(x>0||y<-1)System.out.println(
“first case”); else y += 3;

if (num<15) foo(); else num = 0;
if (x<0) for (int i=0; i<9; i++) 

System.out.println (i);
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Class DesignClass Design
• Coherence - class should be concerned with 

one entity in a problem
– e.g., crew members, planes

• Separation of concerns - can use several 
related classes to describe a complex entity
– Geometric shapes involve use of  Segment, 

Point, Circle, and Polygon classes
– Object-oriented programming favors small 

methods with specific functionality, that 
interact with each other

•
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EncapsulationEncapsulation
• Information hiding - notion that a class only 

reveals what is necessary to use it
– Methods  a user needs to use
– Instance variables whose values are needed
– By convention, all methods and instance 

variables  are private, unless designated 
public

• Objects should be available to users on a 
limited basis

• Protects against unwitting or intentional 
changes to objects



Barbara G. Ryder Spring 1998
7

Building a Class(8)

Object-oriented ProgrammingObject-oriented Programming
• Class designer must know how her class will 

be used to write the necessary methods and 
define the necessary instance variables

• Class users must know class interface
– Instance variables and method signatures (i.e., 

how to call each method and what kind of value 
it returns)

• Data via methods - class designer chooses  
what to reveal and what to conceal
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Object-oriented ProgrammingObject-oriented Programming
• Kinds of methods

– Constructors - create new objects
– Observers - getX(), getY() in Point class
– Mutators - setTolerance() in Point class
– Other - distanceTo() in Point class

• Facilitates building of large programs by 
many people
– Protects data values
– Separates namespaces of different pieces of 

program
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Building a Class(8)

How to test programs?How to test programs?
• Use println’s liberally while debugging
• Always test both the true and false branches 

of an if statement
• Pick data that will exercise different paths 

through a nested if statement
• Test boundary values

– in Summation,  test with limit==0 
– in NimState, test with cnt==0
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Class Diagrams in Bishop, p75Class Diagrams in Bishop, p75

Point Object Point extends Object

p Point p is a Point object

Gives a graphical depiction of relationship between classes,
derivation of objects, and interaction of methods in classes.
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Building a Class(8)

Price Tickets Program, Price Tickets Program, Bishop p 79ffBishop p 79ff

• Problem: to produce tickets for an event on 
the computer
– Need 1,2,5,10 denominations

– Want easily distinguishable tickets

• Design idea: have tickets state 1, 2, 5, or 10 
on their face and be of different sizes

222222222
222222222
222222222

555555555
555555555
555555555
555555555
555555555
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Ticket Class DesignTicket Class Design
• Decompose problem into pieces
• Each ticket composed of 2 kinds of rows:

– Top or bottom row
– Middle row

– Define aLine object to correspond to a row
– Each aLine will have a left, center, right character
– Each aLine will have a printme() method

– Printing a ticket will consist of (possibly 
repeated) printing of the consituent aLine 
objects
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Ticket Class DesignTicket Class Design
• Decide to use 3 classes: 

– ticketMaster to print the tickets
– Ticket to form the ticket

– aLine to correspond to each row of a ticket

• Ticket construction
– Decide to set width of ticket and vary the height

– Need filler characters, top/bottom and sides 
characters
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Class Structure Class Structure 

ticketMaster
  main()

Ticket
  hori
  vert
  price
  depth 
  Ticket()
   printme()

aLine
  left
  right
  centre
  width
  aLine()
  printme()

Object

uses
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aLine ClassaLine Class
class aLine extends Object

 private String left,right,centre;

private int width = 20;

public aLine(String l,String c,

String r){//constructor

left = l;

        right = r;

        centre = c;

        }

public void printme()
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printme in aLine classprintme in aLine class
//prints a line of the ticket

public void printme(){

     System.out.print(left);

     for (int w=2; w < width; w++)

     System.out.print (centre);

     System.out.println (right);

}
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Ticket classTicket class
class Ticket extends Object{

   private String hori, vert, price;

   private int depth;

 public Ticket(String h, String v, 
int d, String p){

hori = h;//always use a length 1 string as h

    vert = v;//always use a length 1 string as v

      depth = d;

    price = p;//always use a length 1 string as p

}



Barbara G. Ryder Spring 1998
18

Building a Class(8)

Ticket classTicket class

void printme(){
 aLine topbot = new aLine(hori,hori,hori);
 aLine mid = new aLine (vert, price, vert);
 //code to print the ticket
 topbot.printme();
 int d;
 for (d=2; d<depth; d++)
 {mid.printme();}
 topbot.printme();
 System.out.println();//leave a blank line 
//between tickets to ease cutting apart

}
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ticketMaster classticketMaster class
class ticketMaster extends Object{
  public static void main (String [] args){
  System.out.println();// skip a line
  Ticket t1 = new Ticket("+","!",10,"1");
  t1.printme();
  Ticket t2 = new Ticket("+","!",10,"2");
  t2.printme();
  Ticket t5 = new Ticket("+","!",15,"5");
  t5.printme();
  Ticket t10 = new Ticket("+","!",15,"0");
  t10.printme();
  System.out.println();// skip a line
}
}
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Sample OutputSample Output
++++++++++++++++++++    

!111111111111111111!

!111111111111111111!

!111111111111111111!

!111111111111111111!

!111111111111111111!

!111111111111111111!

!111111111111111111!

!111111111111111111!

++++++++++++++++++++
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Possible Changes to ConsiderPossible Changes to Consider
• You decide you want to print the tickets, 3  

across on each page
– How to change the program?

– Is this an easy change?

• You decide to change the design of the 
tickets themselves to incorporate the date of 
the event
– How to change the program?
– Is this an easy change?
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Inheritance: Extending ClassesInheritance: Extending Classes
• Every class extends another (topmost class is 

Object)
• Often class hierarchy expresses an “is-a” 

relation

Animal

Herbavore Carnivore

CatSheep Cow Hyena

Object

superclass

subclass
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Why Extend Classes?Why Extend Classes?
• To share common attributes and methods

– i.e., to share code

• To create collections of useful classes which 
divide the work of problem solution 
between them
– Easier to maintain and test

• To create useful packages (Java word for 
libraries) which others can extend and 
specialize for their own needs 
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Method PlacementMethod Placement
• Where to define method or instance 

variable(s) to be shared by instances of 
subclasses?

• needsWater() in Animal class
• forageAmount() in Herbavore class
• range() in Carnivore class
• livesLeft() in Cat class
• kitsInLitter with instances of Cat class
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Method LookupMethod Lookup
• chelsea is a Cat object
• We want chelsea.needsWater()

– First  lookup needsWater() in Cat class
– If not found, then lookup needsWater() in 

parent class to Cat, Carnivore
– If not found, then lookup needsWater() in 

parent class of Carnivore, Animal. 
– Apply found method to receiver chelsea

• Lookup proceeds up the tree from class of 
object until a same-named method is found.


