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ExceptionsExceptions
• Input from a file
• Output to a file

• Exceptions
– Handling - local, external

– Try, catch, finally
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Example - Read from a FileExample - Read from a File
import java.io.*;

import cs111.io.*;

class SumfromFile extends Object{

public static void main(String[] args) throws 
IOException {

//sums a sequence of numbers on a file ended by -1.0

   TokenStream infile = new TokenStream("input");

   double sum = 0.0, d = 0.0;

   for (;d != -1.0;){

           d = infile.readDouble();

           if (d != -1.0) sum += d;

        }

   System.out.println("sum = " + sum);

}}

sumfile.java
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Output to a FileOutput to a File
• Can write output to a file instead of to your 

screen
<output-file-decl> PrintWriter 

<stream-name> = new PrintWriter(
new FileWriter( “<filename> “));

 PrintWriter fileout = new 
PrintWriter(new FileWriter(“out1”));

• Can use PrintWriter same as System.out; 
has all the methods: println, print

• Complication of file output: buffering
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BufferingBuffering
• Computer, for efficiency, is actually writing 

to a buffer in memory which is then 
transferred to a file, automatically

• Must make sure all output is transferred to 
the file eventually; do a “flush” operation

• Buffer is flushed when the file is closed. 
Always close your file.

<close-invoke> stream-name>.close( );
fileout.close( );
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Read+Write with FilesRead+Write with Files
import java.io.*;
import cs111.io.*;
class SumwithFiles extends Object{
public static void main(String[] args) throws 

IOException {
//sums a sequence of numbers on a file ended by -1.0
  TokenStream infile = new TokenStream("numbers");
  PrintWriter outf = new PrintWriter (new FileWriter 

("answer"));
  double sum = 0.0, d = 0.0;
  for (;d != -1.0;){
         d = infile.readDouble();
         if (d != -1.0) sum += d;
  }
  outf.println("sum = " + sum);
  outf.close();
}}

sumfileio.java



Barbara G. Ryder Spring 1998
6Exceptions (11)

ExceptionsExceptions
• What are exceptions?

– Unexpected events during execution

– Java has many predefined exceptions, especially 
in I/O classes

– File not found,   FileNotFoundException
– No more data,   EOFException
– Disk problem,  IOException
– Problem on network, InterruptedIOException

– Exceptions can be defined by user
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ExceptionsExceptions
• Why have them?

– To cope with unusual conditions so program 
can continue execution

• How handled?
– Locally - have exception handler code within 

method that raises the exception
– Externally - pass exception up call chain to 

caller method for handling
– Results in flow of control between methods
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ExceptionsExceptions
• Method must tell Java compiler if it handles 

an exception
– To pass exception up to caller method, must use 

throws clause in method declaration
public static void main (String[ ] args) 

throws IOException { 

– To handle exception with a local catch clause 
leave throws clause out of method declaration

public static void main (String [ ] args) {
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Syntax of Try, Catch, FinallySyntax of Try, Catch, Finally
<block> { <statements> }
<try-block> try <block> 

[ <catch-list>]  [ <finally-block>]
<catch-list> <catch-clause> 
<catch-list> <catch-clause> <catch-list>
<catch-clause> catch

 (<except-type> <identifier>) <block>
<finally-block> finally <block>
Each catch clause must handle a different exception.
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Local Catch: EOFExceptionLocal Catch: EOFException
import java.io.*;

import cs111.io.*;

class Sumexcept extends Object{

public static void main(String[] args) throws IOException {

// sums a sequence of numbers entered from the keyboard

  TokenStream inp = new TokenStream();

  double sum = 0.0; double d;

  System.out.println(" Enter numbers to be summed ");

  try{ //user types control-d to signal end of input

     for (;;){//indefinite loop or loop forever

         d = inp.readDouble();//readDouble throws IOException

         sum += d;}   //so main needs throws clause

        }

  catch (EOFException e) {System.out.println("sum = " + sum);}

}}

sumexcept.java
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How catch works?How catch works?
• If no exception generated within try

– Try completes

– Execution continues after last catch

• If exception is generated within try
– Check for matching catch, in order, after the 

try

– If match, execute that catch clause and resume 
execution after last catch

– If no match, throw exception to caller
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External Catch: IOExceptionExternal Catch: IOException

public double readDouble( ) throws IOException{

...

try{//code to read double numbers off the keyboard

}

catch (NumberFormatException e){

System.out.println (“item + “ is an invalid double, 
try again.”);

...

}

...

}

50 romulus!ryder> java Sumexcept
 Enter numbers to be summed
Input an double: 1 2 3 x
x is an invalid double, try again.
Input an double: 1 2 3 4
Input an double: sum = 16.0
51 romulus!ryder>

from TokenStream class
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Dynamic HandlingDynamic Handling

in Sumexcept,
main() 

readDouble()

calls

throws IOException
Java runtime 
system

handles 
EOFException

handles 
NumberFormatException

penultimate
exception 
handler
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Summary of HandlingSummary of Handling
• Method which detects problem either issues 

a throw  or handles exception with a catch

• Method that catches the exception is a 
dynamic choice, depending on call chain

• What happens when exception is raised?
– If handled locally, continue execution normally

– If thrown, abort execution and look for handler 
in caller; continue up call chain until find 
handler

– Java runtime system is final handler
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FinallyFinally
• Finally   block is used to do cleanup after all 

other processing associated with the try   is 
executed

• Finally  is executed whether or not 
exception is thrown
– e.g., to close a stream
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Use of TryUse of Try
• Textbook example 4.6 uses two constructs

– Try inside an indefinite for:  for (; ; ) {  try {...}  ... }

– Exceptions possible but not necessary 
FileNotFoundException

– Need way to break out of for loop: break, continue

– For inside of a try:   try{  for (; ;) {...}  ...}

– Exceptions required EOFException

– Continue until raise the exception, then end try   and 
return result
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Example of Loop NestingExample of Loop Nesting
Overall structure:
• Outer loop reads a sequence of filenames off 

another file and creates a new input stream 
for each filename

• Inner loop reads data from each file until 
encounters -1.0 marker and then computes 
sum

• Try-block ends execution gracefully when 
no more files are left to read from
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InitializationInitialization
import java.io.*;
import cs111.io.*;
class SumUsingFiles extends Object{
public static void main(String[] args) throws 

IOException {
// reads in a file name and then sums the integers on
// that file

//inputfiles contains all the filenames as strings
   TokenStream infile = new TokenStream("inputfiles");
//all output to go to file answers
   PrintWriter outf = new PrintWriter (new FileWriter 

("answers"));
 String file;

DoubleLoopInput.java
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Try Block and Outer LoopTry Block and Outer Loop
try{ while (true){//declare new file to read numbers
     file = new String(infile.readString());
      System.out.println(" file is " + file);
      TokenStream inp = new TokenStream(file);
      double d = inp.readDouble();
      System.out.println("number =" + d);
      double sum = 0.0;
//********inner loop**********

System.out.println("sum of numbers on file= " 
+ sum);

      //when leave loop have ended the numbers
      outf.println("sum of numbers on file= " + 

sum);
    } }
catch (EOFException e) {
      System.out.println("reached eof");
      outf.close();
      }
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Inner LoopInner Loop
while (d != -1.){

     sum += d;

     d =inp.readDouble();

     System.out.println("in loop =" + d);

 }

Contents of file1: 1 2 3 4 5 6 7 8 9 10 -1.
Contents of file2: 10  20  30  40  50  60 -1.
Contents of file3: 100  200  300  -1.
Contents of inputfiles: file1

file2
file3
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OutputOutput
05 remus!111> java SumUsingFiles
 file is file1
number =1.0

in loop =2.0
in loop =3.0

in loop =4.0
in loop =5.0
in loop =6.0

in loop =7.0
in loop =8.0
in loop =9.0

in loop =10.0
in loop =-1.0
sum of numbers on file= 55.0

 file is file2

number =10.0
in loop =20.0
in loop =30.0

in loop =40.0
in loop =50.0
in loop =60.0

in loop =-1.0
sum of numbers on file= 210.0

 file is file3
number =100.0
in loop =200.0

in loop =300.0
in loop =-1.0
sum of numbers on file= 600.0

reached eof
106 remus!111>
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Alternative Design Alternative Design 
• for inner loop, if we encoded a count of 

number of inputs on each file, in front of the 
actual inputs

for (int i = inp.readInt( );  i == 0;  i - -) {
d = inp.readDouble( );
sum += d;

                        System.out.println("in loop =" + d);
                }
This gives structure :  while (true) { ... for (...) {} ...}


