
Barbara G. Ryder Spring 1998
1Exceptions (11)

ExceptionsExceptions
• Input from a file
• Output to a file

• Exceptions
– Handling - local, external

– Try, catch, finally

Barbara G. Ryder Spring 1998
2Exceptions (11)

Example - Read from a FileExample - Read from a File
import java.io.*;

import cs111.io.*;

class SumfromFile extends Object{

public static void main(String[] args) throws
IOException {

//sums a sequence of numbers on a file ended by -1.0

 TokenStream infile = new TokenStream("input");

 double sum = 0.0, d = 0.0;

 for (;d != -1.0;){

 d = infile.readDouble();

 if (d != -1.0) sum += d;

 }

 System.out.println("sum = " + sum);

}}

sumfile.java

Barbara G. Ryder Spring 1998
3Exceptions (11)

Output to a FileOutput to a File
• Can write output to a file instead of to your

screen
<output-file-decl> PrintWriter

<stream-name> = new PrintWriter(
new FileWriter(“<filename> “));

 PrintWriter fileout = new
PrintWriter(new FileWriter(“out1”));

• Can use PrintWriter same as System.out;
has all the methods: println, print

• Complication of file output: buffering

Barbara G. Ryder Spring 1998
4Exceptions (11)

BufferingBuffering
• Computer, for efficiency, is actually writing

to a buffer in memory which is then
transferred to a file, automatically

• Must make sure all output is transferred to
the file eventually; do a “flush” operation

• Buffer is flushed when the file is closed.
Always close your file.

<close-invoke> stream-name>.close();
fileout.close();

Barbara G. Ryder Spring 1998
5Exceptions (11)

Read+Write with FilesRead+Write with Files
import java.io.*;
import cs111.io.*;
class SumwithFiles extends Object{
public static void main(String[] args) throws

IOException {
//sums a sequence of numbers on a file ended by -1.0
 TokenStream infile = new TokenStream("numbers");
 PrintWriter outf = new PrintWriter (new FileWriter

("answer"));
 double sum = 0.0, d = 0.0;
 for (;d != -1.0;){
 d = infile.readDouble();
 if (d != -1.0) sum += d;
 }
 outf.println("sum = " + sum);
 outf.close();
}}

sumfileio.java

Barbara G. Ryder Spring 1998
6Exceptions (11)

ExceptionsExceptions
• What are exceptions?

– Unexpected events during execution

– Java has many predefined exceptions, especially
in I/O classes

– File not found, FileNotFoundException
– No more data, EOFException
– Disk problem, IOException
– Problem on network, InterruptedIOException

– Exceptions can be defined by user

Barbara G. Ryder Spring 1998
7Exceptions (11)

ExceptionsExceptions
• Why have them?

– To cope with unusual conditions so program
can continue execution

• How handled?
– Locally - have exception handler code within

method that raises the exception
– Externally - pass exception up call chain to

caller method for handling
– Results in flow of control between methods

Barbara G. Ryder Spring 1998
8Exceptions (11)

ExceptionsExceptions
• Method must tell Java compiler if it handles

an exception
– To pass exception up to caller method, must use

throws clause in method declaration
public static void main (String[] args)

throws IOException {

– To handle exception with a local catch clause
leave throws clause out of method declaration

public static void main (String [] args) {

Barbara G. Ryder Spring 1998
9Exceptions (11)

Syntax of Try, Catch, FinallySyntax of Try, Catch, Finally
<block> { <statements> }
<try-block> try <block>

[<catch-list>] [<finally-block>]
<catch-list> <catch-clause>
<catch-list> <catch-clause> <catch-list>
<catch-clause> catch

 (<except-type> <identifier>) <block>
<finally-block> finally <block>
Each catch clause must handle a different exception.

Barbara G. Ryder Spring 1998
10Exceptions (11)

Local Catch: EOFExceptionLocal Catch: EOFException
import java.io.*;

import cs111.io.*;

class Sumexcept extends Object{

public static void main(String[] args) throws IOException {

// sums a sequence of numbers entered from the keyboard

 TokenStream inp = new TokenStream();

 double sum = 0.0; double d;

 System.out.println(" Enter numbers to be summed ");

 try{ //user types control-d to signal end of input

 for (;;){//indefinite loop or loop forever

 d = inp.readDouble();//readDouble throws IOException

 sum += d;} //so main needs throws clause

 }

 catch (EOFException e) {System.out.println("sum = " + sum);}

}}

sumexcept.java

Barbara G. Ryder Spring 1998
11Exceptions (11)

How catch works?How catch works?
• If no exception generated within try

– Try completes

– Execution continues after last catch

• If exception is generated within try
– Check for matching catch, in order, after the

try

– If match, execute that catch clause and resume
execution after last catch

– If no match, throw exception to caller

Barbara G. Ryder Spring 1998
12Exceptions (11)

External Catch: IOExceptionExternal Catch: IOException

public double readDouble() throws IOException{

...

try{//code to read double numbers off the keyboard

}

catch (NumberFormatException e){

System.out.println (“item + “ is an invalid double,
try again.”);

...

}

...

}

50 romulus!ryder> java Sumexcept
 Enter numbers to be summed
Input an double: 1 2 3 x
x is an invalid double, try again.
Input an double: 1 2 3 4
Input an double: sum = 16.0
51 romulus!ryder>

from TokenStream class

Barbara G. Ryder Spring 1998
13Exceptions (11)

Dynamic HandlingDynamic Handling

in Sumexcept,
main()

readDouble()

calls

throws IOException
Java runtime
system

handles
EOFException

handles
NumberFormatException

penultimate
exception
handler

Barbara G. Ryder Spring 1998
14Exceptions (11)

Summary of HandlingSummary of Handling
• Method which detects problem either issues

a throw or handles exception with a catch

• Method that catches the exception is a
dynamic choice, depending on call chain

• What happens when exception is raised?
– If handled locally, continue execution normally

– If thrown, abort execution and look for handler
in caller; continue up call chain until find
handler

– Java runtime system is final handler

Barbara G. Ryder Spring 1998
15Exceptions (11)

FinallyFinally
• Finally block is used to do cleanup after all

other processing associated with the try is
executed

• Finally is executed whether or not
exception is thrown
– e.g., to close a stream

Barbara G. Ryder Spring 1998
16Exceptions (11)

Use of TryUse of Try
• Textbook example 4.6 uses two constructs

– Try inside an indefinite for: for (; ;) { try {...} ... }

– Exceptions possible but not necessary
FileNotFoundException

– Need way to break out of for loop: break, continue

– For inside of a try: try{ for (; ;) {...} ...}

– Exceptions required EOFException

– Continue until raise the exception, then end try and
return result

Barbara G. Ryder Spring 1998
17Exceptions (11)

Example of Loop NestingExample of Loop Nesting
Overall structure:
• Outer loop reads a sequence of filenames off

another file and creates a new input stream
for each filename

• Inner loop reads data from each file until
encounters -1.0 marker and then computes
sum

• Try-block ends execution gracefully when
no more files are left to read from

Barbara G. Ryder Spring 1998
18Exceptions (11)

InitializationInitialization
import java.io.*;
import cs111.io.*;
class SumUsingFiles extends Object{
public static void main(String[] args) throws

IOException {
// reads in a file name and then sums the integers on
// that file

//inputfiles contains all the filenames as strings
 TokenStream infile = new TokenStream("inputfiles");
//all output to go to file answers
 PrintWriter outf = new PrintWriter (new FileWriter

("answers"));
 String file;

DoubleLoopInput.java

Barbara G. Ryder Spring 1998
19Exceptions (11)

Try Block and Outer LoopTry Block and Outer Loop
try{ while (true){//declare new file to read numbers
 file = new String(infile.readString());
 System.out.println(" file is " + file);
 TokenStream inp = new TokenStream(file);
 double d = inp.readDouble();
 System.out.println("number =" + d);
 double sum = 0.0;
//********inner loop**********

System.out.println("sum of numbers on file= "
+ sum);

 //when leave loop have ended the numbers
 outf.println("sum of numbers on file= " +

sum);
 } }
catch (EOFException e) {
 System.out.println("reached eof");
 outf.close();
 }

Barbara G. Ryder Spring 1998
20Exceptions (11)

Inner LoopInner Loop
while (d != -1.){

 sum += d;

 d =inp.readDouble();

 System.out.println("in loop =" + d);

 }

Contents of file1: 1 2 3 4 5 6 7 8 9 10 -1.
Contents of file2: 10 20 30 40 50 60 -1.
Contents of file3: 100 200 300 -1.
Contents of inputfiles: file1

file2
file3

Barbara G. Ryder Spring 1998
21Exceptions (11)

OutputOutput
05 remus!111> java SumUsingFiles
 file is file1
number =1.0

in loop =2.0
in loop =3.0

in loop =4.0
in loop =5.0
in loop =6.0

in loop =7.0
in loop =8.0
in loop =9.0

in loop =10.0
in loop =-1.0
sum of numbers on file= 55.0

 file is file2

number =10.0
in loop =20.0
in loop =30.0

in loop =40.0
in loop =50.0
in loop =60.0

in loop =-1.0
sum of numbers on file= 210.0

 file is file3
number =100.0
in loop =200.0

in loop =300.0
in loop =-1.0
sum of numbers on file= 600.0

reached eof
106 remus!111>

Barbara G. Ryder Spring 1998
22Exceptions (11)

Alternative Design Alternative Design
• for inner loop, if we encoded a count of

number of inputs on each file, in front of the
actual inputs

for (int i = inp.readInt(); i == 0; i - -) {
d = inp.readDouble();
sum += d;

 System.out.println("in loop =" + d);
 }
This gives structure : while (true) { ... for (...) {} ...}

