
Barbara G. Ryder CS111 Spring 1998 1Fundamentals(2)

Java FundamentalsJava Fundamentals
• Problem solving

– NIM

• Rudiments of Java
– Classes, objects, methods, constructors

– Declarations, statements, output

• Backus Naur Form (BNF)

Barbara G. Ryder CS111 Spring 1998 2Fundamentals(2)

Goal: Problem Solving Goal: Problem Solving
•• Problem solvingProblem solving

–– Defining the problemDefining the problem

–– Designing a solutionDesigning a solution

–– Implementing a solutionImplementing a solution

–– Testing your solution and debugging itTesting your solution and debugging it

–– How to decide your solution “works”How to decide your solution “works”

•• How to do this in an object-oriented style?How to do this in an object-oriented style?

Barbara G. Ryder CS111 Spring 1998 3Fundamentals(2)

Problem SolvingProblem Solving
• Algorithm

– Precise, unambiguous set of steps to follow to
solve a problem

• Simple game: NIM
– n objects

– players alternate turns

– a player must pickup either 1 or 2 objects

– loser is player who picks up last object

Barbara G. Ryder CS111 Spring 1998 4Fundamentals(2)

NIMNIM

• What is optimal strategy for playing NIM?

• Must assume each player tries to win game
• What do we know about the game?

• If 1 object left,
– Pick it up and declare self “loser” !!??!!

– n=1 is a losing state for whoever has that turn

Barbara G. Ryder CS111 Spring 1998 5Fundamentals(2)

NIMNIM
• If 2 objects left,

– Pick up 1 object and force opponent to lose

– Pickup 2 objects and lose; NO

– n=2 is a winning state

• If 3 objects left,
– Pickup 2 objects and force opponent to lose

– n=3 is winning state

Barbara G. Ryder CS111 Spring 1998 6Fundamentals(2)

NIM AnalysisNIM Analysis

• A plays from 6 pieces:
– A removes 2, B removes 2, A removes 1, A

wins ☺

– A removes 2, B removes 1, A removes 2, A
wins ☺

– A removes 1, B removes 2, A removes 2, A
wins ☺

– A removes 1, B removes 1, A removes 2, B
removes 1, A loses L

– So A always removes 2 to guarantee a win!

Barbara G. Ryder CS111 Spring 1998 7Fundamentals(2)

NIM AnalysisNIM Analysis
• Easier to reason about the game from its

end to its beginning.
– n=1 is a losing state, n=2, n=3 are winning

states
– n=4? if take 1 or 2 put opponent into n=3 or n=

2, both winning states; therefore, n=4 is a
losing state!

– n=5? if take 1, put opponent into n=4 which is a
loss for him. if take 2, put opponent into n=3
which is a win for him; therefore, will always
take 1 and win!

Barbara G. Ryder CS111 Spring 1998 8Fundamentals(2)

NIM StrategyNIM Strategy
• n = 1 2 3 4 5 6 7 8 9 10 11 12
 L W W L W W L W W L W W

• How many objects to remove?
– Can be calculated each time

– Can encode in a formula

• Rule:
– If n is multiple of 3, remove 2

– If n is not multiple of 3, remove 1

Barbara G. Ryder CS111 Spring 1998 9Fundamentals(2)

NIM(3)NIM(3)
• Simple game: NIM(3)

– n objects

– players alternate turns

– player must pickup 1, 2 or 3 objects

– loser is player who picks up last object

• What’s the optimal strategy for winning?

Barbara G. Ryder CS111 Spring 1998 10Fundamentals(2)

NIM(3)NIM(3)
• n=1 is losing state
• n=2 is winning state

• n=3 is winning state
• n=4 is winning state

• n=5 is losing state...

Barbara G. Ryder CS111 Spring 1998 11Fundamentals(2)

NIM(3) StrategyNIM(3) Strategy
n= 1 2 3 4 5 6 7 8 9 10 11 12 13
 L W W W L W W W L W W W L

r= 0 1 2 3 0 1 2 3 0 1 2 3 0
 for r = (n+3)%4 where % yields remainder

from integer division
– If r is not zero, remove r objects

– If r is zero, remove 1 object

Barbara G. Ryder CS111 Spring 1998 12Fundamentals(2)

NIM(k) StrategyNIM(k) Strategy
• Remove 1, 2, 3,...,(k-1), or k on each move
• Rule:

– r = (n+k)%(k+1)

– If r not zero, remove r objects

– If r is zero, remove 1 objects

• Works for any game of this family.

Barbara G. Ryder CS111 Spring 1998 13Fundamentals(2)

Next StepNext Step
• Write a program that can play NIM

against a person, using the winning
strategy we derived

• Need to know intrinsic components of a
Java program before doing this

• Basic idea we have used is same notion as
in IBM Deep Blue chess program which
beat Gary Kasparov last year!

Barbara G. Ryder CS111 Spring 1998 14Fundamentals(2)

Example 1, AirportExample 1, Airport

•• Objects - airplanes, crew members, food Objects - airplanes, crew members, food
trucks, baggage trams, etc.trucks, baggage trams, etc.

•• ActionsActions
–– removeBaggage for baggage tramsremoveBaggage for baggage trams

–– takeOff for planestakeOff for planes

–– loadMeals for food trucksloadMeals for food trucks

Barbara G. Ryder CS111 Spring 1998 15Fundamentals(2)

FundamentalsFundamentals
• Program - set of interdependent classes

with one specified as the distinguished
class (where computation starts)

• Class (or type) - a description of attributes
(properties) and operations (capabilities)
shared by some objects in the problem
being solved
– e.g., plane, foodTruck, crew, baggageTram

Barbara G. Ryder CS111 Spring 1998 16Fundamentals(2)

FundamentalsFundamentals
• Class

– Each attribute (sometimes called instance
variable) described by a Java declaration

– e.g., Seating capacity of a 747

– Each operation is a Java method
– e.g., Assigning a flight schedule to a crew member

• Object - instance of a class; something with
specific attribute values for which the
class’s operations make sense

– e.g., a specific crew member, a particular plane

Barbara G. Ryder CS111 Spring 1998 17Fundamentals(2)

Example 1, Airport Example 1, Airport
Crew Class Attribute a Crew object
name Jane Doe
home phone 888-111-2323
based at EWR
job co-pilot
specialties CPR, navigation
Crew Class Operations
assign to flight number
schedule annual training refresher
takes vacation with startdate, enddate

Barbara G. Ryder CS111 Spring 1998 18Fundamentals(2)

Example 2, NIMExample 2, NIM
Nim Game Attribute a Nim Game object
Total stones 6

Nim Class Operations
Remove one stone

Remove two stones

Start game with pile of stones

Barbara G. Ryder CS111 Spring 1998 19Fundamentals(2)

Java TermsJava Terms
• Method - operation consisting of a

sequence of instructions

• Statement - a complete instruction

• Identifier - a name
– Must begin with a letter

– No embedded spaces allowed

– Upper case and lower case distinguished
– e.g., takesVacation and TakesVacation are

different!

Barbara G. Ryder CS111 Spring 1998 20Fundamentals(2)

More Java TermsMore Java Terms
• Variable - a data item of primitive type

– boolean (Boolean) true, false

– int (integer) -1, 0, 5

– double (real number) 2.5, -.03

• Different than objects

• Used as auxiliary values in Java, to do simple
calculations and as simple properties of
objects

Barbara G. Ryder CS111 Spring 1998 21Fundamentals(2)

VariablesVariables
• Declaration creates storage for a variable

int totalStones;

int allStones, newpile;

• Assignment associates a value with a
variable
totalStones = 15;

• Defined operations
– e.g., arithmetic, comparison

totalStones - 2, totalStones > 20

totalStones

15

Barbara G. Ryder CS111 Spring 1998 22Fundamentals(2)

Defining Syntax: IntegersDefining Syntax: Integers
<digit> 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9

<integer-number> <digit>

<integer-number> <integer-number> <digit>

<integer-number> can be 1,

<integer-number> can be 2,
<integer-number> can be 12,

<integer-number> can be 21, etc.

Barbara G. Ryder CS111 Spring 1998 23Fundamentals(2)

Defining SyntaxDefining Syntax
• Bishop, p 20 “An identifier in Java consists of

letters and digits, but must start with a letter.
Spaces are not allowed and capital and small
letters are considered different...”

• Sequence of letters and digits, starting
with a letter

Barbara G. Ryder CS111 Spring 1998 24Fundamentals(2)

A BNF Definition - IdentifierA BNF Definition - Identifier
<digit> 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9

<letter> A | a | B | b| C | c | D | d | E | e | F| f | G | g |
H | h | I | i | J | j | K | k | L | l | M | m | O | o | P | p | Q |
q | R | r | S | s | T | t | U | u | V | v | W | w | X | x | Y | y |
Z | z

<identifier> <letter>
<identifier> <letter> <digit>
<identifier> <letter> <letter>
<identifier> <identifier> <letter>
<identifier> <identifier> < digit>

Barbara G. Ryder CS111 Spring 1998 25Fundamentals(2)

IdentifierIdentifier
<identifier> <letter> can be A
<identifier> <letter> <digit> can be x1
<identifier> <letter> <letter> can be oK
<identifier> <identifier> <letter> can be

oKA, x1b or AA
<identifier> <identifier> <digit> can be

oKA1 or A123
Rule: have to build the construct by

substituting right-hand-side for the
nonterminal on the left of the rule.

Barbara G. Ryder CS111 Spring 1998 26Fundamentals(2)

Derivation of A123bDerivation of A123b
<identifier> <identifier> <letter>

 <identifier> <digit> <letter>
 <identifier> <digit><digit> <letter>
 <identifier> <digit> <digit> <digit> <letter>
 <letter> <digit> <digit> <digit> <letter>
 A <digit> <digit> <digit> <letter>

 A 1<digit> <digit> <letter>

 A 1 2<digit> <letter>

 A 1 2 3 <letter>

A 1 2 3 b

Barbara G. Ryder CS111 Spring 1998 27Fundamentals(2)

BNF - Tool for Defining SyntaxBNF - Tool for Defining Syntax
output statement

System.out.println (items);
System.out.println ();
System.out.print (items);

Can be 3 rules in BNF, with read as “produces”,
< output-statement > System.out.println (<items>);
< output-statement > System.out.println ();
< output-statement > System.out.print (<items>);

or 1 rule written in shorthand, where | means “or”,
< output-statement> System.out.println (<items>); |

System.out.println (); | System.out.print (<items>);

Bishop, p 27

Barbara G. Ryder CS111 Spring 1998 28Fundamentals(2)

Backus Naur Form (BNF)Backus Naur Form (BNF)

• A description language for the “shape” or
syntax of programming language constructs

• Consists of terminals, nonterminals, rules

• Each rule corresponds to a block diagram in
Bishop text
– Nonterminal is in top box
– Choices of right-hand-sides are in bottom box
– Terminals are in plain font; nonterminals in

italics; keywords (which are terminals) in
boldface

Barbara G. Ryder CS111 Spring 1998 29Fundamentals(2)

Backus Naur FormBackus Naur Form
• Terminals

– Atomic building blocks of the language

– Keywords shown in color

• Nonterminals
– Written as < nonterminal name >

• Rules for forming constructs use
terminals, nonterminals and constructs we
already have formed form other rules
 Nonterminal right-hand-side

