
Barbara G. Ryder  Spring 1998
1Inheritance (16)

Inheritance - Assignment5Inheritance - Assignment5
• Expr objects

– What they look like?

• Inheritance hierarchy
– Inheriting instance variables and methods

– How to do method lookup?
– Polymorphism

– Abstract classes

• Complex objects
– Recursive methods

– Structural equality

Barbara G. Ryder  Spring 1998
2Inheritance (16)

Expr ObjectsExpr Objects
• Examples of expressions

– 1, 2 + 3, (4 + 51) * 14, 16 - 1, -3, -(6 - 4)
• Operators: +, -, *, /, % (unary minus)

– Each operator takes one or two Expr operands
– Can be simple constants (e.g., 1, 50, 3) or

subexpressions themselves, as %3 or (4 + 51) the
first operand in (4 + 51) * 14 (see below)

*

+

4 51

14

(4 + 51) (4 + 51) * 14

Barbara G. Ryder  Spring 1998
3Inheritance (16)

Expr Objects - StructureExpr Objects - Structure

*

+

4 51

14

Times_Expr

Plus_Expr Const_Expr

Const_ExprConst_Expr

(4 + 51) * 14

Times_Expr (Plus_Expr (Const_Expr,Const_Expr),Const_Expr)

operand1 operand2

Barbara G. Ryder  Spring 1998
4Inheritance (16)

Inheritance Hierarchy -Inheritance Hierarchy -
Instance VariablesInstance Variables

Object

Expr

Unary_Expr Binary_Expr

Plus_Expr

Minus_Expr

Times_Expr

Divide_Expr

Const_Expr

operator

operand
operand1
operand2c

Uminus

Barbara G. Ryder  Spring 1998
5Inheritance (16)

Inheriting Instance VariablesInheriting Instance Variables
• A Times_Expr object consists of an operator

(in Expr), and operand1, operand2 (in
Binary_Expr)

operator

operand1
operand2

Must be initialized in Expr

Must be initialized in Binary_Expr

Every Times_Expr object is also a Binary_Expr object
and an Expr object, since Times_Expr class extends
Binary_Expr and Binary_Expr class extends Expr

Barbara G. Ryder  Spring 1998
6Inheritance (16)

Example I : 1 + 2Example I : 1 + 2

operator

operand1
operand2

Plus_Expr object:

Const_Expr(1)
Const_Expr(2)

 +

+

1 2

or pictorially:

Barbara G. Ryder  Spring 1998
7Inheritance (16)

Example II : (4 + 51) * 14Example II : (4 + 51) * 14

 *

 +

Const_Expr (4)
Const_Expr (51)

Plus_Expr
Const_Expr(14)

*

+

4 51

14

or pictorially:

Time_Expr object:

Barbara G. Ryder  Spring 1998
8Inheritance (16)

Inheritance Hierarchy- Inheritance Hierarchy-
Inheriting MethodsInheriting Methods

Object

Expr

Unary_Expr Binary_Expr

Plus_Expr

Minus_Expr

Times_Expr

Divide_Expr

Const_Expr

operator

operand

operand1
operand2

c getFirstOperand()
getSecondOperand()

commute()

getOperand()

commute()
Uminus

Barbara G. Ryder  Spring 1998
9Inheritance (16)

InheritanceInheritance
• Class Times_Expr extends class

Binary_Expr which extends class Expr

• If times is a Times_Expr object, where do
we find methods which can be invoked on
times?
– times.commute()

– times.getFirstOperand(),
times.getSecondOperand()

Barbara G. Ryder  Spring 1998
10Inheritance (16)

Method LookupMethod Lookup
• Without inheritance, method must be in

class of receiver

• With inheritance, method used is in class of
receiver or its “closest” ancestor class
– Method lookup starts in class of receiver and

proceeds up the tree until first method of same
name is found

– commute() is in Times_Expr
– getFirstOperand(),getSecondOperand()

are in Binary_Expr

Barbara G. Ryder  Spring 1998
11Inheritance (16)

Abstract ClassesAbstract Classes
• Can define methods (and implementations)

in an abstract class which can be inherited
by subclasses

• Can also contain instance variables to be
inherited by subclasses

• Abstract classes in Assignment 5: Expr,
Unary_Expr, Binary_Expr
– Non-abstract classes are at leaves of the Expr

inheritance tree

Barbara G. Ryder  Spring 1998
12Inheritance (16)

Abstract ClassesAbstract Classes
• Useful when you want to define only part of

an implementation

• Abstract classes
– Abstract methods are signatures of promised

methods to be provided in subclasses of the
abstract class

– Can provide these through definition or inheritance

– No objects can be created as instances of an
abstract class

– Because abstract method implementations don’t exist

Barbara G. Ryder  Spring 1998
13Inheritance (16)

Assignment 5: ExpressionsAssignment 5: Expressions

Object

Expr

Unary_Expr Binary_Expr

Uminus

Plus_Expr

Minus_Expr

Times_Expr

Divide_Expr

Const_Expr

operator

operand

operand1
operand2

c
equals()

equals()

equals()

getOperand()

getFirstOperand()
getSecondOperand()

commute() commute()
eval()

eval()
eval()

eval()

eval()

eval()

abstract eval()
abstract equals()

Barbara G. Ryder  Spring 1998
14Inheritance (16)

Eval()Eval()
• Abstract in Expr, only signature provided
• Implementation provided in Const_Expr,

Plus_Expr, Times_Expr, Minus_Expr,
Divide_Expr

• Provides a way to evaluate an Expr object

Barbara G. Ryder  Spring 1998
15Inheritance (16)

Constructors with InheritanceConstructors with Inheritance
• With inheritance, within a constructor for a

subclass object, constructors for the
superclass are implicitly called by system

• If instance variable data needs initialization
in a superclass, can use super to
explicitly call constructor of superclass with
initialization values

Barbara G. Ryder  Spring 1998
16Inheritance (16)

Constructors - ExampleConstructors - Example
public abstract class Expr extends Object
{ Expr(String s)//constructor
{ operator = s; }

}
public abstract class Unary_Expr
{ Unary_Expr(Expr e, String s)
{ super(s); operand = e;}

}
public class Uminus
{ Uminus (Expr e, String s)
{ super(e,s); }

Expr

Unary_Expr

Uminus

Uminus u = new Uminus (new Const_Expr(3),”%”)

Barbara G. Ryder  Spring 1998
17Inheritance (16)

SuperSuper
• Super acts as a reference to an object as an

instance of its superclass

• The reference to super in the Unary_Expr
class constructor, means call the Expr
constructor with argument String s.
– Implicitly, when a subclass object is created, the

constructor of the superclass is called before
anything else is done in the subclass constructor

– If arguments are needed, super(<args>) is used
to call the superclass constructor explicitly.

Barbara G. Ryder  Spring 1998
18Inheritance (16)

ObjectsObjects
• Simple objects have instance variables of

primitive types

• Complex objects have instance variables
which themselves are objects
– e.g., Expr objects with instance variables that are

other Expr objects

– Why needed? allows for all possible kinds of
subexpressions:

1 + 2, 1 + (3 + 4), 1 + (2 * 5), 1 + %4, etc.

• Requires us to define operands as Expr’s

Barbara G. Ryder  Spring 1998
19Inheritance (16)

Equals()Equals()
• Tests structural equality

– Two Expr objects are structurally equal if their
operand(s) are structurally equal and they have
the same operator

– i.e., Plus_Expr objects can only be equal to
other Plus_Expr objects

– e.g., 2 + 1 is equal to 2 + 1, but not to 1 + 2;
 2*3 + 4 is equal to (2*3) + 4, but not to (2*2)+6

• Provided by inheritance for all kinds of
binary or unary expressions, defined in
Const_Expr

Barbara G. Ryder  Spring 1998
20Inheritance (16)

Equals()Equals()
• Equals() is example of a useful recursive

function on Expr objects

• Const_Expr objects are equal to other
Const_Expr objects representing the same
integer value
– 2 equals 2, 2 not equal to 5

• Unary_Expr objects are equal only to other
Unary_Expr objects, if their operands are
equal and their operator is the same
– %1 equal to %1 but not equal to %(1*1)

Barbara G. Ryder  Spring 1998
21Inheritance (16)

Equals()Equals()
• Binary_Expr objects are equal if both are

Binary_Expr objects, their first operands are
equal, their second operands are equal and
their operators are equal

• Remember this is structural equality NOT
equal in value (such as 1 + 3 and 5 + %1)

• Can think of it as “sliding” one expression tree
over another and “matching” shape and nodes

• Example of polymorphism, where a function
can take parameters of different types

Barbara G. Ryder  Spring 1998
22Inheritance (16)

Equals()Equals()
in Const_Expr:
public boolean equals(Expr other)

{ if (!(other instanceof Const_Expr)) return false;

 else return (this.c == (other.eval()));

}

instanceof is a way of checking the runtime class membership of an
object. red expression returns true when other is a Const_Expr object
and false otherwise;

method checks that other is a Const_Expr object and if so, checks its
value versus the value of the receiver object

2 3equals?

Barbara G. Ryder  Spring 1998
23Inheritance (16)

Equals()Equals()
in Unary_Expr:

public boolean equals(Expr other)

{ if (!(other instanceof Unary_Expr)) return false;

 else if
((other.getOperator()).equals(this.getOperator()) &&
(operand.equals(((Unary_Expr)other).getOperand())))

 return true;

 else return false;

}

%

2

%

2

equals? %

2
equals?

+

3 4

this
this

other
other

Barbara G. Ryder  Spring 1998
24Inheritance (16)

Equals()Equals()
in Binary_Expr:
public boolean equals(Expr other)

{ if (!(other instanceof Binary_Expr)) return false;

 else if
(!(this.getOperator().equals(other.getOperator())))

return false;

 else return

 ((this.getFirstOperand().equals(
((Binary_Expr)other).getFirstOperand()))

 &&

 (this.getSecondOperand().equals(
(Binary_Expr)other).getSecondOperand())));

}

other can be a Const_Expr,
Plus_Expr, Times_Expr,
Divide_Expr, Minus_Expr,
or Uminus

Barbara G. Ryder  Spring 1998
25Inheritance (16)

Equals() in Binary_ExprEquals() in Binary_Expr

equals?

+ +

1 2 1 3

+ /

1 2 1 3

+ *

1 2 1 3

+ *

1 2 1 4

equals?

Barbara G. Ryder  Spring 1998
26Inheritance (16)

Equals() in Binary_ExprEquals() in Binary_Expr

+ +

1 1 *

3 4

%

2

+ +

1 1 *

3 4

%

2

1. see both are Binary_Expr’s
then check operators same

2. check first operands same
through call which in this case
calls equals in Const_Expr

Barbara G. Ryder  Spring 1998
27Inheritance (16)

Equals() in Binary_ExprEquals() in Binary_Expr

+ +

1 1 *

3 4

%

2

3. check second operands
through call to equals() in Unary_Expr.
returns false since 2nd Expr is not unary!

Methods we called in
example (in order):

equals() in Binary_Expr
getOperator()
getFirstOperand()
equals() in Const_Expr
getSecondOperand()
equals() in Binary_Expr

