
Barbara G. Ryder Spring 1998
1

Looping(10)

LoopingLooping
• Generalized loops

– Do-while

– While

– For

• Structured loop exit statements
– Break

– Continue

• Input from keyboard
– Streams and TokenStream Class

– See JavaGently, 4.1-4.3

Barbara G. Ryder Spring 1998
2

Looping(10)

Generalized Loop ConstructGeneralized Loop Construct
• Generalized loop construct:
 <loop-header> { //either of statements

<statements>1 //can be empty
<test>
<statements>2

}
• Execution: <loop-header> <stmts>1 <test>
<stmts>2 <stmts>1 <test> <stmts>2 <stmts>1

<test> exit loop

Barbara G. Ryder Spring 1998
3

Looping(10)

For LoopFor Loop
<loop-header> { <start> for {

<statements>1

<test> <check>
<statements>2 <block> <update>

} }
<for-loop>

for (<start> ; <check> ; <update>) {
<block>};

Barbara G. Ryder Spring 1998
4

Looping(10)

While LoopWhile Loop
<while-loop> while (<conds>) <block>;
where the variables in <conds> are initialized

before the loop starts and <block> should
contain statement(s) changing the values of
variables in <conds>

• Execution: repeat the following:
<conds> <block> <conds> <block> ... <conds>

exit loop

Barbara G. Ryder Spring 1998
5

Looping(10)

While LoopWhile Loop
<loop-header> { //initialize <conds>

while{

<statements>1

<test> <conds>
<statements>2 <block>

} }

Barbara G. Ryder Spring 1998
6

Looping(10)

Do-while LoopDo-while Loop
<do-while-loop> do {<block>

while <cond>};

where the variables in <cond> are changed by
statements in <block>

• Execution model: <block> <cond>
<block> <cond>... <cond> exit loop

• Test here is AFTER loop body statements

• Always do first iteration

Barbara G. Ryder Spring 1998
7

Looping(10)

Do-while loopDo-while loop
loop-header> { //initialize <conds>

do{

<statements>1 <block>

<test> while <cond>
<statements>2

} }

Barbara G. Ryder Spring 1998
8

Looping(10)

LoopsLoops
• Do-while loops always perform their first

iteration; While and for loops check their
test before doing the first iteration

• Do-while loops perform their check after
the loop body, whereas while and for loops
perform their check before their loop body

• Do-while and while loops are used in
situations where counting loop iterations
isn’t appropriate

Barbara G. Ryder Spring 1998
9

Looping(10)

Uses of LoopsUses of Loops
• For loops are used when number of

iterations is known in advance

• While and do-while loops are used when a
condition signals the end of processing in
the loop

• for (; ;){...} is equivalent to while (true) {...}
• Need a way to exit an indeterminate loop

– break - exit current block

– continue - start next iteration

Barbara G. Ryder Spring 1998
10

Looping(10)

While Loop ExampleWhile Loop Example
class Summation extends Object{

public static void main(String[] args) {
//sums all numbers until their sum reaches 500

//

 int sum=0, i = 1;

 while (sum < 500){
 sum = sum + i;

 i++;

}

System.out.println("sum of numbers from 1 to " +
(i-1) + " is " + sum);

}

}
why (i - 1)?

sumwhile.java

Barbara G. Ryder Spring 1998
11

Looping(10)

For Loop, Same ExampleFor Loop, Same Example
class Summation extends Object{

public static void main(String[] args) {

//sums all numbers from 1 to 1000

//but stops at an n, when sum from 1 to n reaches 500

//

 int sum=0,i;

 f1: for (i = 1; i<=1000; i++){

 sum = sum + i;

 if (sum>500) break f1;

 }

 System.out.println("sum of numbers from 1 to "
+ i + " is " + sum);

}

} 10 romulus!111> java Summation
sum of numbers from 1 to 32 is 528

sumwbreak.java

Barbara G. Ryder Spring 1998
12

Looping(10)

BreakBreak and and ContinueContinue
 loop1: for (...){

....
loop2: for (....){

...
if (...) continue loop1;
if (...) break loop1

loop3: while (...){
if (...) break loop3;
if (...) continue loop2;

}
}

}

Barbara G. Ryder Spring 1998
13

Looping(10)

Nested While Loop with BreakNested While Loop with Break
class Summation extends Object{
public static void main(String[] args) {
//sums 1..n for all numbers from 1 to 1000 and prints sums,
//but stops at an n, when sum from 1 to n reaches 500
 int sum,i=1,j;
 w1: while (i < 1000){
 sum = 0;
 j = 1;
 w2: while (j <= i){
 sum = sum + j;
 if (sum>500)

{System.out.println("sum greater “
“than 500 for sum 1 to j="+j);

 break w1;}
 j++;
 }
 System.out.println("sum of numbers from 1 to "
 + i + " is " + sum);
 i++;
 } } }

sumdoublewbreak.java

Barbara G. Ryder Spring 1998
14

Looping(10)

Output of ExampleOutput of Example
7 romulus!111> java Summation

sum of numbers from 1 to 1 is 1

sum of numbers from 1 to 2 is 3

sum of numbers from 1 to 3 is 6

...

sum of numbers from 1 to 31 is 496

sum greater than 500 for sum 1 to j=32

8 romulus!111>

Barbara G. Ryder Spring 1998
15

Looping(10)

Another Nested Loop ExampleAnother Nested Loop Example
class Summation extends Object{
public static void main(String[] args) {
//sums all numbers from 1 to 1000
//but stops at an n, when sum from 1 to n reaches 500
//and doesn't add in any multiples of 10

int sum,i,j;
w1: for(i=1; i < 1000; i++){

 sum = 0;
 if (i%10 == 0) continue w1;
 j = 1;
 w2: while (j <= i){
 sum = sum + j;
 if (sum>500){System.out.println(
 "sum greater than 500 for sum 1 to j= " + j);
 break w1;}
 j++;
 }
 System.out.println("sum of numbers from 1”

“to "+ i + " is " + sum);
 } } }

sumwbreakcontinue.java

Barbara G. Ryder Spring 1998
16

Looping(10)

Output from 2nd Nested LoopOutput from 2nd Nested Loop
40 romulus!111> java Summation

sum of numbers from 1 to 1 is 1

sum of numbers from 1 to 2 is 3

sum of numbers from 1 to 3 is 6

sum of numbers from 1 to 4 is 10

...

sum of numbers from 1 to 28 is 406

sum of numbers from 1 to 29 is 435

sum of numbers from 1 to 31 is 496

sum greater than 500 for sum 1 to j= 32

Barbara G. Ryder Spring 1998
17

Looping(10)

InputInput
• How to input values to your program from

your terminal?

• How to input values to your program from a
file?

• Stream - a sequence of values
– Input stream is typed from keyboard or is on a file

• Java Development toolKit (JDK) contains
standard i/o library; See java.io in Javadocs

Barbara G. Ryder Spring 1998
18

Looping(10)

Deprecated MethodsDeprecated Methods
• Our textbook is based on JDK 1.0 whereas

the newest is JDK 1.1; we have made
changes to the Java Gently Text class to
avoid problems, both the class and with
these updates.

• New library updates allow replacement of
some methods with others, where necessary.

• Methods which are about to be replaced
thusly are called deprecated and compiler
will complain when you use them

• Usually they are unavailable in the next
release

Barbara G. Ryder Spring 1998
19

Looping(10)

InputInput
• What to do? change any use of a deprecated

method to the replacement method
– For example, BufferedReader is new class used

for input and supported by Java in current
release

– DataInputStream (see textbook) is a formerly
supported class which will work now, but not in
next release of JDK

Barbara G. Ryder Spring 1998
20

Looping(10)

InputInput
• Java’s library functions allow reading of

input a line at a time as a String

• Reading an entire line in from the keyboard
as a String isn’t convenient

• Better to break input into pieces, (e.g., an
entire integer, an entire double numeric
value)

• TokenStream allows reading of individual
data items by type

Barbara G. Ryder Spring 1998
21

Looping(10)

InputInput
• Using an input stream presents possibility of

something going wrong during input
process such as running out of input

• Java notifies you if something goes wrong
by throwing an exception to handle these
situations
– For I/O, unusual conditions may lead to

IOException
public static void main(String []
args) throws IOException {}

Barbara G. Ryder Spring 1998
22

Looping(10)

TokenStream ClassTokenStream Class
• Available by importing cs111.io.*

– See /usr/local/class/cs111/packages/src/cs111/io/*

TokenStream class:
TokenStream(); TokenStream(String fileName);
String readString ();
String readString(String prompt);
int readInt (); i nt readInt(String prompt);
double readDouble ();
double readDouble(String prompt);
char readChar(); char readChar(String prompt););

Barbara G. Ryder Spring 1998
23

Looping(10)

TokenStream MethodsTokenStream Methods
• readInt(), readDouble () - read 1 item of

numerical data of the appropriate type

• readString () - reads 1 string from a line of
input

• readChar () - reads 1 char item from a line
of input
//inp is keyboard

Tokenstream inp = new TokenStream();

int i = inp.readInt();

double d = inp.readDouble();

Barbara G. Ryder Spring 1998
24

Looping(10)

TokenStream ConstructorsTokenStream Constructors
• TokenStream() - used to construct an input

stream from the keyboard

• TokenStream(String fileName) - used to
construct an input stream from a file

• Several input streams can be used by the
same program (not true of Text class in
textbook)

Barbara G. Ryder Spring 1998
25

Looping(10)

TokenStream ClassTokenStream Class
• Allows spaces between data items, but not

parts of the same string
– Please enter your name > barbara ryder

– if program is executing a readString(), it
will only see “barbara”

• Ignores blank lines

Barbara G. Ryder Spring 1998
26

Looping(10)

How to Find End of Input?How to Find End of Input?
• Store a count of number of

items as the first input and keep
a running count (inflexible)

• Use a special termination value
to mark end of input (somewhat
restrictive)

– e.g., -1 entered as an item count;
999 as an age;

• Use an end-of-file exception to
mark the end of the input items

Count Mark EOF

 5 1 1
 1 2 2
 2 3 3
 3 4 4
 4 5 5
 5 -1

Barbara G. Ryder Spring 1998
27

Looping(10)

Example - Input CountExample - Input Count
import java.io.*;
import cs111.io.*;
class SumfromKeyboard extends Object{
public static void main(String[] args) throws

IOException {
//sums a sequence of numbers entered from the keyboard
TokenStream inp = new TokenStream();//create keyboard
double sum = 0.0, d; //stream
System.out.print("Enter count of numbers to be summed");
int n = inp.readInt();
System.out.println("Enter numbers");
for (int i=0; i<n; i++){//executed n times

d = inp.readDouble();
sum += d;}
System.out.println("sum = " + sum);

}}

sumkey.java

stop when have
read n numbers

Barbara G. Ryder Spring 1998
28

Looping(10)

Example - Termination MarkExample - Termination Mark
import java.io.*;
import cs111.io.*;

class SumwithMark extends Object{

public static void main(String[] args) throws
IOException {

//sums a sequence of numbers entered from the keyboard
TokenStream inp = new TokenStream();

double sum = 0.0, d = 0.0;

System.out.println(" Enter numbers to be summed,
ending with -1 ");

for (;d != -1.0;){//note empty init and incr
d = inp.readDouble();

if (d!= -1.0) sum += d;//don't add mark

}
System.out.println("sum = " + sum);

}}

summark.java

stop
when
see
-1 in
input

Barbara G. Ryder Spring 1998
29

Looping(10)

Example - EOF ExceptionExample - EOF Exception
import java.io.*;
import cs111.io.*;

class SumEOF extends Object{

public static void main(String[] args) throws
IOException {

//sums a sequence of numbers entered from the keyboard
TokenStream inp = new TokenStream();

double sum = 0.0,d;

System.out.println(" Enter numbers to be summed,” +
“ending with control-D ");

try{//type control-d to signal end of input

for (;;){//indefinite loop or loop forever

d = inp.readDouble();

sum += d;} }
catch (EOFException e) { }

System.out.println("sum = " + sum); } }

sumeof.java

