
Barbara G. Ryder Spring 1998
1Queues(18)

QueuesQueues
• Object visibility : public, private, protected
• Queues - another useful ADT

– Class interface

– Polymorphism

– Using a List to represent a Queue

– Using stacks to represent a Queue

Barbara G. Ryder Spring 1998
2Queues(18)

Object VisibilityObject Visibility
• Modifiers - applied to object declarations

– public: visible wherever its class is visible
– Few instance variable examples because this breaks

ADT control over access

– private: visible only within its own class
– in Binary_Expr: operand1, operand2

– protected: visible to subclasses and to other
classes in same package

Barbara G. Ryder Spring 1998
3Queues(18)

Object VisibilityObject Visibility
– final: object may not be changed

– static: object is a class object
– only one exists in its class, accessed using

class_name.object_name
– constants as in static final int limit = 30;

– no modifier: object is visible within its package
only

Barbara G. Ryder Spring 1998
4Queues(18)

QueuesQueues
• Example: waiting in line for anything
• Intuitively, something resembling a stream

to which you can add or from which you
can remove data

• Data is always removed from the front of a
queue and added to the back of a queue

• Allows data items to be removed in the
order in which they entered.

• FIFO discipline: First In First Out

Barbara G. Ryder Spring 1998
5Queues(18)

QueuesQueues
• Used for simulations where order is

important
– e.g. restaurant patrons of one waiter, requests

to use the printer received by an operating
system, requests for special permission
numbers by students

• Implementation is hidden from user and
can be changed without changing program
behavior

Barbara G. Ryder Spring 1998
6Queues(18)

QueuesQueues
back front

What are the primitive operations of a queue?
How to hold objects in a queue?
How to provide access to them?
How to represent an empty queue?
Must design class to avoid special cases and
to be efficient. How?

use an array?
use a linked list?

Barbara G. Ryder Spring 1998
7Queues(18)

Queue Class: Instance MethodsQueue Class: Instance Methods
• void enter(Object newItem)
• Object remove () throws QueueException

• Object peek() throws QueueException
• int getLength()

• boolean empty()

• String toString()
• Enumeration getEnumeration()

Barbara G. Ryder Spring 1998
8Queues(18)

Instance Methods SpecificationInstance Methods Specification
• void enter(Object newItem)

– adds new element to end of (back of) queue

• int getLength()
– returns current number of items in queue

• boolean empty()
– returns true if queue is empty, else false

Barbara G. Ryder Spring 1998
9Queues(18)

Instance Methods SpecificationInstance Methods Specification
• String toString()

– usual conversion for printing a queue object

– uses individual toString() methods on each
element

• Enumeration getEnumeration()
– returns enumeration object corresponding to

Queue receiver

– Queue object not altered by enumeration

Barbara G. Ryder Spring 1998
10Queues(18)

Instance Method SpecificationInstance Method Specification
• Object remove() throws QueueException

– removes an element from front of queue

• Object peek() throws QueueException
– returns the element at the front of queue

WITHOUT removing it!

• remove() and peek() throw QueueException
when invoked on an empty queue

• similar to Stack’s pop() and peek()

Barbara G. Ryder Spring 1998
11Queues(18)

Queue RepresentationQueue Representation
• How to avoid special cases?

– Adding to an empty queue

– Removing from a queue with only 1 element

• Idea: use a fake header in front of every
queue
– Only subList field will contain significant

information

– Then special cases are eliminated (How?)

Barbara G. Ryder Spring 1998
12Queues(18)

Queue RepresentationQueue Representation
• Front - a list

– subList field contains actual list with info

– info field not used

• Back - a list
– info field contains last object in queue

– subList field is null

– is “innermost” list in queue representation

Barbara G. Ryder Spring 1998
13Queues(18)

Queue RepresentationQueue Representation

empty queue:

front back

?

non-empty queue:

F G

front
back

?? is dummy
info field

Barbara G. Ryder Spring 1998
14Queues(18)

Enter MethodEnter Method
public void enter (Object newItem){

List nl = new List (newItem,null);

List oldBack = back;

oldBack.subList = nl;

back = nl;

length++;

}

F G?

receiver: newItem: E

Barbara G. Ryder Spring 1998
15Queues(18)

Enter - How it works?Enter - How it works?

F G?

this: nl:

newItem: E

E

front back

F G?

front back

oldBack

Barbara G. Ryder Spring 1998
16Queues(18)

Enter - How it works?Enter - How it works?

front back

oldBack

F G? E

F G? E

front back

oldBack

Barbara G. Ryder Spring 1998
17Queues(18)

Enter(E) on Empty QueueEnter(E) on Empty Queue

front back

? Enl
1.

front back

?

Oldback

2.

Barbara G. Ryder Spring 1998
18Queues(18)

Enter(E) on empty QueueEnter(E) on empty Queue

E?

back
oldBackfront

Note: this is treated just like an add to an already
existing queue.

3.

Barbara G. Ryder Spring 1998
19Queues(18)

 Method remove() Method remove()
public Object remove() throws QueueException{

if (empty())

throw new QueueException(“Attempt to remove” +

+ “from an empty queue”);

front = front.subList;//destructive operation

length--; //changes receiver queue

return front.info;

}

F G? E becomes

F G E and F is returned

front

back

front

back

Barbara G. Ryder Spring 1998
20Queues(18)

remove() on empty Queueremove() on empty Queue

Note: length is 0

front back

? . empty() yields true

whereas null.empty() yields NullPointerException

Barbara G. Ryder Spring 1998
21Queues(18)

Method peek()Method peek()
public Object peek() throws QueueException{

if (empty())

throw new QueueException(“ Attempt to peek”+

“at an empty queue”);

return front.subList.info;

}//note no decrement to length here

F G? E

F G? E

remains as

and F is returned

Barbara G. Ryder Spring 1998
22Queues(18)

Method toString() in QueueMethod toString() in Queue
public String toString(){

String ret = “Queue length is “ +
Integer.toString(getLength()) + “\n”;

Enumeration qe = getEnumeration();
String line = ““;//empty String
while (qe.hasMoreElements()) {

line = line + (qe.nextElement()).toString();
if (line.length() > 60){

ret = ret + line + “\n”;
line = “ “;

}
else line = line + “ “;

}
return (ret + line + “\n”);

}

polymorphism

choice of which toString()
to call based on run-time
type of object extracted

