Sorting

- Sorting
 - Selection Sort
 - Quicksort
- Complexity
- Sortable Interface
Sorting

• Definition
 – Input
 – Unordered collection of items
 – Method that can compare two of the items (i.e., lessThan())
 – Output
 – Ordered collection of items
• Very useful problem
• Several algorithms developed and studied
Sorting Algorithms

• Fast versus slow
 – $O(n^2)$ on US population takes 20 years
 – $O(n \cdot \lg_2 n)$ on US population takes 1 minute

• Emphasize problem decomposition and speed but not memory usage
 – Approaches can be made more space efficient

• In-memory sorting, rather than using lots of data on external devices
Sorting Algorithms

• Our approach
 – Use queues to hold data
 – Some sort methods can’t be done this way

• Usual approach (in procedural language)
 – Use arrays to hold data
 – Sort method explained in terms of array subscript operations
 – More efficient in storage usage, but hard to see similarities among methods
Problem Decomposition

public SortProblem Sort() throws QueueException {
 if (getLength() == 1) return this;

 SortProblem sp1 = new SortProblem(),
 sp2 = new SortProblem();
 SortProblem sp1sorted, sp2sorted;
 Decompose(sp1, sp2);
 sp1sorted = sp1.Sort();
 sp2sorted = sp2.Sort();
 return sp1sorted.Compose(sp2sorted);
}

Terminal case

Decompose into 2 subproblems

Solve subproblems

Compose Solutions
package cs111.util;
import java.util.Enumeration;

public class SortProblem extends Queue{

 public SortProblem() {
 super();
 }

 public SortProblem(Queue q) {
 super();
 Enumeration qe = q.getEnumeration();
 while (qe.hasMoreElements())
 enter(qe.nextElement());
 }
}
Selection Sort

- Seen previously as an in-place sorting method using arrays
- At each step found smallest element in the remaining elements
- Grew sorted array elements from left to right in the array, using swap operations
- Here is different formulation using recursion and a “copy” of the to-be-sorted numbers
Previous Selection Sort

//to sort descending exchange > for <
void selection Sort(int [] a){
 int tmp, chosen;
 for(int left=0; left<a.length-1; left++){
 chosen = left;//first unsorted number
 for (int j=left+1; j<a.length; j++){
 //find smallest unsorted element
 if (a[j]<a[chosen]) chosen=j;}
 //exchange a[chosen] with a[left]
 tmp = a[chosen];
 a[chosen] = a[left];
 a[left] = tmp;
 }
}
public SortProblem selectionSort() throws QueueException {
 if (getLength() == 1) return this;

 SortProblem sp1 = new SortProblem(),
 sp2 = new SortProblem();
 SortProblem sp1sorted, sp2sorted;
 smallestAndRest(sp1, sp2);

 sp1sorted = sp1.selectionSort();
 sp2sorted = sp2.selectionSort();

 return sp1sorted.append(sp2sorted);
}

• What are smallestAndRest() and append()?
smallestAndRest()

- Decomposes original queue into two smaller queues
 - small contains the smallest element
 - large contains everything else

- Sortable is an interface which requires a lessThan() method
 - Objects removed from the queue must be Sortable to be compared -- notice the necessary cast
smallestAndRest()

```java
private void smallestAndRest(SortProblem small,
SortProblem large) throws QueueException {

Sortable smallest = (Sortable) remove();
while (!empty()) {
    Sortable nxt = (Sortable) remove();
    if (nxt.lessThan(smallest)) {
        large.enter(smallest);
        smallest = nxt;
    } else large.enter(nxt);
}
small.enter(smallest);
}
```
append()

- Have to concatenate two queues when they are returned sorted
- Requires creation of a new queue
 - Can be implemented without a new queue
 - Recall original where newly found smallest is exchanged with another element as sorted array grows from left to right in the array
private SortProblem append(SortProblem suffix)
 throws QueueException {

 SortProblem ret = new SortProblem();
 while (!empty())
 ret.enter(remove());
 while (!suffix.empty())
 ret.enter(suffix.remove());
 return ret;
}

Note: time to append is linear in size of result;
but this job also can be done in constant time. How?
What does `selectionSort()` cost?

- Cost for n element queue
 - Decomposition - n
 - Append - 1 (our method uses n, but 1 is possible)
 - Subproblems
 - Small requires 1 instruction
 - Large uses `selectionSort()` to sort a queue of n-1 elements
What does selectionSort() cost?

Cost(decomp) + Cost(append) + Cost(subprobs solution)

<table>
<thead>
<tr>
<th>Length of Queue</th>
<th>Cost of Selection Sort</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>(1)</td>
</tr>
<tr>
<td>2</td>
<td>(2 + 1) + C(1) + C(1) = 3 + 1 + 1 = 5</td>
</tr>
<tr>
<td>3</td>
<td>(3 + 1) + C(2) + C(1) = 4 + 5 + 1 = 10</td>
</tr>
<tr>
<td>4</td>
<td>(4 + 1) + C(3) + C(1) = 5 + 10 + 1 = 16</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>n</td>
<td>(n + 1) + C(n-1) + 1</td>
</tr>
</tbody>
</table>

C(n) = n + 2 + C(n-1)
Getting a closed form

\[C(n) = (n+2) + C(n-1) \]
\[C(n-1) = (n-1+2) + C(n-2) = (n+1) + C(n-2) \]
\[C(n-2) = (n) + C(n-3) \]

\[C(n) = (n+2) + C(n-1) \]
\[= (n+2) + (n+1) + C(n-2) \]
\[= (n+2) + (n+1) + (n) + C(n-3) \]

...
Getting a closed form

C(n) = (n+2) + (n+1) + (n) + C(n-3)

= (n+2) + (n+1) + (n) + \ldots (5) + (4) + (1)

We’ve seen this sum before, but here terms 2 and 3 are missing: 1+2+3+4+\ldots+n = (n+1)n/2

So, C(n) = (((n+2) +1) *(n+2) / 2) - 2 - 3

= (.5*(n+3)) * (n+2) - (2+3)

\[O(n^2) \]
quickSort()

• How to decompose?
 – Select a value
 – Put all elements larger than value in large
 – Put all elements smaller than value in small
 – Want selected value to be a “middle” value to divide elements into close to evenly sized sets

• Get two subproblems easy to combine into answer
quickSort()

• How do we get a “middle” value?
 – Guess
 – Use any element as possible middle value
 – Use first element as possible middle value

• Use an arbitrary value and “on average” be close to middle value

• Pathologically bad cases exist with this method
 – If guessed value is smallest or largest, we will be doing selectionSort()
public SortProblem quickSort() throws QueueException {
 if (getLength() == 1) return this;

 SortProblem sp1 = new SortProblem(),
 sp2 = new SortProblem();
 SortProblem sp1sorted, sp2sorted;
 nearMiddle(sp1, sp2);
 sp1sorted = sp1.quickSort(); Different than
 sp2sorted = sp2.quickSort(); selectionSort
 return sp1sorted.append(sp2sorted);
}

Same as selectionSort
private void nearMiddle(SortProblem small,
 SortProblem large) throws QueueException
{
 Sortable middleValue = (Sortable)remove();
 while (!empty()) {
 Sortable nxt = (Sortable)remove();
 if (nxt.lessThan(middleValue))
 small.enter(nxt);
 else
 large.enter(nxt);
 }
 if (small.getLength() < large.getLength())
 small.enter(middleValue);
 else
 large.enter(middleValue);
}
Cost of quickSort()

• Depends on middle value
 – Best case (cheapest) occurs when middle guess is correct
 – Worst case (most expensive) occurs when middle guess is very wrong
 – Worst case when guess is largest or smallest element
 – Get selection sort which is $O(n^2)$
 – Average case - if know distribution of elements to be sorted, can argue what happens on average if sort many, many sets of elements (we won’t examine this in cs111)
quickSort() - Best Case cost

<table>
<thead>
<tr>
<th>Length of Queue</th>
<th>Best case cost of Quick Sort Divides data in half</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>(1)</td>
</tr>
<tr>
<td>2</td>
<td>(2+1) + C(1) + C(1) = 3 + 1 + 1 = 5</td>
</tr>
<tr>
<td>3</td>
<td>(3+1) + C(2) + C(1) = 4 + 5 + 1 = 10</td>
</tr>
<tr>
<td>4</td>
<td>(4+1) + C(2) + C(2) = 5 + 5 + 5 = 15</td>
</tr>
<tr>
<td>5</td>
<td>(5+1) + C(3) + C(2) = 6 + 10 + 5 = 21</td>
</tr>
<tr>
<td>6</td>
<td>(6+1) + C(3) + C(3) = 7 + 10 + 10 = 27</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>n</td>
<td>(n+1) + 2*C(n/2) for n assumed even</td>
</tr>
</tbody>
</table>
How to get a closed form?

\[C(n) = (n+1) + 2 \cdot C(n/2) \]

\[C(n/2) = (n/2+1) + 2 \cdot C(n/4) \]

Assumes length of queue is a power of 2

\[C(n/4) = (n/4+1) + 2 \cdot C(n/8) \]

\[C(n) = (n+1) + 2 \cdot C(n/2) = (n+1) + 2 \cdot ((n/2+1) + 2 \cdot C(n/4)) = (n+1) + (n+2) + 4 \cdot C(n/4) = (n+1) + (n+2) + 4 \cdot ((n/4+1) + 2 \cdot C(n/8)) = (n+1) + (n+2) + (n+4) + 8 \cdot C(n/8) \]

\[\ldots \]
How to get a closed form?

\[C(n) = (n+1) + (n+2) + (n+4) + 8 \times C(n/8) \]

\[= (n+1) + (n+2) + (n+4) + \ldots + (2n) \]

\[< (2n) \times \log_2(n) \]

\[C(n) = O(n \times \log_2(n)) \text{ in best case for quickSort()} \]

(and is average case as well)
Selection vs Quick Sort

- Methods differ only in decomposition step
- quickSort() degenerates in worst case into selectionSort()
 - Middle guess may be very bad
- Decomposition choice makes difference between $O(n^2)$ and $O(n \lg_2 n)$
 - smallestAndRest(): 9 lines of code (20 years)
 - nearMiddle(): 11 lines of code (1 minute)