
Barbara G. Ryder Spring 1998
1Complexity(15)

Complexity of SearchComplexity of Search
• Iteration to recursion
• Asymptotic complexity

– What is it?

– What is big O notation?

– Justifying average case analysis

• Envalope classes
– Use in i/o

Barbara G. Ryder Spring 1998
2Complexity(15)

Where does the iteration go?Where does the iteration go?
private static int binSearch(int low, int hi, int []

a, int desired){
if (hi == low +1) {return -1;}
int mid = (hi+low)/2;
if (desired == a[mid]) return mid;
else if (desired < a[mid]) {

return (binSearch(low, mid, a,desired));
}

else return(binSearch(mid, hi, a, desired));

Each time through the loop we halved the interval to be
examined. Each time we call binSearch recursively, we
half the interval.
Number of copies of binSearch needed == number of iterations.

Barbara G. Ryder Spring 1998
3Complexity(15)

Recursion in “Real” LifeRecursion in “Real” Life
• Trivia question: What famous Dr. Seuss

story has an example of recursion in it?

• Answer next week!

Barbara G. Ryder Spring 1998
4Complexity(15)

Asymptotic ComplexityAsymptotic Complexity
• Trying to calculate how an algorithm behaves

for large amounts of data
– n or 2n comparisons versus n2

• For 250 million people in US (2.5E8),
– n is 2.5 E8; 2n is 5. E8; n2 is 6.25 E16

• Clearly, for large n, 2n and n are close in
value whereas n2 is much larger!

Barbara G. Ryder Spring 1998
5Complexity(15)

Asymptotic ComplexityAsymptotic Complexity
• Another comparison

n versus log 2 n (use log e n to approx)

n log e n log n grows much more

1.0 0.0 slowly than n.
1.5 .41
2.0 .69
5.0 1.61
8.0 2.08
20 3.00
50 3.91
80 4.38
100 4.61

Barbara G. Ryder Spring 1998
6Complexity(15)

Asymptotic ComplexityAsymptotic Complexity
• Talk about how cost of an algorithm increases

as problem size increases
• Try to find a function of problem size such

that worst case behavior is bounded above by
that function
– O(j) (read this as big-O of j)
– Means algorithm’s performance in worst case is

bounded above by j, a measure linear in the
problem size (e.g., number of numbers to search).

– Linear search is O(n); binary search is O(log n)
– Constant time is O(1)

Barbara G. Ryder Spring 1998
7Complexity(15)

Revisiting Linear SearchRevisiting Linear Search
Average Cost AnalysisAverage Cost Analysis

• Assume array holds j elements
• Assume about half the lookups fail (on

average)
• Consider doing 2j lookups

– j lookups find nothing and each costs j
– j lookups find a match and each costs about j/2
– Total cost of 2j lookups is:
 j * j + j * (j/2) = 1.5 j 2

– Expected cost for any one search is
 total cost / # searches = 1.5 j 2 / (2j) = .75 j

see next
page

Barbara G. Ryder Spring 1998
8Complexity(15)

Validity of our AssumptionsValidity of our Assumptions
• Assume desired value is in the array of size j

– Any position in array is equally likely to hold
the value

• What’s expected cost for a lookup that
matches?
– Find total cost of looking up each element

1 + 2 + 3 + ... + (j-2) + (j-1) + j = ((j+1) * j) / 2

– Number of lookups is j

– Average cost:((j +1)*(j/2))/j = (j + 1)/ 2 and j/2
is close enough to this value for large j

Barbara G. Ryder Spring 1998
9Complexity(15)

Search Algorithm ComplexitiesSearch Algorithm Complexities

Assume an array with n values.
Linear Linear Binary

Unordered Ordered

Best O(1) O(1) O(1)
Worst O(n) O(n) O(log n)

Average O(3n/4) O(n/2) O(log n)

Barbara G. Ryder Spring 1998
10Complexity(15)

Envelope ClassesEnvelope Classes
• Needed because everything in Java is

actually an object

• To get the primitive types into the language
we need a some mechanism to obtain those
kinds of values

• Envelope classes: Integer, Double,
Character, Boolean

• Methods in these envelope classes let us
move between classes and primitive types

Barbara G. Ryder Spring 1998
11Complexity(15)

Integer ClassInteger Class
• Interface (partial)

Integer (int value); //creates an Integer object

int IntValue();//obtains int value from Integer
receiver

Integer valueOf(String s);//class method which
converts a String object to an Integer object

Integer Iobj = new Integer (i);

System.out.println(Iobj.intValue());

Barbara G. Ryder Spring 1998
12Complexity(15)

What is this used for?What is this used for?
• Input in standard Java

– Input is a stream of substring tokens, separated
by blanks, commas, or tabs

– Can pass each token to the appropriate
envelope class to convert it to an object of the
correct type

– Then convert to corresponding primitive value

• Have also seen class variables from Double
– Double.POSITIVE_INFINITY
– Double.NEGAIVE_INFINITY

Barbara G. Ryder Spring 1998
13Complexity(15)

TokenStream ClassTokenStream Class
• cs111.io package contains TokenStream

class which uses StringTokenizer

• TokenStream() throws IOException
– For keyboard input uses InputStreamReader

• TokenStream(String filename) throws
IOException
– For file input uses FileReader

• Allows for multiple input streams in use at
at same time by creating multiple
TokenStream objects

Barbara G. Ryder Spring 1998
14Complexity(15)

StringTokenizer ClassStringTokenizer Class
• Standard Java StringTokenizer class

provides methods for reading substrings:
– StringTokenizer (String s);//constructor

– String nextToken();//returns next substring
from StringTokenizer reciever

– boolean hasMoreTokens();//checks if
StringTokenizer receiver has more tokens

Barbara G. Ryder Spring 1998
15Complexity(15)

TokenStream Class EssentialsTokenStream Class Essentials
• Similar to JavaGently Text Class
public class TokenStream{

private StringTokenizer t = null;

private BufferedReader br = null;

private String currentToken = "";

private boolean keyboard = true;//reset to false if

//file io is used

...

//2 forms of each read method, one for keyboard

//one for files (which don’t use a prompt)

public int readInt() throws IOException();

public int readInt(String prompt) throws IOException();

//similarly for readDouble(), readString(), readChar()

Barbara G. Ryder Spring 1998
16Complexity(15)

/** reads a new line and establishes a tokenizer.

 * If reading from keyboard, prompt on each new line

 * @param prompt string used to prompt for input
 */

 private void refresh(String prompt) throws
IOException {

 while ((t == null) || !(t.hasMoreTokens())) {

 if (keyboard) {
 System.out.print(prompt);

 System.out.flush();

 }
 String line = br.readLine();

 if (line == null) throw new EOFException();

 t = new StringTokenizer(line);

 } }

Java i/o package

StringTokenizer class

Barbara G. Ryder Spring 1998
17Complexity(15)

/**
 * reads an integer from the TokenStream
 * @param prompt string used to prompt for input
 * @return the next integer in the TokenStream
 */
 public int readInt(String prompt) throws

IOException {
 while (true) {
 refresh(prompt);
 String item = nextToken();
 try {return

(Integer.valueOf(item.trim())).intValue();}
 catch (NumberFormatException e) {
 System.out.println(item + " is an invalid ”

“integer, try again.");
 System.out.flush();
 }
 }
 } class method, class Integer

String method
Integer method

