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Complexity of SearchComplexity of Search
• Iteration to recursion
• Asymptotic complexity

– What is it?

– What is big O notation?

– Justifying average case analysis

• Envalope classes
– Use in i/o
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Where does the iteration go?Where does the iteration go?
private static int binSearch(int low, int hi, int [] 

a, int desired){
if (hi == low +1) {return -1;}
int mid = (hi+low)/2;
if (desired == a[mid]) return mid;
else if (desired < a[mid]) {

return (binSearch(low, mid, a,desired));
}

else return(binSearch(mid, hi, a, desired));

Each time through the loop we halved the interval to be 
examined. Each time we call binSearch recursively, we 
half the interval.
Number of copies of binSearch needed == number of iterations.
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Recursion in “Real” LifeRecursion in “Real” Life
• Trivia question: What famous Dr. Seuss 

story has an example of recursion in it?

• Answer next week!
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Asymptotic ComplexityAsymptotic Complexity
• Trying to calculate how an algorithm behaves 

for large amounts of data
– n or 2n comparisons versus n2  

• For 250 million people in US (2.5E8),
– n is 2.5 E8; 2n is 5. E8; n2 is 6.25 E16

• Clearly, for large n, 2n and n are close  in 
value whereas n2  is much larger!
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Asymptotic ComplexityAsymptotic Complexity
• Another comparison

n versus log 2 n (use log e n to approx)

n  log e n  log n grows much more 

1.0 0.0 slowly than n.
1.5 .41
2.0 .69
5.0 1.61
8.0 2.08
20 3.00
50 3.91
80 4.38
100 4.61
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Asymptotic ComplexityAsymptotic Complexity
• Talk about how cost of an algorithm increases 

as problem size increases
• Try to find a function of problem size such 

that worst case behavior is bounded above by 
that function  
– O( j ) (read this as big-O of j)
– Means algorithm’s performance in worst case is 

bounded above by j, a measure linear in the 
problem size (e.g., number of numbers to search). 

– Linear search is O(n); binary search is O(log n)
– Constant time is O(1)
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Revisiting Linear SearchRevisiting Linear Search
Average Cost AnalysisAverage Cost Analysis

• Assume array holds j elements
• Assume about half the lookups fail (on 

average)
• Consider doing 2j lookups

– j lookups find nothing and each costs j
– j lookups find a match and each costs about j/2
– Total cost of 2j lookups is:  
          j * j + j * (j/2) = 1.5 j 2 

– Expected cost for any one search is
     total cost / # searches = 1.5 j 2 / ( 2j ) = .75 j

see next
page
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Validity of our AssumptionsValidity of our Assumptions
• Assume desired value is in the array of size j

– Any position in array is equally likely to hold 
the value

• What’s expected cost for a lookup that 
matches?
– Find total cost of looking up each element

1 + 2 + 3 + ... + (j-2) + (j-1) + j = ((j+1) * j) / 2

– Number of lookups is j

– Average cost:((j +1)*(j/2 ))/j = (j + 1)/ 2 and j/2 
is close enough to this value for large j
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Search Algorithm ComplexitiesSearch Algorithm Complexities

Assume an array with n values.
Linear Linear Binary

Unordered Ordered

Best O(1) O(1) O(1)
Worst O(n) O(n) O(log n)

Average O(3n/4) O(n/2) O(log n)
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Envelope ClassesEnvelope Classes
• Needed because everything in Java is 

actually an object

• To get the primitive types into the language 
we need a some mechanism to obtain those 
kinds of values

• Envelope classes: Integer, Double, 
Character, Boolean

• Methods in these envelope classes let us 
move between classes and primitive types
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Integer ClassInteger Class
• Interface (partial)

Integer (int value); //creates an Integer object

int IntValue();//obtains int value from Integer 
receiver

Integer valueOf(String s);//class method which 
converts a String object to an Integer object

Integer Iobj = new Integer (i);

System.out.println(Iobj.intValue());
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What is this used for?What is this used for?
• Input in standard Java

– Input is a stream of substring tokens, separated 
by blanks, commas, or tabs

– Can pass each token to the appropriate 
envelope class to convert it to an object of the 
correct type

– Then convert to corresponding primitive value

• Have also seen class variables from Double
– Double.POSITIVE_INFINITY
– Double.NEGAIVE_INFINITY
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TokenStream ClassTokenStream Class
• cs111.io package contains TokenStream 

class which uses StringTokenizer

• TokenStream()  throws IOException
– For keyboard input uses InputStreamReader

• TokenStream( String filename)  throws 
IOException
– For file input uses FileReader

• Allows for multiple input streams in use at 
at same time by creating multiple 
TokenStream objects
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StringTokenizer ClassStringTokenizer Class
• Standard Java StringTokenizer class 

provides methods for reading substrings:
– StringTokenizer (String s);//constructor

– String  nextToken();//returns next substring 
from StringTokenizer reciever 

– boolean  hasMoreTokens();//checks if 
StringTokenizer receiver has more tokens
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TokenStream Class EssentialsTokenStream Class Essentials
• Similar to JavaGently Text Class
public class TokenStream{

private StringTokenizer t = null;

private BufferedReader br = null;

private String currentToken = "";

private boolean keyboard = true;//reset to false if

//file io is used

...

//2 forms of each read method, one for keyboard

//one for files (which don’t use a prompt)

public int readInt() throws IOException(); 

public int readInt(String prompt) throws IOException();

//similarly for readDouble(), readString(), readChar()
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/** reads a new line and establishes a tokenizer.

 * If reading from keyboard, prompt on each new line

 * @param prompt string used to prompt for input
 */

  private void refresh(String prompt) throws 
IOException {

    while ((t == null) || !(t.hasMoreTokens())) {

      if (keyboard) {
        System.out.print(prompt);

        System.out.flush();

      }
      String line = br.readLine();

      if (line == null) throw new EOFException();

      t = new StringTokenizer(line);

    } }

Java i/o package

StringTokenizer class
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/**
 * reads an integer from the TokenStream
 * @param prompt string used to prompt for input
 * @return the next integer in the TokenStream
 */
  public int readInt(String prompt) throws 

IOException {
    while (true) {
      refresh(prompt);
      String item = nextToken();
      try {return                   

(Integer.valueOf(item.trim())).intValue();}
        catch (NumberFormatException e) {
        System.out.println(item + " is an invalid ” 

“integer, try again.");
        System.out.flush();
        }
    }
  } class method, class Integer

String method
Integer method


