
Today’s lecture

• Midterm Thursday, October 25, 6:10-7:30pm

general information, conflicts

• Object oriented programming

– Abstract data types (ADT)

– Object oriented design

– C++ classes

CS 314 fall’01 C++ 1, page 1

Midterm

date: October 25, 6:10-7:30pm.

location: TBA

Closed book, closed notes, 80 minutes exam.You need

to bring a picture ID to the exam!!!

There will be no class on Thursday, October 25.

CONFLICT (see p.8 in Undergraduate Schedule):

• Another Common Hour Exam at the same time.

• Another regularly scheduled class at the same time.

• Another regularly scheduled recitation at the same

time.

YOU NEED TO ASK YOUR PROFESSOR

TO SEND EMAIL TO RYDER@CS TO

CONFIRM THE CONFLICT

If you have a conflict, you need to sign-up in the

conflict sheet. Give the exact reason for your conflict

(course number, regularly scheduled hour or common

hour exam, ...).

CS 314 fall’01 C++ 1, page 2

Historic Progression of Data Types

1. User-defined types

• Can define arbitrary operations

• Transparent: whole structure of type visible

• Cannot control access to structure

2. Abstract data types

• Encapsulation, information hiding

• Opaque: hides data representation

• Access restricted to well-defined interface

functions

3. Object-orientation

• Inheritance

• Code re-use

• Polymorphic behavior

CS 314 fall’01 C++ 1, page 3

Data Abstraction

Specification rather than implementation:

• Define behavior of data type (through interface

functions)

• Hide implementation of data type

⇒ hide details irrelevant to the use of the data type

CS 314 fall’01 C++ 1, page 4

User-defined Stack Type in C subset of C++

#include <stream.h>

typedef int bool;

typedef int elt;

#define MAX 20

#define EMPTY -1

typedef struct {elt s[MAX]; int top; } stack;

stack * create() {

stack * newstack = (stack *)malloc(sizeof(stack));

newstack->top = EMPTY;

return (newstack);

}

void push(stack* stk,elt data)

{stk->s[++stk->top]=data;}

void pop(stack* stk) {stk->top--;}

elt peek(stack* stk) {return (stk->s[stk->top]);}

int main() { /**** using the stack ****/

stack *x; /* stack of indefinite lifetime */

x = create();

push(x,2); push(x,3);

cout << peek(x) << "\n";}

CS 314 fall’01 C++ 1, page 5

Problems with Data Types

• Implementation of the type can be seen

(E.g., the array inside the stack)

• “Users” of the type can change its value arbitrarily

E.g., x->s[5] = 10;

– doesn’t respect push/top access pattern

– doesn’t respect elt typedef

• “Users” of the data type can write operations that

create inconsistent states

(E.g., adding an entry without changing the top

index)

• “Users” cannot extend the set of operations in a

reliably safe fashion

CS 314 fall’01 C++ 1, page 6

Abstract Data Types (ADTs)

User may only manipulate objects of the type through

use of provided functions without knowing internal

representation

• Encapsulation: may only use provided functions

• Information hiding: cannot see internal

representation

CS 314 fall’01 C++ 1, page 7

Advantages of Abstract Data Types

• Easier to use: as if only type names and function

headers were visible

• Safety through access control

– User can’t make inconsistent states

– User can’t make assumptions about data

representation

• Designer of ADT can modify implementation

without affecting users

• Encourages modularity in programs, facilitating

larger, more complex systems

CS 314 fall’01 C++ 1, page 8

Designing an Abstract Data Type

1. Specify interface

2. Identify and maintain invariants

Example: bounded stack

Interface:

• Stack of some kind of element elt

• create makes a new, empty stack

• push pushes new element on stack; cannot push

onto full stack

• pop removes an element; cannot pop from empty

stack

• peek returns the top element on stack

• is empty determines if the stack is empty

• is full determines if the stack is empty

CS 314 fall’01 C++ 1, page 9

Invariants

• peek(push(S, e)) = e

• pop(push(S, e)) = S

• is empty(create())

• not is empty(push(S, e))

• not is full(pop(S))

CS 314 fall’01 C++ 1, page 10

Object-Oriented Programming (OOP)

• Similar to abstract data types

– Allows users to build new types

– Encapsulation

– Information hiding

• Allows code sharing or reuse between related types:

inheritance

• Theory of object-oriented programming is not

finished

– “First” object oriented language: Simula’67

– Different languages work differently

– Syntax can be complicated

– Semantics may be ill-defined

CS 314 fall’01 C++ 1, page 11

Object-Oriented Design

Design:

What components?

How do they interact?

Example: an elevator control system

Elevator

• control panel

– buttons

– lights

• door

• speaker

Floor

• control panel

– buttons

– lights

• door

• indicator lights

Control system

• multiple floors

• multiple elevators

• location optimizer

CS 314 fall’01 C++ 1, page 12

Example — Observe

• Different parts of system are independent, with

limited interfaces

• Implementation of any one portion can easily be

changed

• Objects can be composed of other objects

• Same kind of object may appear in lots of places

CS 314 fall’01 C++ 1, page 13

Guidelines of OOP

Access to data should be as restricted as possible:

• Each class controls its data

• A class should have access to all and only the data it

needs to perform its work

CS 314 fall’01 C++ 1, page 14

C++

Classes

• Describe abstract data types

• Encapsulate data and define operations on it

Class definitions

• Define data members (variables)

• Define member functions (or methods)

• Access restriction: public and private

Objects are instances of classes

CS 314 fall’01 C++ 1, page 15

ADT Stack in C++

// statically allocated stack ADT

#define MAX 20 // default stack size

typedef int elt ;

typedef int boolean;

class stack{ // encapsulated data type

private:

elt s[MAX]; //

int top; // hidden data representation

const int EMPTY = -1; //

public:

stack() { top = EMPTY; } // constructor => create()

boolean isempty() { return (top == EMPTY); }

boolean isfull() { return (top == MAX - 1); }

void push(elt data)

{ if (!isfull()) s[++top]=data;

else cout<<" stack is full; cannot push\n"; }

void pop()

{ if (!isempty()) top--;

else cout<<" stack is empty; cannot pop\n"; }

elt peek()

{ if (!isempty()) return s[top];

else cout<<" stack is empty; cannot peek\n"; }

};

CS 314 fall’01 C++ 1, page 16

Constructors and Destructors

• Define a constructor, called to initialize objects

(object instances) of the class (constructors may take

arguments)

• May define a destructor, called to free heap memory

used by objects

• Constructors and destructors for class X:

constructor: X(...)

destructor: ~X()

• Constructor called implicitly when object is

allocated (created)

• Destructor called implicitly when control leaves

scope of object (end of object’s lifetime).

CS 314 fall’01 C++ 1, page 17

ADT Stack in C++

// dynamically allocated stack ADT

typedef struct cell {

elt info;

struct cell* link; } CellType;

class stack{

private:

CellType * top;

public:

stack() {top=NULL;}

~stack() { while (top != NULL) pop(); }

boolean isempty() { return (top == NULL); }

boolean isfull() { return 0; }

void push(elt data)

{ CellType* add = new CellType;

add->info = data;

add->link = top;

top = add; }

void pop() { CellType* tmp;

tmp = top;

top = top->link; // no error check

delete tmp; }

elt peek() { return (top->info); } // no error check

};

CS 314 fall’01 C++ 1, page 18

Functions (and Operators) in C++

• Function body can be defined outside class

definition.

Still need function interface (signature) declaration

in class definition.

(Somewhat similar idea: foo.h and foo.c file)

• Functions can have optional parameters.

• Functions and operators can be overloaded:

– Have different implementations on different types

– Must be distinguishable by type signature

– Like + on int and float

CS 314 fall’01 C++ 1, page 19

ADT Stack in C++

class stack{

private:

CellType * top;

public:

stack();

~stack();

boolean isempty();

boolean isfull();

void push(elt data);

void pop();

elt peek();

};

stack::stack() { top=NULL; }

stack::~stack() { while (top != NULL) pop(); }

boolean stack::isempty() { return (top == NULL); }

boolean stack::isfull() { return 0; }

void stack::push(elt data)

{ CellType* add = new CellType;

add->info = data;

add->link = top;

top = add; }

void stack::pop() { CellType* tmp;

tmp = top;

top = top->link; // no error check

delete tmp; }

elt stack::peek() { return (top->info); }// no error check

CS 314 fall’01 C++ 1, page 20

Efficiency in OO Code

Encapsulation and information hiding imply many

function calls.

Function calls have high run-time overhead.

Efficient compilers inline calls where possible:

• Function code is expanded at point of call

• Like a macro

⇒ larger, unreadable machine code

⇒ faster machine code

CS 314 fall’01 C++ 1, page 21

How to deal with large software systems?

Imperative, top–down structured programming —

Involves writing the program in very high level

descriptions and successively refining these into lower

level descriptions, always maintaining a “correct”

program. Abstraction levels are driven by task

granularities. Often the same or very similar pieces of

code are used in different parts of the program.

Object oriented design — based on simulation of the

application world. The basic entities of the application

domain become the entities in the solution domain

from which the program is build up. Object oriented

design begins from the data and builds programs from

the bottom up. Separation of specification (abstraction)

and implementation.

CS 314 fall’01 C++ 1, page 22

Object oriented design

Advantages:

• Allows reuse of abstractions in many different

settings since typical application domains have

commonly used abstractions.

• Abstractions can be reimplemented using different

data structures without affecting the design of the

program at a higher level (abstract data types

(ADTs), representation independence).

CS 314 fall’01 C++ 1, page 23

Object oriented paradigm

Objects — basic entity in the solution domain

• object is a set of services that correspond to an

abstraction from the application domain.

• objects simulate real–world entities that they are

supposed to model, for instance, a lion, a machine, a

stack, an employee.

• objects that provide the same set of services are in

the same class (have same type) in the solution

domain. All objects in the same class have the same

interface.

CS 314 fall’01 C++ 1, page 24

Terminology

Object oriented analysis — analysis of the application

domain to understand the basic entities, their

characteristics, and the relationships among them.

Object oriented design — process of designing a

collection of classes and objects to simulate the

entities in the application domain.

Object oriented programming — process of

implementing an object–oriented design in a suitable

programming language, such as C++, Java,

Smalltalk,

CS 314 fall’01 C++ 1, page 25

Object oriented programming

How to write an object oriented program in C++?

• Identify the entities — What entity should be an

object in the solution world (level of abstraction,

different implementations, potential for reuse)?

• Identify the behavior of entities — What are the

services?

• Identify the relationships between entities —

Example: is one entity a specialization of another?

• Create a C++ design structure for the entities —

What is the public interface of C++ classes to

represent entity types?

CS 314 fall’01 C++ 1, page 26

Relationships among entities

There are a number of important relationships among

entities that are useful in object–oriented design, e.g.:

• is–a — An entity type T1 is in the is–a relationship

to another entity type T2 if every entity of type T1

is a member of type T2. In the solution domain, this

is represented as a relationship between classes

implemented using (public) inheritance (T2

corresponds to base class or superclass, and T1

corresponds to derived class or subclass).

• has–a — An entity e1 is in the has–a relationship

with entity e2, if e2 is part of e1 or e1 uses e2 for

implementation. There are two “types” of the has–a

relationship: class level (complete containment) or

instance level (share instance via pointer).

• uses–a — Occurs when one class instance takes

another class instance as a parameter. For example,

a manager might use a particular company facility.

In this case, facility is not a manager, nor it is owned

by manager.

CS 314 fall’01 C++ 1, page 27

Example: “Is–a” and “has–a” relationships

Employee

Clerical
Worker

Manager

Staff WriterSecretary

is a
has a

CS 314 fall’01 C++ 1, page 28

Inheritance in Object-Oriented Languages

Subtypes:

• A subtype S of type T:

any operation that can apply to object t of type T

can apply to object s of type S.

• Any object s of type S can be used in any context

that an object of type T can.

Inheritance:

• Provides a means of subtyping and sharing code.

• Allows redefinition of operations.

• In C++, terminology is base classes

and derived classes.

CS 314 fall’01 C++ 1, page 29

C++ Derived Classes

• Inherit (data and function) members from base class.

•We use public inheritance.

• May have its own constructors and/or destructors.

• Its own constructors/destructors may explicitly or

implicitly call base class constructors/destructors.

CS 314 fall’01 C++ 1, page 30

Example: “Is–a” and “has–a” relationships

#include <stream.h>

class Employee

{ public:

int ID;

Employee(int id) {ID = id;} };

class ClericalWorker : public Employee

{ public:

int group;

ClericalWorker(int id, int grp) : Employee(id) {group = grp;} };

class Secretary : public ClericalWorker

{ public:

char *name;

Secretary(int id, int grp) : ClericalWorker(id, grp) {} };

class StaffWriter : public ClericalWorker

{ public:

char *name;

StaffWriter(int id, int grp) : ClericalWorker(id, grp) {} };

class Manager : public Employee

{ public:

int devision;

Secretary *assistant;

Manager(int id, char *nm) : Employee(id)

{assistant = new Secretary(++id,1);

assistant->name = nm;} };

main()

{

Manager Bob(123, "Steve");

cout << "Manager Bob (ID " << Bob.ID << ") works with "

<< Bob.assistant->name << " (ID " << Bob.assistant->ID << ")\n";

}

CS 314 fall’01 C++ 1, page 31

