
1

C++-2, CS314 Fall 01, BGR 1

C++ 2

• Review
• Example of a C++ class with reference variables
• Inheritance example

– Use of base class constructor
– Overloaded functions
– Global functions
– Operator overloading

• Object creation - static versus dynamic
• Virtual functions and their use
• Abstract classes
• Visibility

C++-2, CS314 Fall 01, BGR 2

C++ Review

• Data abstraction
– Control access to implementation
– Specify interface
– Identify and maintain invariants

• OOPLs
– Encapsulation plus code reuse through

inheritance

• Example: stacks in C versus stacks in C++

2

C++-2, CS314 Fall 01, BGR 3

C++ Review

• Separation of member function specification from
implementation

• Overloaded operators
• Constructors and destructors

– Called implicitly

• Inheritance
– Base class (parent), derived class (child)

• Use pointers to refer to dynamically created objects,
not references
– Have much the same usage rules as in C

C++-2, CS314 Fall 01, BGR 4

Subtyping and Derived Classes

• A derived class inherits some behavior from
its base class
class V : public A

• A subtype value can be used anywhere its
supertype value can be used.

• If a public derived class inherits all members
from its base class, without overriding any,
then it has a subtyping relation with its base
class.

3

C++-2, CS314 Fall 01, BGR 5

UNIX diff (C++, Java)

• Pointer to objects
• Multiple inheritance
• Objects can be created

statically or dynamically
• Virtual functions

dynamically bound
• Operator overloading
• Class implementation can

be defined separately from
class specification

• C syntax
• Allows global procedure

definition

• References to objects (more
restricted than pointers)

• Single inheritance
• All objects created

dynamically
• All functions dynamically

bound
• No operator overloading
• Class implementation with

class specification
• C-like syntax
• All procedures and

functions associated with a
class

C++-2, CS314 Fall 01, BGR 6

Example
class X //this class to demonstrate automatic // calls

constructor and destructor

{public:

 X() { printf("Constructor called.\n"); }

 ~X() { printf("Destructor called.\n"); }
 void f(int i=0)

{ cout << "i is " << i << "\n"; }

} x2; //this declares an object x of type X

main()
{ if (1) { X x1; x1.f(); }

}

x2

x1

Constructor called
Constructor called

i is 0

Destructor called

Destructor called.

Output

4

C++-2, CS314 Fall 01, BGR 7

C++ Class Example
#include <stdio.h>

#include <stream.h>

 class vector

{ int sz;

 int *v;

 public: vector(int);
 ~vector() {delete v;}

 int size() {return sz;}

 int& elem(int i){return v[i];}

 int& operator[](int);
};

constructor
destructor

member functions

overloaded
subscript
operator

class interface, missing
some member implementations

C++-2, CS314 Fall 01, BGR 8

C++ Class Example, cont.

void error(char *s)

{ cout << s << "\n";

 exit(1);
}

vector::vector(int i)

{ if (i <= 0) error("bad vector size");

 sz = i;
 v = new int[i];

}

int& vector::operator[](int i)

{ if (i < 0 || i >= sz) error("index out of bounds");
 return v[i];

}

procedure

constructor code

overloaded operator code

5

C++-2, CS314 Fall 01, BGR 9

References in C++

• References cannot be null; a reference designates a
particular object

• Once a reference is given a value, it cannot be
changed to point to a different object

• There is no explicit way to access the value at the
memory address associated with a reference; you
use it like you would use a variable.

• Used to simulate call by reference in C++ and to
return values from functions

C++-2, CS314 Fall 01, BGR 10

Inheritance Example
class vec : public vector

{ int high, low; //private members of class

 public: vec(int, int);
 int& elem(int i){return vector::elem(i - low);}

 int& operator[](int);

};

vec::vec(int i, int j) : vector(j - i + 1)
{ if (j < i) j = i;

 low = i;

 high = j;

}
int& vec::operator[](int i)

{ if (i < low || i > high)

error("index out of bounds for vec");

 return elem(i);}

Explicit call to base
class constructor with args

Continues same C++ program

6

C++-2, CS314 Fall 01, BGR 11

Inheritance Example, cont.
class newvec : public vector

{public:

 newvec(int s) : vector (s) {}
 newvec(newvec&);

 ~newvec() {}

 void operator=(newvec&);

 newvec operator+(newvec&);
};

//define a second constructor to create a newvec

//initialized to be a copy of another newvec

newvec::newvec(newvec& a) : vector(a.size())
{

 for (int i = 0; i < a.size(); i++)

 elem(i) = a.elem(i);

}

overloading

C++-2, CS314 Fall 01, BGR 12

Inheritance Example, cont.
//define an assignment operator on newvecs

void newvec::operator=(newvec& a)

{ int i;
 if (size() != a.size())

error("bad vector size for =");

 for (i = 0; i < size(); i++) elem(i) = a.elem(i);

}
newvec newvec::operator+(newvec& b)

{ int sz = size(); int i;

 if (sz != b.size()) error("bad vector sizes for +");

 newvec sum(sz);
 for (i = 0; i < sz; i++)

 sum.elem(i) = this->elem(i) + b.elem(i);

 return sum;

}

7

C++-2, CS314 Fall 01, BGR 13

Inheritance Example, cont.
main()

{ int i;

 newvec v1(10);
 newvec v2(20);

 for (i = 0; i < 10; i++) v1[i] = i;

 for (i = 0; i < 20; i++) v2[i] = i-1;

 newvec v3(v1);
 newvec v4(v2);

 newvec v5 = v1 + v3;//shows overloaded = and +

 for (i = 0; i < 10; i++) cout << v5.elem(i) << " ";

 cout << "\n";
}

//run by typing: g++ bgrvec.cc followed by

//> a.out

//0 2 4 6 8 10 12 14 16 18

C++-2, CS314 Fall 01, BGR 14

Object Creation

Dynamic: vector *v = new vector(10);
vec *w = new vec(10);

Static: vector a(10);
 vec b(10);

Differences - object created with a pointer in C++ stored on
heap; otherwise, they are stored on stack

BE CAREFUL: v = w; a = b; are legal but
with different effects. v=w makes v point to a vec
object; a=b truncates the vec object data fields
which don’t belong to vector to fit in the stack
storage!

Always create objects using pointers in C++

8

C++-2, CS314 Fall 01, BGR 15

Virtual Functions
• Dynamic binding only happens in C++ with

functions declared to be virtual.
Define void vector::printv(){..}

 void vec::printv(){..}
Declare vector *v,vector *vv, vec *w
Initialize v,vv,w to point to objects of their

declared types
Execute vv=w; v->printv();vv->printv();
Both calls will execute vector::printv()
Choice of function based on declared type of

pointer

C++-2, CS314 Fall 01, BGR 16

Virtual Example
#include <stdio.h>
#include <stream.h> //example inspired by pohl book
class B {
public: virtual void print_i() {cout << 1 <<

" inside B\n";}
};
class D : public B {
public: void print_i() { cout << 2 << " inside D\n";}
};
main()
{ B *pb = new B(); D *pd = new D();B *p;

 pb -> print_i(); //should print 1 inside B
 pd -> print_i(); //should print 2 inside D

 pb = pd;
 pb -> print_i(); //should print 2 inside D
}

B

D

9

C++-2, CS314 Fall 01, BGR 17

Abstract Classes
#include <stdio.h>

#include <stream.h> //example inspired by pohl book

class B {
public: virtual void print_i() =0;

};

class D : public B {
public: void print_i() { cout << 2 << " inside D\n";}

};

class C : public B {

public:
 void print_i() { cout << 3 << " inside C\n";}

};

B

C D

Cannot create B objects because
B is an abstract class; note missing
Implementation for B::print_i()

C++-2, CS314 Fall 01, BGR 18

Abstract Classes

main()

{ C *pc = new C(); D *pd = new D();B *pb;

 pc -> print_i(); //should print 3 inside C
 pd -> print_i(); //should print 2 inside D

 pb = pd;

 pb -> print_i(); //should print 2 inside D

 pb = pc;
 pb -> print_i(); //should print 3 inside C

}

//40 scherzo!programs> ./a.out

//3 inside C
//2 inside D

//2 inside D

//3 inside C

10

C++-2, CS314 Fall 01, BGR 19

How to design classes?

class PERSON{

str name;

int age;

PERSON(str n,int a);

void print();

};

class STUDENT: public PERSON{

int yearAdmitted;

int std#;

STUDENT(str,int,int,int)

void print_all();

};

class GRAD : public STUDENT{

PROF* advisor;

GRAD(...)

void print_all();

};

class UNDERGRAD:public

STUDENT{

COLLEGE* colg;

enum{1,2,3,4} year;

UNDERGRAD(...)

void print_all() ;

};

Cf Prof Borgida

C++-2, CS314 Fall 01, BGR 20

Example
PERSON

STUDENT

GRADSTUDENT
UNDERGRAD

name, age
PERSON()
print()

yearAdmitted, st#
STUDENT()
print_all()

colg, year
UNDERGRAD()
print_all()

advisor
GRADSTUDENT()
print_all()

PROFS

office
print_all()

ADJUNCTS

contract
print_all()

TEACHERS
Pay
print_all()=0

PROBLEM: grad students who teach courses!
(more later on this)

11

C++-2, CS314 Fall 01, BGR 21

Visibility in C++

• For members and member functions
– Private - only visible within that class

– Protected - only visible within that class and its
derived classes

– Public - visible to everyone

• Always use public inheritance! Private
inheritance exists but is difficult to use.
class D : public B

C++-2, CS314 Fall 01, BGR 22

Inheritance in C++

• Use abstract class to create consistent interfaces for
subclasses

• Subtype polymorphism if never redefine inherited
functions

• Code sharing and reuse
• Automatic propagation of changes to subclasses
• C++ has no equivalent to Java final which prevents

subclass extension
• Benefits to class designer and users

12

C++-2, CS314 Fall 01, BGR 23

Discussion

Assume we have a Dequeue class with append(),
remove(), insertFront(), removeRear()

And we want to define Queue as a subclass of Dequeue
Q: private DQ;

Private inheritance allows use of DQ protected
functions within the defn of class Q, but does not
allow users of Q to apply DQ functions to Q
objects.

Contrast with: given a Queue class, extend it to a
Dequeue subclass by adding insertFront(),
removeRear(), DQ : public Q

