
1

C++-3, CS314 Fall 01, BGR 1

C++ 3

• More on visibility of member functions and
of inheritance

• More on virtual functions
• Iterators
• Breaking encapsulation - friend functions

C++-3, CS314 Fall 01, BGR 2

Visibility Examples

• Show public inheritance
• Demonstrate that private member functions

cannot be used in the derived class
• Demonstrate that protected member

functions can be used in the derived class
but not by a user of the base class

• Second version shows private inheritance
– Can’t use public base class member functions

on derived class objects EXCEPT inside
derived class

protect.cc
protectPrivate.cc

2

C++-3, CS314 Fall 01, BGR 3

Example
include <stream.h>

class A

{ int a;

 public: val_public()

{cout << "in the A::val_public() \n";}

 protected: val_protected()

{cout << "in the A::val_protected() \n";}

 private: val_private()

{cout << "in the A::val_private() \n";}

};

C++-3, CS314 Fall 01, BGR 4

Example

class C : public A

{ public:

 void v1()

 {cout<< "in the C::v1---call---"; val_public(); }

 void v2()

 {cout << "in the C::v2---call---”;val_protected();}

/* the following declaration is illegal because
val_private() is a private member of class A.

 void v3()

 { val_private(); } */

};

3

C++-3, CS314 Fall 01, BGR 5

Example
main()

{ A a; C c;

 cout << "testing class C\n";

 c.val_public();

// c.val_protected(); illegal because
//val_protected() is protected in class A

// c.val_private(); illegal because val_private()

//is a private member of class A

 c.v1();

 c.v2();

} 58 remus!c++> a.out

testing class C
in the A::val_public()

in the C::v1---call---in the A::val_public()

in the C::v2---call---in the A::val_protected()

C++-3, CS314 Fall 01, BGR 6

Virtual Member Functions
A

B : public A

C: public B D: public B

virtual f(int)
virtual g()

f(int)

f(int)g()

If a refers to an A,B,D,
then a.g() means A’s g()
If a refers to a C
then a.g() means C’s g()

If a refers to an A then a.f(0) is A”s f
If a refers to a B,C then a.f(1) is B’s f
If a refers to a D then a.f(1) is D’s f

4

C++-3, CS314 Fall 01, BGR 7

Iterators

• Provide a way of examining a collection of
objects, one by one

• In Java,
– Form a new class which implements the

Enumeration interface and provides standard
nextElement() and hasMoreElements()
functions

– Constructor copies the container object (or
keeps a local “pointer” into the container)

C++-3, CS314 Fall 01, BGR 8

Iterators

• In C++, also need to create a new iterator
class, but it needs to know the details of the
collection implementation
– Friend class
– int nextElement(ele &) int 0 means no more

elements; returns reference to the element in its
argument

5

C++-3, CS314 Fall 01, BGR 9

Example#include<stdio.h>

#include<stream.h>

//stack class implemented as a vector
#define MAX 20

const int EMPTY = -1;

class stack

{ friend class stack_iterator;
 int s[MAX]; //private members

 int top;

 public: //public class interface

 stack() { top = EMPTY;}
 int isEmpty() {return (int) (top == EMPTY);}

 int isfull() {return (int) (top == MAX);}

 void push (int data) {s[++top] = data;} //no
error check!

 void pop() {top--;} //no error check!

 int peek() {return s[top];}
};

C++-3, CS314 Fall 01, BGR 10

Example
class stack_iterator

{ int current;

 stack *a;
 public:

 stack_iterator(stack *b)

 { a = b; //this iterator does not make a copy
 //of the stack object to save space;
 //uses a pointer to the original stack

 current = b->top;

 }

 int nextElement(int& j)
 { if (current == EMPTY) {return 0;}

 else {j = a->s[current--]; return 1;}

};

6

C++-3, CS314 Fall 01, BGR 11

Example
main()

{ stack q; stack * pq; int j; stack_iterator *iter;

 pq = &q;

 q.push(1); q.push(2); q.push(3); q.push(4);

 cout <<"top of stack is " << q.peek() << "\n";

 q.pop();

 cout <<"top of stack is "<< q.peek() << "\n";

 q.push(-3); q.push (-2);

 cout << "top of stack is "<< q.peek() << "\n";

}

//stack contains 1 2 3 -3 -2 here

//remember peek() does not pop the stack

 51 remus!c++> a.out
top of stack is 4
top of stack is 3
top of stack is -2

C++-3, CS314 Fall 01, BGR 12

Example

iter = new stack_iterator(pq);

// q.push(-1);//what will happen if we mutate the

// stack after creating the iterator object; this

// iterator won't see the new element

 cout << "printing entire stack ";

 while (iter->nextElement(j)) cout << " " << j ;

 cout << "\n";

 }
Output:
printing entire stack -2 -3 3 2 1

